Determinación de la actividad in vivo sobre la biosíntesis y acción de andrógenos endógenos de sustancias liquénicas seleccionadas

dc.contributor.advisorValencia Islas, Norma Angélica
dc.contributor.authorLópez Ladino, Johan Arturo
dc.contributor.researchgroupGrupo de Investigación en Química Medicinalspa
dc.contributor.researchgroupGrupo de Investigación en Estudios Biológicos y Fisicoquímicos de Líquenes Colombianosspa
dc.date.accessioned2021-09-02T15:47:41Z
dc.date.available2021-09-02T15:47:41Z
dc.date.issued2021
dc.descriptionIlustraciones y fotografíasspa
dc.description.abstractWith the objective to contribute the discovering of drugs to treat the disorders endogen androgen-dependent like prostate cancer (CP) and prostatic benign hyperplasia, which are public health problem worldwide and in Colombia because their high morbidity and mortality in mature men, in this investigation the in vivo activity of the lichen origin compounds sphaerophorin (1) and atraric acid (2) was evaluated. These compounds have been active in vitro on targets involved in the biosynthesis and action of endogen androgens. The compounds 1 y 2 were obtained from the lichens Bunodophoron melanocarpum and Stereocaulon strictum using phytochemical techniques. Their identity was confirmed by their spectroscopic RMN 1H and 13C data that was compared with the literature. The in vivo activity on the biosynthesis and action of endogen androgens was determined by Hershberger bioassay using male Wistar rats. The animals were castrated under anesthesia (Ketamine 75 mg/kg and xilacine 10 mg/kg) intraperitoneal ten days before the experiment. Then, the rats were distributed randomly in 5 groups of 7 individuals each one. Three groups were the controls: vegetal oil (AV) (200 µL, vehicle); testosterone propionate (TP) (0.4 mg/kg dissolved in the vehicle); and TP (0.4 mg/kg) + finasteride (F) (positive control) (1 mg/kg dissolved in 200 µL of vehicle) subcutaneously. The fourth and fifth groups had the test compounds (both 2 mg/kg dissolved in 200 µL of vehicle) + TP (0.4 mg/kg) that were administrated once daily for 10 days subcutaneously. The day after the last administration, the animals were sacrificed and their organs androgen dependents (prostate, seminal vesicles, bulbocavernosus muscle, Cowper glands and glans) and no androgen dependents (adrenal glands, kidneys, and liver) were obtained and weight. This data was expressed as mg of organ per 100 grams of corporal weight. Additionally, the prostates were analyzed semiquantitatively using histoscore to observe some characteristics that could be a possible antiandrogenic effect in that organ. Considering that 1 and 2 did not decrease significatively (p<0.05) the weight of the androgen-dependent organs, can be concluded the compounds did not have antiandrogenic effect in vivo at the evaluated dose. They also had no in vivo effect on the non-androgen-dependent organs showing no toxic effect preliminarily at short term. Histologically, the prostatic tissue treated with TP was hyperplasic (100%) meanwhile the TP + F had a lower hyperplasic proportion showing that this drug has a protective effect on hyperplasia inducted by this androgen. The tissue treated with TP + 1 or TP + 2 also showed a lower proportion of the hyperplasic characteristics (40 and 60% respectively) showing a protective effect in vivo. The sphaeorphorin and the atraric acid are candidates to continue deeper studies that let develop them as drugs to the possible treatment of androgendependent diseases.eng
dc.description.abstractCon la finalidad de contribuir al descubrimiento de fármacos para el tratamiento de desórdenes dependientes de andrógenos endógenos, como el cáncer de próstata (CP) y la hiperplasia prostática benigna (HPB), que a su vez son problemas de salud pública en el entorno nacional y mundial, dada su alta morbilidad y mortalidad en los hombres maduros, en el presente trabajo se determinó la actividad in vivo de los compuestos de origen liquénico: esferoforina (1) y ácido atrárico (2), mismos que presentaron actividad in vitro sobre blancos involucrados en la biosíntesis y/o acción de andrógenos endógenos. Los compuestos 1 y 2 se obtuvieron a partir de los líquenes Bunodophoron melanocarpum y Stereocaulon strictum, respectivamente, empleando técnicas fitoquímicas convencionales. Su identidad se confirmó mediante la determinación de sus datos espectroscópicos de RMN 1H y 13C comparando con los reportados en la literatura. La determinación de la actividad in vivo sobre la biosíntesis y/o acción de andrógenos endógenos se llevó a cabo mediante el ensayo Hershberger en ratas macho Wistar adultas. Los animales se sometieron a gonadectomía bajo anestesia de ketamina (75 mg/kg peso corporal (pc) y xilacina (10 mg/kg pc) vía intraperitoneal diez días antes del experimento. Luego, se dividieron al azar en 5 grupos de 7 individuos. Tres grupos fueron los controles y se administraron con aceite vegetal (AV) (200 µL, vehículo); testosterona propionato (TP) (0.4 mg/kg pc disuelto en vehículo) y TP (0.4 mg/kg pc) + finasterida (F) (control positivo) (1 mg/kg pc, disuelto en vehículo) vía subcutánea (SC). Del cuarto al quinto grupo, los compuestos de prueba (2 mg/kg pc disueltos en vehículo (200 L)) + TP (0.4 mg /kg pc) se administraron diariamente (10 días) vía SC. Al día siguiente de la última administración, los animales se sacrificaron, se extirparon sus órganos dependientes (próstata, vesículas seminales, músculo bulbocavernoso, glándulas de Cowper y glande) y no dependientes (hígado, riñones y glándulas suprarrenales) de andrógenos y se pesaron, expresando estos datos como mg de órgano por 100 g de peso corporal. Adicionalmente, las próstatas fueron sometidas a análisis histopatológico semi-cuantitativo por histoscore para observar algunas características que podrían suponer un posible efecto antiandrogénico en dicho órgano. Considerando que 1 y 2 comparando con F y AV, no disminuyeron de manera significativa (p < 0.05) el peso de los órganos dependientes de andrógenos endógenos, no presentaron efecto antiandrogénico in vivo a la dosis evaluada. Tampoco presentaron efecto in vivo sobre el peso y morfología de los órganos no dependientes de andrógenos, indicando de manera preliminar que no poseen efecto tóxico evidente a corto plazo. A nivel histológico, el tejido prostático de los animales tratados con TP presentó características hiperplásicas (en un 100 %) mientras que el tratado con TP + F presentó menor porcentaje de éstas (50 %), indicando un efecto protector de este fármaco ante la inducción de hiperplasia por dicho andrógeno. El tejido tratado con TP + 1 o TP + 2 también presentó menor porcentaje de características hiperplásicas (40 y 60 %) infiriendo un efecto protector in vivo (en un 60 y 40 %, respectivamente) de estos compuestos. La esferoforina y el ácido atrárico son candidatos para estudios más profundos que permitan desarrollarlos como fármacos para el posible tratamiento de desórdenes dependientes de andrógenos endógenos. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Farmacologíaspa
dc.description.methodsEnsayo de Hershberger en ratas.spa
dc.description.researchareaFarmacología básicaspa
dc.format.extentxvi, 131 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80081
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Farmaciaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacologíaspa
dc.relation.referencesAggarwal, S., Thareja, S., Verma, A., Bhardwaj, T.R., Kumar, M., 2010. An overview on 5alpha-reductase inhibitors. Steroids 75, 109–153. https://doi.org/10.1016/j.steroids.2009.10.005eng
dc.relation.referencesAmerican Cancer Society, 2017. Factores de riesgo del cáncer de próstata [WWW Document]. URL https://www.cancer.org/es/cancer/cancer-de-prostata/causas-riesgos-prevencion/factores-de-riesgo.html (accessed 11.2.17).spa
dc.relation.referencesAntúnez, P., Herrero, M., Santos-Briz Terrón, Á., Lorenzo Gómez, F., Bullón Sopelana, A., 2011. Hiperplasia benigna de próstata con metaplasia estromal fibroadiposa. Actas Urológicas Españolas 35, 63–64.spa
dc.relation.referencesApplegate, C.C., Rowles, J.L., Ranard, K.M., Jeon, S., Erdman, J.W., 2018. Soy Consumption and the Risk of Prostate Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 10. https://doi.org/10.3390/nu10010040eng
dc.relation.referencesArgüello-Galindo, J.J., 2019. Determinación del potencial del hongo liquenizado Bunodophoron melanocarpum como fuente de compuestos duales con actividad foto-protectora y antioxidante (Tesis Maestría). Universidad Nacional de Colombia.eng
dc.relation.referencesArlandis Guzmán, S., García Matres, M.J., González Segura, D., Rebollo, P., 2009. Prevalencia de síntomas del tracto urinario inferior en pacientes con síndrome de vejiga hiperactiva: Manejo del paciente en la práctica clínica habitual. Actas Urológicas Españolas 33, 902–908.spa
dc.relation.referencesAsplund, J., Wardle, D.A., 2017. How lichens impact on terrestrial community and ecosystem properties. Biol Rev Camb Philos Soc 92, 1720–1738. https://doi.org/10.1111/brv.12305eng
dc.relation.referencesAzzouni, F., Godoy, A., Li, Y., Mohler, J., 2012. The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases. Adv Urol 2012. https://doi.org/10.1155/2012/530121eng
dc.relation.referencesBazin, M.-A., Le Lamer, A.-C., Delcros, J.-G., Rouaud, I., Uriac, P., Boustie, J., Corbel, J.-C., Tomasi, S., 2008. Synthesis and cytotoxic activities of usnic acid derivatives. Bioorg. Med. Chem. 16, 6860–6866. https://doi.org/10.1016/j.bmc.2008.05.069eng
dc.relation.referencesBechis, S.K., Otsetov, A.G., Ge, R., Olumi, A.F., 2014. Personalized medicine for the management of benign prostatic hyperplasia. J. Urol. 192, 16–23. https://doi.org/10.1016/j.juro.2014.01.114eng
dc.relation.referencesBeer, T.M., Armstrong, A.J., Rathkopf, D.E., Loriot, Y., Sternberg, C.N., Higano, C.S., Iversen, P., Bhattacharya, S., Carles, J., Chowdhury, S., Davis, I.D., de Bono, J.S., Evans, C.P., Fizazi, K., Joshua, A.M., Kim, C.-S., Kimura, G., Mainwaring, P., Mansbach, H., Miller, K., Noonberg, S.B., Perabo, F., Phung, D., Saad, F., Scher, H.I., Taplin, M.-E., Venner, P.M., Tombal, B., 2014. Enzalutamide in Metastatic Prostate Cancer before Chemotherapy. N Engl J Med 371, 424–433. https://doi.org/10.1056/NEJMoa1405095eng
dc.relation.referencesBernal, R., Gradstein, R., Celis, M., 2016. Catálogo de plantas y líquenes de Colombiaspa
dc.relation.referencesBhasin, S., Jasuja, R., 2009. Selective Androgen Receptor Modulators (SARMs) as Function Promoting Therapies. Curr Opin Clin Nutr Metab Care 12, 232–240. https://doi.org/10.1097/MCO.0b013e32832a3d79eng
dc.relation.referencesBolton, E.M., Lynch, T., 2018. Are all gonadotrophin-releasing hormone agonists equivalent for the treatment of prostate cancer? A systematic review. BJU Int. 122, 371–383. https://doi.org/10.1111/bju.14168eng
dc.relation.referencesBotelho-Lourenço, E.L., Centeno Muller, J., Boareto, A.C., Gomes, C., Lourenço, A.C., Minatovicz, B., Crestani, S., Gasparotto, A., Martino-Andrade, A.J., Dalsenter, P.R., 2012. Screening for in vivo (anti)estrogenic and (anti)androgenic activities of Tropaeolum majus L. and its effect on uterine contractility. J Ethnopharmacol 141, 418–423. https://doi.org/10.1016/j.jep.2012.03.004eng
dc.relation.referencesBottino, M., Lanari, C., 2010. Localización extranuclear de receptores esteroides y activación de mecanismos no genómicos. MEDICINA (Buenos Aires) 70, 173–184.spa
dc.relation.referencesBratoeff, E., García, P., Heuze, Y., Soriano, J., Mejía, A., Labastida, A.M., Valencia, N., Cabeza, M., 2010. Molecular interactions of progesterone derivatives with 5 alpha-reductase types 1 and 2 and androgen receptors. Steroids 75, 499–505. https://doi.org/10.1016/j.steroids.2010.03.006eng
dc.relation.referencesBratoeff, E., Ramirez, E., Valencia, N., 1997. The Pharmacology of the Antiandrogens [WWW Document]. ResearchGate. URL https://www.researchgate.net/publication/289218409_The_Pharmacology_of_the_Antiandrogens (accessed 6.24.19).eng
dc.relation.referencesBratoeff, E., Sainz, T., Cabeza, M., Heuze, I., Recillas, S., Pérez, V., Rodríguez, C., Segura, T., Gonzáles, J., Ramírez, E., 2007. Steroids with a carbamate function at C-17, a novel class of inhibitors for human and hamster steroid 5alpha-reductase. J. Steroid Biochem. Mol. Biol. 107, 48–56. https://doi.org/10.1016/j.jsbmb.2007.03.038eng
dc.relation.referencesBravo, L.E., Muñoz, N., Bravo, L.E., Muñoz, N., 2018. Epidemiology of cancer in Colombia. Colombia Médica 49, 9–12. https://doi.org/10.25100/cm.v49i1.3877eng
dc.relation.referencesBrooke, G.N., Gamble, S.C., Hough, M.A., Begum, S., Dart, D.A., Odontiadis, M., Powell, S.M., Fioretti, F.M., Bryan, R.A., Waxman, J., Wait, R., Bevan, C.L., 2015. Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells. Mol. Cell Proteomics 14, 1201–1216. https://doi.org/10.1074/mcp.M113.036764eng
dc.relation.referencesBurger, H.G., 2002. Androgen production in women. Fertil. Steril. 77 Suppl 4, S3-5.eng
dc.relation.referencesCabeza, M., Bratoeff, E., Ramírez, E., Heuze, I., Recillas, S., Berrios, H., Cruz, A., Cabrera, O., Perez, V., 2008. Biological activity of novel progesterone derivatives having a bulky ester side chains at C-3. Steroids 73, 838–843. https://doi.org/10.1016/j.steroids.2008.03.006eng
dc.relation.referencesCalcott, M.J., Ackerley, D.F., Knight, A., Keyzers, R.A., Owen, J.G., 2018. Secondary metabolism in the lichen symbiosis. Chem Soc Rev 47, 1730–1760. https://doi.org/10.1039/c7cs00431aeng
dc.relation.referencesCappeta, M., Stengel, F., 2013. Inhibidores de 5 α reductasa. Perfil de seguridad. Arch. Argent. Dermato. 63, 45–49.spa
dc.relation.referencesCardile, V., Graziano, A., Avola, R., Piovano, M., Russo, A., 2016. Potential anticancer activity of lichen secondary metabolite physodic acid. Chemico-Biological Interactions 263. https://doi.org/10.1016/j.cbi.2016.12.007eng
dc.relation.referencesCaro-Zapata, F.L., Vásquez-Franco, A., Correa-Galeano, É.D., García-Valencia, J., 2018. Complicaciones infecciosas después de prostatectomía abierta y resección transuretral de próstata en pacientes con hiperplasia prostática benigna. Iatreia 31, 274–283. https://doi.org/10.17533/udea.iatreia.v31n3a05spa
dc.relation.referencesCataño, J.G.C., Morales, C.E., 2009. Evaluacion de la calidad de vida asociada a la salud en los pacientes sometidos a prostatectomia radical abierta por carcinoma de próstata clinicamente localizado. Urología colombiana 18, 2–16.spa
dc.relation.referencesCentenera, M.M., Selth, L.A., Ebrahimie, E., Butler, L.M., Tilley, W.D., 2018. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harb Perspect Med 8. https://doi.org/10.1101/cshperspect.a030478eng
dc.relation.referencesChowdhury, S., Beitel, L.K., Lumbroso, R., Purisima, E.O., Paliouras, M., Trifiro, M., 2019. A Targeted Bivalent Androgen Receptor Binding Compound for Prostate Cancer Therapy. Horm Cancer 10, 24–35. https://doi.org/10.1007/s12672-018-0353-6eng
dc.relation.referencesCrawford, E.D., Higano, C.S., Shore, N.D., Hussain, M., Petrylak, D.P., 2015. Treating Patients with Metastatic Castration Resistant Prostate Cancer: A Comprehensive Review of Available Therapies. J. Urol. 194, 1537–1547. https://doi.org/10.1016/j.juro.2015.06.106eng
dc.relation.referencesCrona, D.J., Milowsky, M.I., Whang, Y.E., 2015. Androgen receptor targeting drugs in castration-resistant prostate cancer and mechanisms of resistance. Clin Pharmacol Ther 98, 582–589. https://doi.org/10.1002/cpt.256eng
dc.relation.referencesCulberson, C.F., 1972. Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method. Journal of Chromatography A 72, 113–125. https://doi.org/10.1016/0021-9673(72)80013-Xeng
dc.relation.referencesCulig, Z., Santer, F.R., 2014. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev. 33, 413–427. https://doi.org/10.1007/s10555-013-9474-0eng
dc.relation.referencesCummings, B., 2002. Diversity of Fungi. Pearson Education, Inc.eng
dc.relation.referencesCuzick, J., Thorat, M.A., Andriole, G., Brawley, O.W., Brown, P.H., Culig, Z., Eeles, R.A., Ford, L.G., Hamdy, F.C., Holmberg, L., Ilic, D., Key, T.J., Vecchia, C.L., Lilja, H., Marberger, M., Meyskens, F.L., Minasian, L.M., Parker, C., Parnes, H.L., Perner, S., Rittenhouse, H., Schalken, J., Schmid, H.-P., Schmitz-Dräger, B.J., Schröder, F.H., Stenzl, A., Tombal, B., Wilt, T.J., Wolk, A., 2014. Prevention and early detection of prostate cancer. The Lancet Oncology 15, e484–e492. https://doi.org/10.1016/S1470-2045(14)70211-6eng
dc.relation.referencesDaniyal, M., Siddiqui, Z.A., Akram, M., Asif, H.M., Sultana, S., Khan, A., 2014. Epidemiology, etiology, diagnosis and treatment of prostate cancer. Asian Pac. J. Cancer Prev. 15, 9575–9578.eng
dc.relation.referencesDavey, R.A., Grossmann, M., 2016. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 37, 3–15.eng
dc.relation.referencesDavidson, E., Morgentaler, A., 2016. Testosterone Therapy and Prostate Cancer. Urol. Clin. North Am. 43, 209–216. https://doi.org/10.1016/j.ucl.2016.01.007eng
dc.relation.referencesDenmeade, S.R., Isaacs, J.T., 2002. A history of prostate cancer treatment. Nat Rev Cancer 2, 389–396. https://doi.org/10.1038/nrc801eng
dc.relation.referencesDetti, B., D’Angelillo, R.M., Ingrosso, G., Olmetto, E., Francolini, G., Triggiani, L., Bruni, A., Borghesi, S., Fondelli, S., Carfagno, T., Santini, R., Santoni, R., Trodella, L.E., Livi, L., 2017. Combining Abiraterone and Radiotherapy in Prostate Cancer Patients Who Progressed During Abiraterone Therapy. Anticancer Res. 37, 3717–3722. https://doi.org/10.21873/anticanres.11744eng
dc.relation.referencesDunn, M.W., 2017. Prostate Cancer Screening. Semin Oncol Nurs 33, 156–164. https://doi.org/10.1016/j.soncn.2017.02.003eng
dc.relation.referencesEdwards, J.L., 2008. Diagnosis and management of benign prostatic hyperplasia. Am Fam Physician 77, 1403–1410.eng
dc.relation.referencesElberry, A.A., Mufti, S.T., Al-Maghrabi, J.A., Abdel-Sattar, E.A., Ashour, O.M., Ghareib, S.A., Mosli, H.A., 2011. Anti-inflammatory and antiproliferative activities of date palm pollen (Phoenix dactylifera) on experimentally-induced atypical prostatic hyperplasia in rats. J Inflamm (Lond) 8, 40. https://doi.org/10.1186/1476-9255-8-40eng
dc.relation.referencesEngelstein, D., Shmueli, J., Bruhis, S., Servadio, C., Abramovici, A., 1996. Citral and testosterone interactions in inducing benign and atypical prostatic hyperplasia in rats. Comp. Biochem. Physiol. C, Pharmacol. Toxicol. Endocrinol. 115, 169–177.eng
dc.relation.referencesFDA, 2011. 5-alpha reductase inhibitors (5-ARIs) may increase the risk of a more serious form of prostate cancer [WWW Document]. URL https://www.fda.gov/Drugs/DrugSafety/ucm258314.htm (accessed 1.29.19).eng
dc.relation.referencesFitzpatrick, J.M., Artibani, W., 2006. Therapeutic Strategies for Managing BPH Progression. European Urology Supplements 5, 997–1003. https://doi.org/10.1016/j.eursup.2006.08.009eng
dc.relation.referencesFonseca, I., Valencia, N., 2018. Estudio de acomplamiento molecular entre enzima 5 alfa reductasa (isoforma II) y algunas sustancias de origen liquénico con posible actividad frente a la hiperplasia prostática benigna. Universidad Nacional de Colombia.spa
dc.relation.referencesFriedrich, N., Völzke, H., Rosskopf, D., Steveling, A., Krebs, A., Nauck, M., Wallaschofski, H., 2008. Reference ranges for serum dehydroepiandrosterone sulfate and testosterone in adult men. J. Androl. 29, 610–617. https://doi.org/10.2164/jandrol.108.005561eng
dc.relation.referencesGalanty, A., Koczurkiewicz, P., Wnuk, D., Paw, M., Karnas, E., Podolak, I., Węgrzyn, M., Borusiewicz, M., Madeja, Z., Czyż, J., Michalik, M., 2017. Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells. Toxicol In Vitro 40, 161–169. https://doi.org/10.1016/j.tiv.2017.01.008eng
dc.relation.referencesGamat, M., McNeel, D.G., 2017. Androgen deprivation and immunotherapy for the treatment of prostate cancer. Endocr. Relat. Cancer. https://doi.org/10.1530/ERC-17-0145eng
dc.relation.referencesGao, W., Bohl, C.E., Dalton, J.T., 2005. Chemistry and structural biology of androgen receptor. Chem. Rev. 105, 3352–3370. https://doi.org/10.1021/cr020456ueng
dc.relation.referencesGillessen, S., Omlin, A., Attard, G., de Bono, J.S., Efstathiou, E., Fizazi, K., Halabi, S., Nelson, P.S., Sartor, O., Smith, M.R., Soule, H.R., Akaza, H., Beer, T.M., Beltran, H., Chinnaiyan, A.M., Daugaard, G., Davis, I.D., De Santis, M., Drake, C.G., Eeles, R.A., Fanti, S., Gleave, M.E., Heidenreich, A., Hussain, M., James, N.D., Lecouvet, F.E., Logothetis, C.J., Mastris, K., Nilsson, S., Oh, W.K., Olmos, D., Padhani, A.R., Parker, C., Rubin, M.A., Schalken, J.A., Scher, H.I., Sella, A., Shore, N.D., Small, E.J., Sternberg, C.N., Suzuki, H., Sweeney, C.J., Tannock, I.F., Tombal, B., 2015. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015. Ann Oncol 26, 1589–1604. https://doi.org/10.1093/annonc/mdv257eng
dc.relation.referencesGleason, D.F., 1992. Histologic grading of prostate cancer: A perspective. Human Pathology, The Pathobiology of Prostate Cancer-Part 1 23, 273–279. https://doi.org/10.1016/0046-8177(92)90108-Feng
dc.relation.referencesGleicher, N., Kushnir, V.A., Weghofer, A., Barad, D.H., 2016. The importance of adrenal hypoandrogenism in infertile women with low functional ovarian reserve: a case study of associated adrenal insufficiency. Reprod. Biol. Endocrinol. 14, 23. https://doi.org/10.1186/s12958-016-0158-9eng
dc.relation.referencesGlobal Burden of Disease Cancer Collaboration, Fitzmaurice, C., Dicker, D., Pain, A., Hamavid, H., Moradi-Lakeh, M., MacIntyre, M.F., Allen, C., Hansen, G., Woodbrook, R., Wolfe, C., Hamadeh, R.R., Moore, A., Werdecker, A., Gessner, B.D., Te Ao, B., McMahon, B., Karimkhani, C., Yu, C., Cooke, G.S., Schwebel, D.C., Carpenter, D.O., Pereira, D.M., Nash, D., Kazi, D.S., De Leo, D., Plass, D., Ukwaja, K.N., Thurston, G.D., Yun Jin, K., Simard, E.P., Mills, E., Park, E.-K., Catalá-López, F., deVeber, G., Gotay, C., Khan, G., Hosgood, H.D., Santos, I.S., Leasher, J.L., Singh, J., Leigh, J., Jonas, J.B., Jonas, J., Sanabria, J., Beardsley, J., Jacobsen, K.H., Takahashi, K., Franklin, R.C., Ronfani, L., Montico, M., Naldi, L., Tonelli, M., Geleijnse, J., Petzold, M., Shrime, M.G., Younis, M., Yonemoto, N., Breitborde, N., Yip, P., Pourmalek, F., Lotufo, P.A., Esteghamati, A., Hankey, G.J., Ali, R., Lunevicius, R., Malekzadeh, R., Dellavalle, R., Weintraub, R., Lucas, R., Hay, R., Rojas-Rueda, D., Westerman, R., Sepaneng
dc.relation.referenceslou, S.G., Nolte, S., Patten, S., Weichenthal, S., Abera, S.F., Fereshtehnejad, S.-M., Shiue, I., Driscoll, T., Vasankari, T., Alsharif, U., Rahimi-Movaghar, V., Vlassov, V.V., Marcenes, W.S., Mekonnen, W., Melaku, Y.A., Yano, Y., Artaman, A., Campos, I., MacLachlan, J., Mueller, U., Kim, D., Trillini, M., Eshrati, B., Williams, H.C., Shibuya, K., Dandona, R., Murthy, K., Cowie, B., Amare, A.T., Antonio, C.A., Castañeda-Orjuela, C., van Gool, C.H., Violante, F., Oh, I.-H., Deribe, K., Soreide, K., Knibbs, L., Kereselidze, M., Green, M., Cardenas, R., Roy, N., Tillmann, T., Tillman, T., Li, Y., Krueger, H., Monasta, L., Dey, S., Sheikhbahaei, S., Hafezi-Nejad, N., Kumar, G.A., Sreeramareddy, C.T., Dandona, L., Wang, H., Vollset, S.E., Mokdad, A., Salomon, J.A., Lozano, R., Vos, T., Forouzanfar, M., Lopez, A., Murray, C., Naghavi, M., 2015. The Global Burden of Cancer 2013. JAMA Oncol 1, 505–527. https://doi.org/10.1001/jamaoncol.2015.0735eng
dc.relation.referencesGlobocan, 2021a. Estadísticas de cáncer en Colombia.spa
dc.relation.referencesGlobocan, 2021b. Estadísticas de cáncer a nivel mundial.spa
dc.relation.referencesGoldstein, A.S., Huang, J., Guo, C., Garraway, I.P., Witte, O.N., 2010. Identification of a cell-of-origin for human prostate cancer. Science 329, 568–571. https://doi.org/10.1126/science.1189992eng
dc.relation.referencesGoyal, P.K., Verma, S., Sharma, A.K., 2016. PHARMACOLOGICAL AND PHYTOCHEMICAL ASPECTS OF LICHEN PARMELIA PERLATA: A REVIEW. International Journal of Research in Ayurveda & Pharmacy 7, 102–107. https://doi.org/10.7897/2277-4343.07138eng
dc.relation.referencesGray, L.E., Furr, J., Ostby, J.S., 2005. Hershberger assay to investigate the effects of endocrine-disrupting compounds with androgenic or antiandrogenic activity in castrate-immature male rats. Curr Protoc Toxicol Chapter 16, Unit16.9. https://doi.org/10.1002/0471140856.tx1609s26eng
dc.relation.referencesGrozescu, T., Popa, F., 2017. Prostate cancer between prognosis and adequate/proper therapy. J Med Life 10, 5–12eng
dc.relation.referencesGupta, E., Guthrie, T., Tan, W., 2014. Changing paradigms in management of metastatic Castration Resistant Prostate Cancer (mCRPC). BMC Urol 14, 55. https://doi.org/10.1186/1471-2490-14-55eng
dc.relation.referencesHandelsman, D.J., Hirschberg, A.L., Bermon, S., 2018. Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocrine Reviews 39, 803–829. https://doi.org/10.1210/er.2018-00020eng
dc.relation.referencesHarris, W.P., Mostaghel, E.A., Nelson, P.S., Montgomery, B., 2009. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6, 76–85. https://doi.org/10.1038/ncpuro1296eng
dc.relation.referencesHelsen, C., Van den Broeck, T., Voet, A., Prekovic, S., Van Poppel, H., Joniau, S., Claessens, F., 2014. Androgen receptor antagonists for prostate cancer therapy. Endocr. Relat. Cancer 21, T105-118. https://doi.org/10.1530/ERC-13-0545eng
dc.relation.referencesHuneck, S., Yoshimura, I., 1996. Identification of Lichen Substances, 1st Edition. ed. Springer.eng
dc.relation.referencesInstituto Nacional de Cancerología, 2017. Análisis de situación del cáncer en Colombia 2015.spa
dc.relation.referencesInstituto Nacional de Cancerología ESE, Sociedad Colombiana de Urología, 2013. Guía de práctica clínica (GPC) para la detección temprana, diagnóstico, tratamiento, seguimiento y rehabilitación del cáncer de próstata.spa
dc.relation.referencesInstituto Nacional del Cáncer, 2011a. Hiperplasia prostática benigna [WWW Document]. National Cancer Institute. URL https://www.cancer.gov/espanol/publicaciones/diccionario (accessed 1.26.19).spa
dc.relation.referencesInstituto Nacional del Cáncer, 2011b. Resección transuretral de la próstata [WWW Document]. National Cancer Institute. URL https://www.cancer.gov/espanol/publicaciones/diccionario (accessed 1.26.19).eng
dc.relation.referencesInzunza, G., Rada, G., Majerson, A., 2018. Bipolar or monopolar transurethral resection for benign prostatic hyperplasia? Medwave 18, e7134. https://doi.org/10.5867/medwave.2018.01.7134eng
dc.relation.referencesJin, J.-X., Wang, H.-Z., Zhai, Z.-X., Ma, B.-L., Li, Q.-F., Xiao, N., Wang, Z.-P., Rodriguez, R., 2017. Transrectal microwave thermotherapy causing a short-time influence on sperm quality in Chinese chronic nonbacterial prostatitis patients. Asian J Androl 19, 548–553. https://doi.org/10.4103/1008-682X.185852eng
dc.relation.referencesKelly, S.P., Anderson, W.F., Rosenberg, P.S., Cook, M.B., 2018. Past, Current, and Future Incidence Rates and Burden of Metastatic Prostate Cancer in the United States. Eur Urol Focus 4, 121–127. https://doi.org/10.1016/j.euf.2017.10.014eng
dc.relation.referencesKennel, P.F., Pallen, C.T., Bars, R.G., 2004. Evaluation of the rodent Hershberger assay using three reference endocrine disrupters (androgen and antiandrogens). Reproductive Toxicology 18, 63–73. https://doi.org/10.1016/j.reprotox.2003.10.012eng
dc.relation.referencesKim, H., Kim, K.K., Hur, J.-S., 2015. Anticancer Activity of Lichen Metabolites and Their Mechanisms at the Molecular Level, in: Upreti, D.K., Divakar, P.K., Shukla, V., Bajpai, R. (Eds.), Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Volume 2. Springer India, New Delhi, pp. 201–208. https://doi.org/10.1007/978-81-322-2235-4_11eng
dc.relation.referencesKlap, J., Schmid, M., Loughlin, K.R., 2015. The relationship between total testosterone levels and prostate cancer: a review of the continuing controversy. J. Urol. 193, 403–413. https://doi.org/10.1016/j.juro.2014.07.123eng
dc.relation.referencesKurup, A., Garg, R., Hansch, C., 2000. Comparative QSAR analysis of 5alpha-reductase inhibitors. Chem. Rev. 100, 909–924.eng
dc.relation.referencesLamb, A., Neal, D., 2013. Role of the androgen receptor in prostate cancer. Trends in Urology & Men’s Health.eng
dc.relation.referencesLee, S.W.H., Chan, E.M.C., Lai, Y.K., 2017. The global burden of lower urinary tract symptoms suggestive of benign prostatic hyperplasia: A systematic review and meta-analysis. Scientific Reports 7, 7984. https://doi.org/10.1038/s41598-017-06628-8eng
dc.relation.referencesLempiäinen, J.K., Niskanen, E.A., Vuoti, K.-M., Lampinen, R.E., Göös, H., Varjosalo, M., Palvimo, J.J., 2017. Agonist-specific Protein Interactomes of Glucocorticoid and Androgen Receptor as Revealed by Proximity Mapping. Mol. Cell Proteomics 16, 1462–1474. https://doi.org/10.1074/mcp.M117.067488eng
dc.relation.referencesLim, K.B., 2017. Epidemiology of clinical benign prostatic hyperplasia. Asian J Urol 4, 148–151. https://doi.org/10.1016/j.ajur.2017.06.004eng
dc.relation.referencesLozano, J.A., 2003. Diagnóstico y tratamiento de la hiperplasia benigna de próstata. Offarm 22, 90–98.eng
dc.relation.referencesLücking, R., Moncada, B., Martínez-Habibe, M.C., Salgado-Negret, B.E., Celis, M., Rojas-Zamora, O., Rodríguez-M, G.M., Brokamp, G., Borsch, T., Lücking, R., Moncada, B., Martínez-Habibe, M.C., Salgado-Negret, B.E., Celis, M., Rojas-Zamora, O., Rodríguez-M, G.M., Brokamp, G., Borsch, T., 2019. Lichen diversity in Colombian Caribbean dry forest remnants. Caldasia 41, 194–214. https://doi.org/10.15446/caldasia.v41n1.71060eng
dc.relation.referencesManieri, E., Herrera-Melle, L., Mora, A., Tomás-Loba, A., Leiva-Vega, L., Fernández, D.I., Rodríguez, E., Morán, L., Hernández-Cosido, L., Torres, J.L., Seoane, L.M., Cubero, F.J., Marcos, M., Sabio, G., 2019. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J. Exp. Med. https://doi.org/10.1084/jem.20181288eng
dc.relation.referencesMarya, S.K.S., Garg, P., Gupta, A.K., Sharma, V.K., 1995. Role of Speman in Benign Prostatic Hyperplasia, Surgical Journal of North Indiaeng
dc.relation.referencesMcEwan, I.J., Brinkmann, A.O., 2000. Androgen Physiology: Receptor and Metabolic Disorders, in: De Groot, L.J., Chrousos, G., Dungan, K., Feingold, K.R., Grossman, A., Hershman, J.M., Koch, C., Korbonits, M., McLachlan, R., New, M., Purnell, J., Rebar, R., Singer, F., Vinik, A. (Eds.), Endotext. MDText.com, Inc., South Dartmouth (MA).eng
dc.relation.referencesMcHenry, J., Carrier, N., Hull, E., Kabbaj, M., 2014. Sex differences in anxiety and depression: Role of testosterone. Frontiers in Neuroendocrinology 35, 42–57. https://doi.org/10.1016/j.yfrne.2013.09.001eng
dc.relation.referencesMcKay, R.R., Werner, L., Fiorillo, M., Roberts, J., Heath, E.I., Bubley, G.J., Montgomery, R.B., Taplin, M.-E., 2017. Efficacy of Therapies After Galeterone in Patients With Castration-resistant Prostate Cancer. Clin Genitourin Cancer 15, 463–471. https://doi.org/10.1016/j.clgc.2016.10.006eng
dc.relation.referencesMcLaren, I.D., Jerde, T.J., Bushman, W., 2011. Role of interleukins, IGF and stem cells in BPH. Differentiation 82. https://doi.org/10.1016/j.diff.2011.06.001eng
dc.relation.referencesMinisterio de Salud y Protección Social, 2012. Plan nacional para el control del cáncer en Colombia 2012 - 2020.spa
dc.relation.referencesMohammadi, M., Zambare, V., Malek, L., Gottardo, C., Suntres, Z., Christopher, L., 2020. Lichenochemicals: extraction, purification, characterization, and application as potential anticancer agents. Expert Opin Drug Discov 15, 575–601. https://doi.org/10.1080/17460441.2020.1730325eng
dc.relation.referencesMolano-Merchán, M.P., Valencia-Islas, N., 2013. Estudio computacional de la potencial actividad sobre el receptor de andrógenos de metabolitos secundarios de líquenes. Universidad Nacional de Colombia, Bogotá D.C., Colombia.spa
dc.relation.referencesMun, S.-K., Kang, K.-Y., Jang, H.-Y., Hwang, Y.-H., Hong, S.-G., Kim, S.-J., Cho, H.-W., Chang, D.-J., Hur, J.-S., Yee, S.-T., 2020. Atraric Acid Exhibits Anti-Inflammatory Effect in Lipopolysaccharide-Stimulated RAW264.7 Cells and Mouse Models. Int J Mol Sci 21. https://doi.org/10.3390/ijms21197070eng
dc.relation.referencesMurata, K., Hayashi, H., Matsumura, S., Matsuda, H., 2013. Suppression of benign prostate hyperplasia by Kaempferia parviflora rhizome. Pharmacognosy Res 5, 309–314. https://doi.org/10.4103/0974-8490.118827eng
dc.relation.referencesNaji, L., Randhawa, H., Sohani, Z., Dennis, B., Lautenbach, D., Kavanagh, O., Bawor, M., Banfield, L., Profetto, J., 2018. Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. Ann Fam Med 16, 149–154. https://doi.org/10.1370/afm.2205eng
dc.relation.referencesNarayanan, R., Coss, C.C., Dalton, J.T., 2018. Development of Selective Androgen Receptor Modulators (SARMs). Mol Cell Endocrinol 465, 134–142. https://doi.org/10.1016/j.mce.2017.06.013eng
dc.relation.referencesNash, T., 2008. Lichen Biology [WWW Document]. Cambridge Core. https://doi.org/10.1017/CBO9780511790478eng
dc.relation.referencesOECD, 2009. Test No. 441: Hershberger Bioassay in Rats [WWW Document]. OECD iLibrary. URL https://read.oecd-ilibrary.org/environment/test-no-441-hershberger-bioassay-in-rats_9789264076334-en (accessed 4.22.19).eng
dc.relation.referencesOrganización Mundial de la Salud, 1980. Histological Typing of Prostate Tumours.eng
dc.relation.referencesOrganización Panamericana de la Salud, 2013. Cáncer en las Américas. Perfiles de País [WWW Document]. URL https://www.paho.org/hq/index.php?option=com_docman&view=list&layout=table&own=0&Itemid=270&lang=es (accessed 11.4.20).spa
dc.relation.referencesOwens William, Zeiger Errol, Walker Michael, Ashby John, Onyon Lesley, Gray L. Earl, 2006. The OECD Program to Validate the Rat Hershberger Bioassay to Screen Compounds for in Vivo Androgen and Antiandrogen Responses. Phase 1: Use of a Potent Agonist and a Potent Antagonist to Test the Standardized Protocol. Environmental Health Perspectives 114, 1259–1265. https://doi.org/10.1289/ehp.8751eng
dc.relation.referencesPapaioannou, M., Schleich, S., Prade, I., Degen, S., Roell, D., Schubert, U., Tanner, T., Claessens, F., Matusch, R., Baniahmad, A., 2009. The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth. J. Cell. Mol. Med. 13, 2210–2223. https://doi.org/10.1111/j.1582-4934.2008.00426.xeng
dc.relation.referencesParasyri, A., Papazi, A., Stamatis, N., Zerveas, S., Avramidou, E.V., Doulis, A.G., Pirintsos, S., Kotzabasis, K., 2018. Lichen as Micro-Ecosystem: Extremophilic Behavior with Astrobiotechnological Applications. Astrobiology 18, 1528–1542. https://doi.org/10.1089/ast.2017.1789eng
dc.relation.referencesPejčić, T., Tosti, T., Tešić, Ž., Milković, B., Dragičević, D., Kozomara, M., Čekerevac, M., Džamić, Z., 2017. Testosterone and dihydrotestosterone levels in the transition zone correlate with prostate volume. Prostate 77, 1082–1092. https://doi.org/10.1002/pros.23365eng
dc.relation.referencesPejčić, T., Tosti, T., Tešić, Ž., Milković, B., Dragičević, D., Kozomara, M., Čekerevac, M., Džamić, Z., 2017. Testosterone and dihydrotestosterone levels in the transition zone correlate with prostate volume. Prostate 77, 1082–1092. https://doi.org/10.1002/pros.23365eng
dc.relation.referencesPennisi, E., 2016. A lichen ménage à trois [WWW Document]. Science | AAAS. URL http://www.sciencemag.org/video/lichen-m-nage-trois (accessed 11.15.17).eng
dc.relation.referencesPérez Guerra, Y., Molina Cuevas, V., Oyarzábal Yera, A., Mas Ferreiro, R., 2011. Tratamiento farmacológico en la hiperplasia prostática benigna. Revista Cubana de Farmacia 45, 109–126.spa
dc.relation.referencesPerico-Franco, L.S., 2011. Antioxidantes de los líquenes Stereocaulon strictum (Stereocaulaceae) y Lobariella pallida (Lobariaceae) y determinación de su potencial citotoxicidad (Tesis Doctoral). Universidad Nacional de Colombia.spa
dc.relation.referencesPerico-Franco, L.S., Soriano-Garcia, M., Cerbon, M.A., Gonzalez-Sanchez, I., Valencia-Islas, N.A., 2015. Secondary Metabolites and Cytotoxic Potential of Lobariella pallida and Stereocaulon strictum var. Compressum, Two Lichens from Colombian Paramo Region. UK Journal of Pharmaceutical Biosciences 3, 31. https://doi.org/10.20510/ukjpb/3/i4/89463eng
dc.relation.referencesPolanía-Patiño, A., 2020. Determinación in vitro del efecto de algunas sustancias liquénicas seleccionadas sobre el receptor de andrógenos, la enzima 5alfa-reductasa y la aromatasa para valorarlos como posibles prototipos de fármacos para el tratamiento de desórdenes dependientes de andrógenos. Universidad Nacional de Colombia, Bogotá D.C., Colombiaspa
dc.relation.referencesPoveda-Matiz, J.L., Reyes, N.J.A., Becerra, M.P.S., Almendrales, F.P.D., 2014. Evolución de la mortalidad por cáncer de próstata en Colombia: estudio ecológico. Revista Urología Colombiana XXIII, 3–10.spa
dc.relation.referencesQian, X., Yu, G., Qian, Y., Xu, D., Liu, H., Kong, X., Zhu, Y., Wang, Z., Zheng, J., Qi, J., 2015. Efficacy of 5α-reductase inhibitors for patients with large benign prostatic hyperplasia (>80 mL) after transurethral resection of the prostate. Aging Male 18, 238–243. https://doi.org/10.3109/13685538.2015.1068750eng
dc.relation.referencesQian, X., Yu, G., Qian, Y., Xu, D., Liu, H., Kong, X., Zhu, Y., Wang, Z., Zheng, J., Qi, J., 2015. Efficacy of 5α-reductase inhibitors for patients with large benign prostatic hyperplasia (>80 mL) after transurethral resection of the prostate. Aging Male 18, 238–243. https://doi.org/10.3109/13685538.2015.1068750eng
dc.relation.referencesQuilhot, W., Garbarino, Juan.A., Piovano, M., Chamy, M.C., Gambaro, V., Oyarzún, M.L., Vinet, C., Hormaechea, V., Friedler, P., 1989. Studies on Chilean lichens. XI Secondary metabolites from Antarctic lichens. Ser. Ciento INACH 39, 75–89.eng
dc.relation.referencesRaggio, J., Pintado, A., Ascaso, C., De La Torre, R., De Los Ríos, A., Wierzchos, J., Horneck, G., Sancho, L.G., 2011. Whole lichen thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology 11, 281–292. https://doi.org/10.1089/ast.2010.0588eng
dc.relation.referencesRanković, B., Kosanic, M., Crawford, S., Stanojkovic, T., Zeytinoglu, H., Odimegwu, D., Ejikeugwu, C., Esimone, C., Verma, N., Behera, B., 2015. Lichen Secondary Metabolites. Bioactive Properties and Pharmaceutical Potential., Ranković, B. ed. Springer.eng
dc.relation.referencesRebbeck, T.R., 2017. Prostate Cancer Genetics: Variation by Race, Ethnicity, and Geography. Semin Radiat Oncol 27, 3–10. https://doi.org/10.1016/j.semradonc.2016.08.002eng
dc.relation.referencesRecouvreux, M.V., Wu, J.B., Gao, A.C., Zonis, S., Chesnokova, V., Bhowmick, N., Chung, L.W., Melmed, S., 2017. Androgen Receptor Regulation of Local Growth Hormone in Prostate Cancer Cells. Endocrinology 158, 2255–2268. https://doi.org/10.1210/en.2016-1939eng
dc.relation.referencesRicke, W.A., Macoska, J.A., Cunha, G.R., 2011. Developmental, Cellular and Molecular Biology of Benign Prostatic Hyperplasia. Differentiation 82, 165–167. https://doi.org/10.1016/j.diff.2011.08.005eng
dc.relation.referencesRikkinen, J., 2007. Cyanolichens: An Evolutionary Overview. pp. 31–72. https://doi.org/10.1007/0-306-48005-0_4eng
dc.relation.referencesRodriguez Socha, D.A., 2014. Síntesis y evaluación biológica in vivo de un nuevo análogo del androstano con actividad potencial sobre la biosíntesis y acción de andrógenos endógenos. (Tesis Maestria). Universidad Nacional de Colombiaspa
dc.relation.referencesRoehrborn, C.G., 2008. Pathology of benign prostatic hyperplasia. International Journal of Impotence Research 20, S11–S18. https://doi.org/10.1038/ijir.2008.55eng
dc.relation.referencesRojas-Durán, F., Denes, J.M., Cid, A.H.S., Abreu, G.E.A., Aguilar, E.J., Ávila, G.A.C., Cárdenas, R.T., Espinoza, J.L., Hernández, M.E., 2011. El receptor a andrógenos en la fisiopatología prostática. eNeurobiología 2, 1–15.spa
dc.relation.referencesRove, K.O., Crawford, E.D., 2014. Traditional androgen ablation approaches to advanced prostate cancer: new insights. Can J Urol 21, 14–21.eng
dc.relation.referencesRoved, J., Westerdahl, H., Hasselquist, D., 2017. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences. Hormones and Behavior, Neuroendocrine-Immune Interactions: Implications for Integrative and Comparative Physiologists 88, 95–105. https://doi.org/10.1016/j.yhbeh.2016.11.017eng
dc.relation.referencesRusso, A., Caggia, S., Piovano, M., Garbarino, J., Cardile, V., 2012. Effect of vicanicin and protolichesterinic acid on human prostate cancer cells: role of Hsp70 protein. Chem. Biol. Interact. 195, 1–10. https://doi.org/10.1016/j.cbi.2011.10.005eng
dc.relation.referencesRusso, A., Piovano, M., Lombardo, L., Vanella, L., Cardile, V., Garbarino, J., 2006. Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU-145 cells. Anticancer Drugs 17, 1163–1169. https://doi.org/10.1097/01.cad.0000236310.66080.edeng
dc.relation.referencesSakhri, S., Gooren, L.J., 2007. Safety aspects of androgen treatment with 5alpha-dihydrotestosterone. Andrologia 39, 216–222. https://doi.org/10.1111/j.1439-0272.2007.00786.xeng
dc.relation.referencesSalciccia, S., Gentilucci, A., Cattarino, S., Sciarra, A., 2016. GNRH-agonist or antagonist in the treatment of prostate cancer: a comparision based on oncological results. Urologia 83, 173–178. https://doi.org/10.5301/uro.5000194eng
dc.relation.referencesSantana, L., Wong, H., 2004. Criterios actuales para evaluar la conducta a seguir con los pacientes que padecen de hiperplasia prostática benigna. Revista Cubana de Cirugía 43, 0–0.spa
dc.relation.referencesSarma, A.V., Wei, J.T., 2012. Clinical practice. Benign prostatic hyperplasia and lower urinary tract symptoms. N. Engl. J. Med. 367, 248–257. https://doi.org/10.1056/NEJMcp1106637eng
dc.relation.referencesSchalken, J., Fitzpatrick, J.M., 2016. Enzalutamide: targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer. BJU Int. 117, 215–225. https://doi.org/10.1111/bju.13123eng
dc.relation.referencesSchiffer, L., Arlt, W., Storbeck, K.-H., 2018. Intracrine androgen biosynthesis, metabolism and action revisited. Molecular and Cellular Endocrinology, Androgens – revisiting their role as pleiotropic regulators of tissue function beyond the male reproductive system 465, 4–26. https://doi.org/10.1016/j.mce.2017.08.016eng
dc.relation.referencesShtivelman, E., Beer, T.M., Evans, C.P., 2014. Molecular pathways and targets in prostate cancer. Oncotarget 5, 7217–7259.eng
dc.relation.referencesSociedad Colombiana de Urología, 2014. Guía de manejo hiperplasia prostática benigna.spa
dc.relation.referencesSpribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M.C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H., McCutcheon, J.P., 2016. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492. https://doi.org/10.1126/science.aaf8287eng
dc.relation.referencesStein, M.N., Patel, N., Bershadskiy, A., Sokoloff, A., Singer, E.A., 2014. Androgen synthesis inhibitors in the treatment of castration-resistant prostate cancer. Asian J. Androl. 16, 387–400. https://doi.org/10.4103/1008-682X.129133eng
dc.relation.referencesSternberg, C.N., Petrylak, D.P., Madan, R.A., Parker, C., 2014. Progress in the treatment of advanced prostate cancer. Am Soc Clin Oncol Educ Book 117–131. https://doi.org/10.14694/EdBook_AM.2014.34.117eng
dc.relation.referencesSwerdloff, R.S., Dudley, R.E., Page, S.T., Wang, C., Salameh, W.A., 2017. Dihydrotestosterone: Biochemistry, Physiology, and Clinical Implications of Elevated Blood Levels. Endocr. Rev. 38, 220–254. https://doi.org/10.1210/er.2016-1067eng
dc.relation.referencesTan, M.E., Li, J., Xu, H.E., Melcher, K., Yong, E., 2015. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 36, 3–23. https://doi.org/10.1038/aps.2014.18eng
dc.relation.referencesTimm, G.E., 2008. Intact, Stimulated, Weanling Male Rat Version of the Hershberger Bioassay.eng
dc.relation.referencesTrapani, G., Dazzi, L., Pisu, M.G., Reho, A., Seu, E., Biggio, G., 2002. A rapid method for obtaining finasteride, a 5α-reductase inhibitor, from commercial tablets. Brain Research Protocols 9, 130–134. https://doi.org/10.1016/S1385-299X(02)00146-0eng
dc.relation.referencesUemura, M., Tamura, K., Chung, S., Honma, S., Okuyama, A., Nakamura, Y., Nakagawa, H., 2007. Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci. 99, 81–86. https://doi.org/10.1111/j.1349-7006.2007.00656.xeng
dc.relation.referencesVaillant, D., 2014. Los líquenes, una alternativa para el control de fitopatógenos. Fitosanidad 18, 51–57.spa
dc.relation.referencesValencia-Islas, N., Zambrano, A., Rojas, J.L., 2007. Ozone reactivity and free radical scavenging behavior of phenolic secondary metabolites in lichens exposed to chronic oxidant air pollution from Mexico City. J. Chem. Ecol. 33, 1619–1634. https://doi.org/10.1007/s10886-007-9330-1eng
dc.relation.referencesVickman, R.E., Franco, O.E., Moline, D.C., Vander Griend, D.J., Thumbikat, P., Hayward, S.W., 2020. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian J Urol 7, 191–202. https://doi.org/10.1016/j.ajur.2019.10.003eng
dc.relation.referencesWalters, K.A., Handelsman, D.J., 2018. Role of androgens in the ovary. Molecular and Cellular Endocrinology, Androgens – revisiting their role as pleiotropic regulators of tissue function beyond the male reproductive system 465, 36–47. https://doi.org/10.1016/j.mce.2017.06.026eng
dc.relation.referencesWang, G., Zhao, D., Spring, D.J., DePinho, R.A., 2018. Genetics and biology of prostate cancer. Genes Dev 32, 1105–1140. https://doi.org/10.1101/gad.315739.118eng
dc.relation.referencesWang, K., Fan, D.-D., Jin, S., Xing, N.-Z., Niu, Y.-N., 2014. Differential expression of 5-alpha reductase isozymes in the prostate and its clinical implications. Asian J. Androl. 16, 274–279. https://doi.org/10.4103/1008-682X.123664eng
dc.relation.referencesWang, Z.A., Toivanen, R., Bergren, S.K., Chambon, P., Shen, M.M., 2014. Luminal cells are favored as the cell of origin for prostate cancer. Cell Rep 8, 1339–1346. https://doi.org/10.1016/j.celrep.2014.08.002eng
dc.relation.referencesYang, Y.C., Banuelos, C.A., Mawji, N.R., Wang, J., Kato, M., Haile, S., McEwan, I.J., Plymate, S., Sadar, M.D., 2016. Targeting Androgen Receptor Activation Function-1 with EPI to Overcome Resistance Mechanisms in Castration-Resistant Prostate Cancer. Clin. Cancer Res. 22, 4466–4477. https://doi.org/10.1158/1078-0432.CCR-15-2901eng
dc.relation.referencesYu, Z., Cai, C., Gao, S., Simon, N.I., Shen, H.C., Balk, S.P., 2014. Galeterone prevents androgen receptor binding to chromatin and enhances degradation of mutant androgen receptor. Clin. Cancer Res. 20, 4075–4085. https://doi.org/10.1158/1078-0432.CCR-14-0292eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.lembAntagonistas de hormonas
dc.subject.lembHormone antagonists
dc.subject.lembFarmacología
dc.subject.lembPharmacology
dc.subject.lembBioactive compounds
dc.subject.lembCompuestos bioactivos
dc.subject.proposalSustancias liquénicasspa
dc.subject.proposalLichen origin compoundseng
dc.subject.proposalAntiandrógenosspa
dc.subject.proposalAntiandrogenseng
dc.subject.proposalPróstataspa
dc.subject.proposalProstateeng
dc.titleDeterminación de la actividad in vivo sobre la biosíntesis y acción de andrógenos endógenos de sustancias liquénicas seleccionadasspa
dc.title.translatedDetermination of the in vivo activity on the biosynthesis and action of endogenous androgens of selected lichenic substanceseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013629454.2021.pdf
Tamaño:
3.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Farmacología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: