Riesgo de mercado en portafolios bancarios de opciones de divisas

dc.contributor.advisorMedina Hurtado, Santiago
dc.contributor.authorGrajales Correa, Carlos Alexander
dc.contributor.orcidGrajales, Carlos Alexander [0000-0001-6575-7352]spa
dc.contributor.orcidMedina Hurtado, Santiago [0000-0003-4480-7933]spa
dc.contributor.researchgroupGrupo de investigación en Ingeniería Financiera y Gestión Empresarial. (Gifig)spa
dc.date.accessioned2023-01-25T15:36:06Z
dc.date.available2023-01-25T15:36:06Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa regulación de Basilea FRTB para la gestión del riesgo mercado en la industria bancaria entra en vigencia en 2023. Esta plantea nuevos desafíos en materia de implementación, cuantificación de riesgos, e impactos en capital de reserva. Este trabajo propone una metodología para cuantificar las métricas de riesgo expected shortfall, ES, y valor en riesgo, VaR, de un portafolio de opciones sobre divisas en el marco de los modelos internos de FRTB, eligiendo como estrategia de valoración del portafolio un modelo tradicional, un modelo con tasa estocástica, o un modelo híbrido con tasa y volatilidad estocástica. La metodología define adaptaciones de las métricas de riesgo, la generación de escenarios de estrés, y precisa el mecanismo matemático para integrar la valoración del portafolio con dichas métricas. La metodología se implementa a través de tres aplicaciones para un portafolio de opciones sobre GBP/USD, se investigan impactos sobre capital, y se evalúa el desempeño de la métrica VaR por pruebas back-testing. En cada desarrollo, se evidencia que la metodología planteada es apropiada, aporta a la literatura científica, y puede escalarse como herramienta tecnológica. (Texto tomado de la fuente)spa
dc.description.abstractThe Basel FRTB regulation for market risk management in the banking industry comes into effect in 2023. It poses new challenges in terms of implementation, risk quantification, and impacts on risk capital. This research proposes a methodology to quantify the risk metrics expected shortfall, ES, and value at risk, VaR, of a portfolio of foreign exchange options within the framework of FRTB's internal models, choosing as portfolio valuation strategy a traditional model, a stochastic interest rate model, or a stochastic interest rate and volatility model. The methodology defines adaptations of the risk metrics, the generation of stress scenarios, and specifies the mathematical mechanism to integrate the portfolio valuation with the risk measures. The methodology is implemented through three applications for a portfolio of options on GBP/USD, impacts on capital are investigated, and the performance of the VaR metric is evaluated via back-testing procedures. In each development, it is evident that the proposed methodology is appropriate, contributes to the scientific literature, and can be scaled as a technological tool.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Administrativa e Ingeniería Industrialspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaMétodos y Modelos de Optimizaciónspa
dc.format.extent129 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83114
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Industria y Organizacionesspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesCarlo Acerbi and Balazs Szekely. Backtesting Expected Shortfall. Technical report, MSCI Inc., 2014.spa
dc.relation.referencesGiovanni Barone Adesi, Kostas Giannopoulos, and Les Vosper. Backtesting derivative portfolios with filtered historical simulation (FHS). European Financial Management, 8(1): 30–58, 2002. doi: 10.1111/1468-036X.00175.spa
dc.relation.referencesR Ahlip. Foreign exchange options under stochastic volatility and stochastic interest rates. International Journal of Theoretical and Applied Finance, 11(03):277–294, 2008. doi: 10.1142/S0219024908004804. URL http://www.worldscientific.com/doi/abs/10.1142/S0219024908004804.spa
dc.relation.referencesR Ahlip and M Rutkowski. Pricing of foreign exchange options under the Heston stochastic volatility model and CIR interest rates. Quantitative Finance, 13(6):955–966, 2013. doi: 10.1080/14697688.2013.769688. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-84879696221{&}partnerID=40{&}md5=a847d3f87614c1943437162fbb4cf8f2.spa
dc.relation.referencesF. Almudhaf. Backtesting expected shortfall: evidence from European securitized real estate. Applied Economics Letters, 25(3):176–182, 2018. doi: 10.1080/13504851.2017.1307928.spa
dc.relation.referencesP. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Mathematical Finance, 9(3):203–228, 1999. doi: 10.1111/1467-9965.00068.spa
dc.relation.referencesG. Bakshi, C. Cao, and Z. Chen. Pricing and hedging long-term options. Journal of Econometrics, 94(1-2):277–318, 2000. doi: 10.1016/S0304-4076(99)00023-8.spa
dc.relation.referencesTuran G. Bali and Panayiotis Theodossiou. A conditional-SGT-VaR approach with alternative GARCH models. Annals of Operations Research, 151(1):241–267, 2007. ISSN 02545330. doi: 10.1007/s10479-006-0118-4.spa
dc.relation.referencesTuran G. Bali, Hengyong Mo, and Yi Tang. The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR. Journal of Banking and Finance, 32 (2):269–282, 2008. ISSN 03784266. doi: 10.1016/j.jbankfin.2007.03.009.spa
dc.relation.referencesBasel Committee on Banking Supervision BCBS. Supervisory Framework for the Use of ’Backtesting’ in Conjunction with the Internal Models Approach to Market Risk Capital Requirements. Technical report, Bank for International Settlements, 1996. URL https://www.bis.org/publ/bcbs22.htm.spa
dc.relation.referencesBasel Committee on Banking Supervision BCBS. Basel II: International Convergence of Capital Measurement and Capital Standards: A Revised Framework - Comprehensive Version. Technical report, Bank for International Settlements, 2006. URL https://www.bis.org/publ/bcbs128.htm.spa
dc.relation.referencesBasel Committee on Banking Supervision BCBS. Revisions to the Basel II Market Risk Framework. Technical report, Bank for International Settlements, 2011a. URL https://www.bis.org/publ/bcbs193.pdf.spa
dc.relation.referencesBasel Committee on Banking Supervision BCBS. Basel III: A Global Regulatory Framework for More Resilient Banks and Banking Systems. Technical report, Bank for International Settlements, 2011b. URL https://www.bis.org/publ/bcbs189{_}dec2010.pdf.spa
dc.relation.referencesBasel Committee on Banking Supervision BCBS. Explanatory note on the minimum capital requirements for market risk. Technical report, Bank for International Settlements, 2019.spa
dc.relation.referencesBasel Committee on Banking Supervision BCBS. Basel III Monitoring Report. Technical report, Bank for International Settlements, 2020. URL https://www.bis.org/bcbs/publ/d512.pdf.spa
dc.relation.referencesFabio Bellini and Elena Di Bernardino. Risk management with expectiles. The European Journal of Finance, 23(6):487–506, 2017. doi: 10.1080/1351847X.2015.1052150. URL https://doi.org/10.1080/1351847X.2015.1052150.spa
dc.relation.referencesJ. Berkowitz and J. O’Brien. How accurate are value-at-risk models at commercial banks? Journal of Finance, 57(3):1093–1111, 2002. doi: 10.1111/1540-6261.00455.spa
dc.relation.referencesJeremy Berkowitz, Peter Christoffersen, and Denis Pelletier. Evaluating Value-at-Risk Models with Desk-Level Data Evaluating Value-at-Risk Models with. Management Science, 57(12):2213–2227, 2011. doi: 10.1287/mnsc.1080.0964.spa
dc.relation.referencesBank for International Settlements BIS. Basel III: Finalising post-crisis reforms. Technical report, Bank for International Settlements, 2017. URL https://www.bis.org/bcbs/publ/d424.htm.spa
dc.relation.referencesBank for International Settlements BIS. Minimum capital requirements for market risk. Technical report, Bank for International Settlements, 2019. URL https://www.bis.org/bcbs/publ/d457.htm.spa
dc.relation.referencesTomas Bjork. Arbitrage Theory in Continuous Time. Number 9780199574742 in OUP Catalogue. Oxford University Press, 2009. ISBN ARRAY(0x4ed42c58). URL https://ideas.repec.org/b/oxp/obooks/9780199574742.html.spa
dc.relation.referencesF. Black. The pricing of commodity contracts. Journal of Financial Economics, 3(1-2): 167–179, 1976. doi: 10.1016/0304-405X(76)90024-6.spa
dc.relation.referencesF. Black and M. Scholes. The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3):637–654, 1973. ISSN 00223808, 1537534X. URL http://www. jstor.org/stable/1831029.spa
dc.relation.referencesB A Bliss, J A Clark, and R J Delisle. Bank risk, financial stress, and bank derivative use. Journal of Futures Markets, 2018. doi: 10.1002/fut.21902.spa
dc.relation.referencesA. Brace, D. Gatarek, and M. Musiela. The market model of interest rate dynamics. Mathematical Finance, 7(2):127–155, 1997. doi: 10.1111/1467-9965.00028.spa
dc.relation.referencesM. Briani, L. Caramellino, and A. Zanette. A hybrid tree/finite-difference approach for heston-hull-white-type models. Journal of Computational Finance, 21(3):1–45, 2017. doi: 10.21314/JCF.2017.333.spa
dc.relation.referencesDamiano Brigo and Fabio Mercurio. Interest Rate Models - Theory and Practice: With Smile, Inflation and Credit. Springer Verlag, 2nd edition, 2007. doi: 10.1007/978-3-540-34604-3. URL http://link.springer.com/content/pdf/10.1007/978-3-540-68688-0.pdf.spa
dc.relation.referencesS. Campbell. A review of backtesting and backtesting procedures. Journal of Risk, 9(2): 1–17, 2007. doi: 10.21314/JOR.2007.146.spa
dc.relation.referencesPeter Carr and Dilip Madan. Option valuation using the fast Fourier transform. The Journal of Computational Finance, 2(4):61–73, 1999. ISSN 14601559. doi: 10.21314/jcf.1999.043.spa
dc.relation.referencesGeorge Casella and R Berger. Statistical inference. Duxbury Thomson Learning, second edition, 2002.spa
dc.relation.referencesV. Chavez-Demoulin, P. Embrechts, and S. Sardy. Extreme-quantile tracking for financial time series. Journal of Econometrics, 181(1):44–52, 2014. ISSN 03044076. doi: 10.1016/j. jeconom.2014.02.007. URL http://dx.doi.org/10.1016/j.jeconom.2014.02.007.spa
dc.relation.referencesCathy W.S. Chen, Richard Gerlach, Edward M.H. Lin, and W. C.W. Lee. Bayesian forecasting for financial risk management, pre and post the global financial crisis. Journal of Forecasting, 31(8):661–687, 2012. ISSN 02776693. doi: 10.1002/for.1237.spa
dc.relation.referencesSong Xi Chen. Nonparametric estimation of expected shortfall. Journal of Financial Econometrics, 6(1):87–107, 2008. ISSN 14798409. doi: 10.1093/jjfinec/nbm019.spa
dc.relation.referencesB. Cheng, C.S. Nikitopoulos, and E. Schl ̈ogl. Pricing of long-dated commodity derivatives: Do stochastic interest rates matter? Journal of Banking and Finance, 95:148–166, 2018. doi: 10.1016/j.jbankfin.2017.05.012.spa
dc.relation.referencesPeter Christoffersen. Elements of Financial Risk Management. Academic Press - Elsevier, second edition, 2012. ISBN 9780123744487. doi: 10.1016/C2009-0-22827-3.spa
dc.relation.referencesPeter F. Christoffersen. Evaluating Interval Forecasts. International Economic Review, 39 (4):841–862, 1998.spa
dc.relation.referencesCME Group. The FX Report January 2022. Technical report, 2022. URL https://www. cmegroup.com/trading/fx/fx-report/2022-q1-fx-report.html.spa
dc.relation.referencesGilbert Colletaz, Christophe Hurlin, and Christophe P ́erignon. The Risk Map: A new tool for validating risk models. Journal of Banking and Finance, 37(10):3843–3854, 2013. ISSN 03784266. doi: 10.1016/j.jbankfin.2013.06.006. URL http://dx.doi.org/10.1016/j. jbankfin.2013.06.006.spa
dc.relation.referencesJohn C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross. A Theory of the Term Structure of Interest Rates. Econometrica, 53:385–407, 1985. doi: 10.2307/1911242.spa
dc.relation.referencesJ. Dan ́ıelsson and J.-P. Zigrand. On time-scaling of risk and the square-root-of-time rule. Journal of Banking and Finance, 30(10):2701–2713, 2006. doi: 10.1016/j.jbankfin.2005.10. 002.spa
dc.relation.referencesK. Deng and J. Qiu. Backtesting expected shortfall and beyond. Quantitative Finance, 2021. doi: 10.1080/14697688.2020.1834120.spa
dc.relation.referencesZaichao Du and Juan Carlos Escanciano. Backtesting expected shortfall: Accounting for tail risk. Management Science, 63(4):940–958, 2017. ISSN 15265501. doi: 10.1287/mnsc.2015. 2342.spa
dc.relation.referencesDarrell Duffie and Rui Kan. A yield-factor model of interest rates. Mathematical Finance, 6(4):379–406, 1996. ISSN 09601627. doi: 10.1111/j.1467-9965.1996.tb00123.x.spa
dc.relation.referencesEuropean Banking Authority EBA. Basel III reforms: Updated impact study. Technical report, European Banking Authority, 2020. URL https://www.eba.europa. eu/sites/default/documents/files/document{_}library/Publications/Reports/ 2020/961423/BaselIIIreforms-2019Q4updateandCovidimpact.pdf.spa
dc.relation.referencesP. Embrechts, H. Liu, T. Mao, and R. Wang. Quantile-based risk sharing with heterogeneous beliefs. Mathematical Programming, 181(2):319–347, 2020. doi: 10.1007/ s10107-018-1313-1.spa
dc.relation.referencesPaul Embrechts, Haiyan Liu, and Ruodu Wang. Quantile-based risk sharing. Operations Research, 66(4):936–949, 2018. ISSN 15265463. doi: 10.1287/opre.2017.1716.spa
dc.relation.referencesS. Emmer, M. Kratz, and D. Tasche. What is the best risk measure in practice? A comparison of standard measures. Journal of Risk, 18(2):31–60, 2015. doi: 10.21314/JOR.2015.318.spa
dc.relation.referencesR.F. Engle and S. Manganelli. CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business and Economic Statistics, 22(4):367–381, 2004. doi: 10.1198/ 073500104000000370.spa
dc.relation.referencesF. Fang and C.W. Oosterlee. A novel pricing method for european options based on fourier- cosine series expansions. SIAM Journal on Scientific Computing, 31(2):826–848, 2008. doi: 10.1137/080718061.spa
dc.relation.referencesJean David Fermanian and Olivier Scaillet. Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements. Journal of Banking and Finance, 29(4): 927–958, 2005. ISSN 03784266. doi: 10.1016/j.jbankfin.2004.08.007.spa
dc.relation.referencesM.B. Garman and S.W. Kohlhagen. Foreign currency option values. Journal of International Money and Finance, 2(3):231–237, 1983. doi: 10.1016/S0261-5606(83)80001-1.spa
dc.relation.referencesJ Gil-Pelaez. Note on the Inversion Theorem. Biometrika, 38(3/4):481–482, 1951. ISSN 00063444. URL http://www.jstor.org/stable/2332598.spa
dc.relation.referencesTilmann Gneiting. Making and evaluating point forecasts. Journal of the American Statis- tical Association, 106(494):746–762, 2011. ISSN 01621459. doi: 10.1198/jasa.2011.r10138.spa
dc.relation.referencesC. Grajales. Modelación Estocástica de la tasa de Cambio COP / USD, 2006. URL http: //hdl.handle.net/10784/137.spa
dc.relation.referencesC. Grajales and S. Medina. Sensitivities-Based Method and Expected Shortfall for Market Risk Under FRTB and Its Impact on Options Risk Capital. SSRN, Preprint, 2021a. doi: 10.2139/ssrn.3926342.spa
dc.relation.referencesC. Grajales and S. Medina. Uncertainty linguistic summarizer to evaluate the performance of investment funds. In New Perspectives on Enterprise Decision-Making Applying Artificial Intelligence Techniques, chapter 3, pages 55–74. Springer Verlag, 2021b. doi: 10.1007/ 978-3-030-71115-3 3.spa
dc.relation.referencesC. Grajales and S. Medina. Uncertainty and stochastic theories on European options valua- tion and their delta and vega risks. SSRN, Preprint:1–19, 2022. doi: 10.2139/ssrn.3998282.spa
dc.relation.referencesC. Grajales and F. Perez. Valor en riesgo para un portafolio con opciones financieras. Revista Ingenierías Universidad de Medellín, 9(17):105–118, 2011. URL https: //revistas.udem.edu.co/index.php/ingenierias/article/view/16.spa
dc.relation.referencesL.A. Grzelak and C.W. Oosterlee. On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates. Applied Mathematical Finance, 19(1):1–35, 2012. doi: 10.1080/1350486X.2011.570492.spa
dc.relation.referencesLech A Grzelak and Cornelis W Oosterlee. On the Heston Model with Stochastic Interest Rates. SIAM Journal on Financial Mathematics, 2(1):255–286, 2011. doi: 10.1137/090756119. URL http://dx.doi.org/10.1137/090756119.spa
dc.relation.referencesLech A Grzelak, Cornelis W Oosterlee, and Sacha Van Weeren. Extension of stochastic volatility equity models with the Hull White interest rate process. Quantitative Finance, 12 (1):89–105, 2012. doi: 10.1080/14697680903170809. URL http://dx.doi.org/10.1080/ 14697680903170809.spa
dc.relation.referencesShimin Guo, Lech A. Grzelak, and Cornelis W. Oosterlee. Analysis of an affine version of the Heston-Hull-White option pricing partial differential equation. Applied Numerical Mathematics, 72:143–159, 2013. ISSN 01689274. doi: 10.1016/j.apnum.2013.06.004. URL http://dx.doi.org/10.1016/j.apnum.2013.06.004.spa
dc.relation.referencesZ. Guo. Option pricing under the Heston model where the interest rate follows the Vasicek model. Communications in Statistics - Theory and Methods, 2019. doi: 10.1080/03610926. 2019.1678643.spa
dc.relation.referencesMarcus Haas. New Methods in Backtesting. Technical report, Financial Engineering, Research Center Caesar, Bonn, 2001.spa
dc.relation.referencesT. Haentjens and K.J. In ’t Hout. Alternating direction implicit finite difference schemes for the Heston–Hull–White partial differential equation. Journal of Computational Finance, 16(1):83–110, 2012. doi: 10.21314/JCF.2012.244.spa
dc.relation.referencesX.-J. He and S.-P. Zhu. A closed-form pricing formula for European options under the Heston model with stochastic interest rate. Journal of Computational and Applied Mathematics, 335:323–333, 2018. doi: 10.1016/j.cam.2017.12.011.spa
dc.relation.referencesDavid Heath, Robert Jarrow, and Andrew Morton. Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation. Econometrica, 60(1):77–105, 1992. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/ 2951677.spa
dc.relation.referencesSteven L Heston. A Closed-Form Solution for Options with Stochastic Volatility with Ap- plications to Bond and Currency Options. Review of Financial Studies, 6(2):327–343, apr 1993. doi: 10.1093/rfs/6.2.327. URL http://rfs.oxfordjournals.org/content/6/2/ 327.abstract.spa
dc.relation.referencesLennart Hoogerheide and Herman K. van Dijk. Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling. International Journal of Forecasting, 26(2):231–247, 2010. ISSN 01692070. doi: 10.1016/j.ijforecast.2010.01.007. URL http://dx.doi.org/10.1016/j.ijforecast.2010.01.007.spa
dc.relation.referencesJ. Hull. Options, Futures and Other Derivatives. Prentice Hall, 10th edition, 2018a.spa
dc.relation.referencesJ. Hull. Risk Management and Financial Institutions. Prentice Hall, 5th edition, 2018b.spa
dc.relation.referencesJ. Hull and A. White. One-factor interest-rate models and the valuation of interest-rate derivative securities. Journal of Financial and Quantitative Analysis, 28(2):235–254, 1993. doi: 10.2307/2331288.spa
dc.relation.referencesJ. Hull and A White. Incorporating volatility updating into the historical simulation method for value-at-risk. Journal of Risk, 1(1):5–19, 1998. doi: 10.21314/JOR.1998.001.spa
dc.relation.referencesJ. Hull and A. White. The General Hull-White Model and Supercalibration. Financial Analysts Journal, 57(6):34–43, 2001. doi: 10.2469/faj.v57.n6.2491.spa
dc.relation.referencesJohn Hull and Alan White. Pricing Interest Rate Derivative Securities. The Review of Financial Studies, 3(4):573–592, 1990. doi: 10.1093/rfs/3.4.573. URL https://ideas. repec.org/a/oup/rfinst/v3y1990i4p573-92.html.spa
dc.relation.referencesJohn Hull and Alan White. Multi-curve Modelling Using Trees. In Kathrin Glau, Zorana Grbac, Matthias Scherer, and Rudi Zagst, editors, Innovations in Derivatives Markets, pages 171–189, Cham, 2016. Springer International Publishing. ISBN 978-3-319-33446-2.spa
dc.relation.referencesFarshid Jamshidian. LIBOR and swap market models and measures. Finance and Stochastics, 1(4):293–330, 1997. ISSN 0949-2984. doi: 10.1007/s007800050026. URL https://doi.org/10.1007/s007800050026.spa
dc.relation.referencesJohn Maynard Keynes. A Treatise on Money: The Applied Theory of Money. AMS Press, 1930. ISBN 9781139520652.spa
dc.relation.referencesIvana Komunjer. Quasi-maximum likelihood estimation for conditional quantiles. Journal of Econometrics, 128(1):137–164, 2005. ISSN 03044076. doi: 10.1016/j.jeconom.2004.08.010.spa
dc.relation.referencesMarie Kratz, Yen H Lok, and Alexander J McNeil. Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall. Journal of Banking and Finance, 88: 393–407, mar 2018. ISSN 0378-4266. doi: 10.1016/j.jbankfin.2018.01.002.spa
dc.relation.referencesC.-M. Kuan, J.-H. Yeh, and Y.-C. Hsu. Assessing value at risk with CARE, the Conditional Autoregressive Expectile models. Journal of Econometrics, 150(2):261–270, 2009. doi: 10.1016/j.jeconom.2008.12.002.spa
dc.relation.referencesE.E. Kummer. 3. U ̈ber die hypergeometrische Reihe. Journal fur die Reine und Angewandte Mathematik, 1836(15):39–83, 1836. doi: 10.1515/crll.1836.15.39.spa
dc.relation.referencesP. Kupiec. Techniques for Verifying the Accuracy of Risk Management Models. Journal of Derivatives, 3:73–84, 1995. doi: 10.3905/jod.1995.407942.spa
dc.relation.referencesJ.-P. Laurent, M. Sestier, and S. Thomas. Trading book and credit risk: How fundamental is the Basel review? Journal of Banking and Finance, 73:211–223, 2016. doi: 10.1016/j. jbankfin.2016.07.002.spa
dc.relation.referencesA. Lehar, M. Scheicher, and C. Schittenkopf. GARCH vs. stochastic volatility: Option pricing and risk management. Journal of Banking and Finance, 26(2-3):323–345, 2002. doi: 10.1016/S0378-4266(01)00225-4.spa
dc.relation.referencesY. Liang and C. Xu. An efficient conditional Monte Carlo method for European option pricing with stochastic volatility and stochastic interest rate. International Journal of Computer Mathematics, 97(3):638–655, 2020. doi: 10.1080/00207160.2019.1584671.spa
dc.relation.referencesB. Liu. Uncertainty Theory. Springer-Verlag Berlin Heidelberg, Berlin, 2nd edition, 2007.spa
dc.relation.referencesB. Liu. Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer Verlag, Berlin, 2010.spa
dc.relation.referencesDimitrios P. Louzis, Spyros Xanthopoulos-Sisinis, and Apostolos P. Refenes. The role of high-frequency intra-daily data, daily range and implied volatility in multi-period value- at-risk forecasting. Journal of Forecasting, 32(6):561–576, 2013. ISSN 02776693. doi: 10.1002/for.2249.spa
dc.relation.referencesB.B. Mandelbrot. The inescapable need for fractal tools in finance. Annals of Finance, 1(2): 193–195, 2005. doi: 10.1007/s10436-004-0008-1.spa
dc.relation.referencesA.J. McNeil and R. Frey. Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3-4):271–300, 2000. doi: 10.1016/S0927-5398(00)00012-8.spa
dc.relation.referencesA.J. McNeil, R. Frey, and P. Embrechts. Quantitative risk management: Concepts, techniques, and tools. Princeton University Press, 2005. ISBN 9780691122557.spa
dc.relation.referencesA.J. McNeil, R. Frey, and P. Embrechts. Quantitative risk management: Concepts, techniques and tools: Revised edition. Princeton University Press, 2015. ISBN 9781400866281.spa
dc.relation.referencesKristian R Miltersen, Klaus Sandmann, and Dieter Sondermann. Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates. The Journal of Finance, 52(1):409–430, 1997. ISSN 00221082, 15406261. URL http://www.jstor.org/stable/ 2329571.spa
dc.relation.referencesS. Nadarajah, B. Zhang, and S. Chan. Estimation methods for expected shortfall. Quantitative Finance, 14(2):271–291, 2014. doi: 10.1080/14697688.2013.816767.spa
dc.relation.referencesMaria Rosa Nieto and Esther Ruiz. Frontiers in VaR forecasting and backtesting. International Journal of Forecasting, 32(2):475–501, 2016. ISSN 01692070. doi: 10.1016/j.ijforecast. 2015.08.003.spa
dc.relation.referencesN. Nolde and J.F. Ziegel. Elicitability and backtesting: Perspectives for banking regulation. Annals of Applied Statistics, 11(4):1833–1874, 2017. doi: 10.1214/17-AOAS1041.spa
dc.relation.referencesCornelis W Oosterlee and Lech A Grzelak. Mathematical Modeling and Computation in Finance. World Scientific Publishing Co., jan 2020. URL https://ideas.repec.org/b/ wsi/wsbook/q0236.html.spa
dc.relation.referencesJ. Orgeldinger. Recent issues in the implementation of the new basel minimum capital requirements for market risk. Emerging Science Journal, 2(2):65–77, 2018. doi: 10.28991/ esj-2018-01129.spa
dc.relation.referencesAndrew J. Patton, Johanna F. Ziegel, and Rui Chen. Dynamic semiparametric models for expected shortfall (and Value-at-Risk). Journal of Econometrics, 211(2):388–413, 2019. ISSN 18726895. doi: 10.1016/j.jeconom.2018.10.008.spa
dc.relation.referencesC. Pederzoli and C. Torricelli. An assessment of the fundamental review of the trading book: The capital requirement impact on a stylised financial portfolio. International Journal of Banking, Accounting and Finance, 12(4):389–403, 2021. doi: 10.1504/IJBAAF.2021. 118588.spa
dc.relation.referencesChristophe Pérignon and Daniel R. Smith. The level and quality of Value-at-Risk disclosure by commercial banks. Journal of Banking and Finance, 34(2):362–377, 2010a. ISSN 03784266. doi: 10.1016/j.jbankfin.2009.08.009. URL http://dx.doi.org/10.1016/j. jbankfin.2009.08.009.spa
dc.relation.referencesChristophe Pérignon and Daniel R. Smith. Diversification and Value-at-Risk. Journal of Banking and Finance, 34(1):55–66, 2010b. ISSN 03784266. doi: 10.1016/j.jbankfin.2009. 07.003. URL http://dx.doi.org/10.1016/j.jbankfin.2009.07.003.spa
dc.relation.referencesChristophe Pérignon, Zi Yin Deng, and Zhi Jun Wang. Do banks overstate their Value- at-Risk? Journal of Banking and Finance, 32(5):783–794, 2008. ISSN 03784266. doi: 10.1016/j.jbankfin.2007.05.014.spa
dc.relation.referencesVladimir Piterbarg. Smiling hybrids. Risk, 19:66–70, 2006.spa
dc.relation.referencesMatthew Pritsker. The hidden dangers of historical simulation. Journal of Banking and Finance, 30(2):561–582, 2006. ISSN 03784266. doi: 10.1016/j.jbankfin.2005.04.013.spa
dc.relation.referencesM C Recchioni and Y Sun. An explicitly solvable Heston model with stochastic interest rate. European Journal of Operational Research, 249(1):359–377, 2016. doi: 10.1016/j.ejor.2015. 09.035.spa
dc.relation.referencesR. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. The Journal of Risk, 2(3):21–41, 2000. doi: 10.21314/JOR.2000.038.spa
dc.relation.referencesR. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions. Journal of Banking and Finance, 26(7):1443–1471, 2002. doi: 10.1016/S0378-4266(02)00271-6.spa
dc.relation.referencesR. Rockafellar and S. Uryasev. The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surveys in Operations Research and Management Science, 18(1-2):33–53, 2013. ISSN 18767354. doi: 10.1016/j.sorms.2013.03.001. URL http://dx.doi.org/10.1016/j.sorms.2013.03.001.spa
dc.relation.referencesFabrice Rouah. The Heston Model and its extensions in Matlab and C#. Wiley Finance, 2013.spa
dc.relation.referencesRasoul Sajjad, Jerry Coakley, and John C. Nankervis. Markov-switching GARCH modelling of value-at-risk. Studies in Nonlinear Dynamics and Econometrics, 12(3), 2008. ISSN 15583708. doi: 10.2202/1558-3708.1522.spa
dc.relation.referencesO. Scaillet. Nonparametric estimation and sensitivity analysis of expected shortfall. Mathematical Finance, 14(1):115–129, 2004. doi: 10.1111/j.0960-1627.2004.00184.x.spa
dc.relation.referencesSteven E. Shreve. Stochastic CalcuIus for Finance II: Continuous-Time Models. Springer Finance, 2004. ISBN 0387401016.spa
dc.relation.referencesF. Soleymani and A. Itkin. Pricing foreign exchange options under stochastic volatility and interest rates using an RBF–FD method. Journal of Computational Science, 37, 2019. doi: 10.1016/j.jocs.2019.101028.spa
dc.relation.referencesHeng Sun. Hull-White Model Calibration Notes. SSRN Electronic Journal, 2015. doi: 10.2139/ssrn.2578774.spa
dc.relation.referencesAlexander van Haastrecht and Antoon Pelsser. Generic pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility. Quantitative Finance, 11(5):665–691, 2011. doi: 10.1080/14697688.2010.504734. URL http://dx.doi.org/10. 1080/14697688.2010.504734.spa
dc.relation.referencesO Vasicek. An equilibrium Characterization of the Term Structure. Journal of Finalcial Economics, 5:177–188, 1977.spa
dc.relation.referencesG. Wang and W. Xu. A unified willow tree framework for one-factor short-rate models. Journal of Derivatives, 25(3):33–54, 2018. doi: 10.3905/jod.2018.25.3.033.spa
dc.relation.referencesR. Wang and R. Zitikis. An axiomatic foundation for the expected shortfall. Management Science, 67(3):1413–1429, 2021. doi: 10.1287/mnsc.2020.3617.spa
dc.relation.referencesS. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses. The Annals of Mathematical Statistics, 9(1):60–62, 1938. ISSN 0003-4851. doi: 10.1214/aoms/1177732360.spa
dc.relation.referencesUwe Wystup. FX Options and Structured Products. Wiley Finance, second edi edition, 2017.spa
dc.relation.referencesKe Li Xu. Nonparametric inference for conditional quantiles of time series. Econometric Theory, 29(4):673–698, 2013. ISSN 02664666. doi: 10.1017/S0266466612000667.spa
dc.relation.referencesSasa Zikovic and Bora Aktan. Decay factor optimisation in time weighted simulation - evaluating var performance. International Journal of Forecasting, 27(4):1147–1159, 2011. ISSN 01692070. doi: 10.1016/j.ijforecast.2010.09.007.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc330 - Economía::332 - Economía financieraspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónspa
dc.subject.lembCapital marketeng
dc.subject.lembMercados financierosspa
dc.subject.proposalRegulación de Basilea FRTBspa
dc.subject.proposalCapital de riesgospa
dc.subject.proposalRiesgo Mercadospa
dc.subject.proposalBancaspa
dc.subject.proposalDivisaspa
dc.subject.proposalValor en riesgo condicionalspa
dc.subject.proposalOpciones sobre divisasspa
dc.subject.proposalModelos híbridosspa
dc.subject.proposalTasa de interés estocásticaspa
dc.subject.proposalVolatilidad estocásticaspa
dc.subject.proposalFRTB regulationeng
dc.subject.proposalRisk capitaleng
dc.subject.proposalMarket riskeng
dc.subject.proposalBankingeng
dc.subject.proposalForeign exchangeeng
dc.subject.proposalExpected shortfalleng
dc.subject.proposalFX optionseng
dc.subject.proposalHybrid modelseng
dc.subject.proposalStochastic interest rateeng
dc.subject.proposalStochastic volatilityeng
dc.titleRiesgo de mercado en portafolios bancarios de opciones de divisasspa
dc.title.translatedMarket risk in banking portfolios of currency optionseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad de Antioquia, Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
98664786.2022.pdf
Tamaño:
1.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Industria y Organizaciones

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: