Impacto del diagnóstico de cáncer de pulmón en los costos del sistema de salud en Colombia: comparación de tres métodos de estimación basados en puntajes de propensión

dc.contributor.advisorBuitrago Gutiérrez, Giancarlo
dc.contributor.authorAmaya Nieto, Javier Antonio
dc.contributor.googlescholarAmaya Nieto, Javier Antonio [a0ZnRskAAAAJ&hl]spa
dc.contributor.orcidAmaya Nieto, Javier Antonio [000-0002-9856-6242]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Javier-Amaya-Nietospa
dc.contributor.researchgroupServicios y sistemas de saludspa
dc.date.accessioned2024-07-17T14:35:44Z
dc.date.available2024-07-17T14:35:44Z
dc.date.issued2022
dc.descriptionIlustraciones, diagramas, mapasspa
dc.description.abstractIntroducción: el cáncer de pulmón (CP) es una de las enfermedades más mortales en el mundo. La atención en salud de pacientes con esta enfermedad ha sido asociada a un costo más elevado que el de otras enfermedades y otros tipos de cáncer. En Colombia y otros países latinoamericanos, es necesario desarrollar estudios que investiguen el CP desde el punto de vista económico. Objetivos: estimar el costo incremental derivado de la atención de pacientes con diagnóstico de cáncer de pulmón afiliados al régimen contributivo desde la perspectiva del sistema de salud colombiano para el año 2017 y comparar el rendimiento de diferentes métodos estadísticos para la estimación del costo incremental de la enfermedad que usan puntajes de propensión. Metodología: estudio observacional analítico de cohorte histórica realizado con información de bases de datos administrativas. El costo incremental derivado de la atención de pacientes se estimó utilizando una aproximación de casos prevalentes y tomando a los pacientes sin CP como grupo de no expuestos. Para el análisis se utilizaron tres métodos de estimación: emparejamiento con puntajes de propensión (PSM), ponderación de la probabilidad inversa (IPW) y estratificación con puntajes de propensión. Resultados: La cohorte utilizada incluyó 13 301 865 sujetos. La media de edad fue 46,2 años (DE = 14,72) y el 58,2% de los pacientes eran hombres. Para los modelos de IPW, PSM y estratificación con puntajes de propensión se incluyeron 13 190 409, 5 340 y 13 301 865 sujetos y se alcanzaron diferencias estandarizadas. (Texto tomado de la fuente)spa
dc.description.abstractIntroduction: Lung cancer is one of the deadliest diseases in the region and in the world. It has also been associated with a high health cost compared to other diseases and other types of cancer. In Colombia and Latin American countries there is a need to develop studies that address this condition from the economic point of view. Objective: to estimate the incremental cost derived from the healthcare of patients diagnosed with lung cancer affiliated to the contributory regime from the perspective of the Colombian health system for 2017. This project also aims to compare various types of statistical analyzes that use methods of propensity score and to compare its performance for estimating incremental health cost. Methods: Analytical observational study of historical cohort that used administrative databases to identify the incremental cost during the year 2017, derived from the care of patients with lung cancer using an approach of prevalent cases and using as nonexposed group those patients without lung cancer. Three different approaches were used for the analysis: (i) matching with propensity scores; ii) stratification with propensity scores and iii) inverse probability weighting. Results: Total cohort included was 13 301 865 people. The mean age was 46.2 years (SD=14.72) and 58.2% were men. A total of 13 190 409, 5 340 and 13 301 865 people were used for the models of IPW, PSM and propensity score stratification, and standardized differences.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en epidemiología clínicaspa
dc.format.extentxvii, 132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86518
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Epidemiología Clínicaspa
dc.relation.references1. Goss PE, Lee BL, Badovinac-Crnjevic T, et al. Planning cancer control in Latin America and the Caribbean. Lancet Oncol. 2013;14:391-436. doi:10.1016/s1470-2045(13)70048-2spa
dc.relation.references2. Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the Human Development Index (2008–2030): a populationbased study. Lancet Oncol. 2012;13(8):790-801. doi:https://doi.org/10.1016/S1470-2045(12)70211-5spa
dc.relation.references3. Sierra MS, Soerjomataram I, Antoni S, et al. Cancer patterns and trends in Central and South America. Cancer Epidemiol. 2016;44:S23-S42. doi:10.1016/j.canep.2016.07.013spa
dc.relation.references4. Gilchrist SC, Howard VJ, Akinyemiju T, et al. Association of Sedentary Behavior with Cancer Mortality in Middle-aged and Older US Adults. JAMA Oncol. 2020;6(8):1210-1217. doi:10.1001/jamaoncol.2020.2045spa
dc.relation.references5. Weintraub WS. The Economic Burden of Illness. JAMA Netw Open. 2023;6(3):e232663-e232663. doi:10.1001/jamanetworkopen.2023.2663spa
dc.relation.references6. Organization IA for R on C-WH. Global Cancer Observatory. 2020. https://gco.iarc.fr/.spa
dc.relation.references7. Mohar A, Bargalló E, Ramírez MT, Lara F, Beltrán-Ortega A. [Available resources for the treatment of breast cancer in Mexico]. Salud Publica Mex. 2009;51 Suppl 2:s263-9.spa
dc.relation.referencesLiedke PE, Finkelstein DM, Szymonifka J, et al. Outcomes of breast cancer in Brazil related to health care coverage: a retrospective cohort study. Cancer Epidemiol Biomarkers Prev. 2014;23:126-133. doi:10.1158/1055- 9965.epi-13-0693spa
dc.relation.references9. Wong MCS, Lao XQ, Ho K-F, Goggins WB, Tse SLA. Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Sci Rep. 2017;7(1):14300. doi:10.1038/s41598-017-14513-7spa
dc.relation.references10. Ospina M ML. Observatorio Nacional de Cáncer Colombia. Rev Fac Nac Salud Pública. 2015;33(2). doi:10.17533/udea.rfnsp.v33n2a13spa
dc.relation.references11. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. doi:10.3322/caac.21590spa
dc.relation.references12. Davies EC, Green CF, Taylor S, Williamson PR, Mottram DR, Pirmohamed M. Adverse drug reactions in hospital in-patients: a prospective analysis of 3695 patient-episodes. PLoS One. 2009;4(2):e4439-e4439. doi:10.1371/journal.pone.0004439spa
dc.relation.references13. Bradley CJ, Yabroff KR, Mariotto AB, Zeruto C, Tran Q, Warren JL. Antineoplastic Treatment of Advanced-Stage Non-Small-Cell Lung Cancer: Treatment, Survival, and Spending (2000 to 2011). J Clin Oncol. 2017;35:529-535. doi:10.1200/jco.2016.69.4166spa
dc.relation.references14. Fanelli S, Salvatore FP, De Pascale G, Faccilongo N. Insights for the future of health system partnerships in low- and middle-income countries: a systematic literature review. BMC Health Serv Res. 2020;20(1):571. doi:10.1186/s12913-020-05435-8spa
dc.relation.references15. Arunachalam A, Li H, Bittoni MA, et al. Real-World Treatment Patterns, Overall Survival, and Occurrence and Costs of Adverse Events Associated With Second-Line Therapies for Medicare Patients With Advanced Non Small-Cell Lung Cancer. Clin Lung Cancer. 2018;19:e783-e799. doi:10.1016/j.cllc.2018.05.016spa
dc.relation.references16. Evans WK, Will BP, Berthelot JM, Earle CC. Cost of combined modality interventions for stage III non-small-cell lung cancer. J Clin Oncol. 1997;15:3038-3048. doi:10.1200/jco.1997.15.9.3038spa
dc.relation.references17. Farjah F, Wood DE, Varghese TK, Massarweh NN, Symons RG, Flum DR. Health care utilization among surgically treated Medicare beneficiaries with lung cancer. Ann Thorac Surg. 2009;88:1749-1756. doi:10.1016/j.athoracsur.2009.08.006spa
dc.relation.references18. Fleming I, Monaghan P, Gavin A, O’Neill C. Factors influencing hospital costs of lung cancer patients in Northern Ireland. Eur J Heal Econ. 2008;9:79-86. doi:10.1007/s10198-007-0047-4spa
dc.relation.references19. Cipriano LE, Romanus D, Earle CC, et al. Lung cancer treatment costs, including patient responsibility, by disease stage and treatment modality, 1992 to 2003. Value Heal. 2011;14:41-52. doi:10.1016/j.jval.2010.10.006spa
dc.relation.references20. Keusters WR, de Weger VA, Hövels A, Schellens JHM, Frederix GWJ. Changing costs of metastatic non small cell lung cancer in the Netherlands. Lung Cancer. 2017;114:56-61. doi:10.1016/j.lungcan.2017.10.005spa
dc.relation.references21. Verleger K, Penrod JR, Manley Daumont M, et al. Costs and Cost Drivers Associated with Non-Small-Cell Lung Cancer Patients Who Received Two or More Lines of Therapy in Europe. Clin Outcomes Res. 2020;12:23-33. doi:10.2147/ceor.s223760spa
dc.relation.references22. Bloom DE, Cafiero E, Jané-Llopis E, et al. The Global Economic Burden of Noncommunicable Diseases. Program on the Global Demography of Aging; 2012.spa
dc.relation.references23. Unit EI. Breakaway: The global burden of cancer-challenges and opportunities. Econ. 2009.spa
dc.relation.references24. Ghebreyesus TA. Acting on NCDs: counting the cost. Lancet. 2018;391(10134):1973-1974. doi:10.1016/S0140-6736(18)30675-5spa
dc.relation.references25. Tarricone R. Cost-of-illness analysis. What room in health economics? Health Policy (New York). 2006;77:51-63. doi:10.1016/j.healthpol.2005.07.016spa
dc.relation.references26. Robinson LA, Hammitt JK. Research Synthesis and the Value per Statistical Life. Risk Anal. 2015;35:1086-1100. doi:10.1111/risa.12366spa
dc.relation.references27. Amin AP, McNeely C, Spertus JA, et al. Incremental Cost of Acute Kidney Injury after Percutaneous Coronary Intervention in the United States. Am J Cardiol. 2020;125(1):29-33. doi:10.1016/j.amjcard.2019.09.042spa
dc.relation.references28. Raez LE, Cardona AF, Santos ES, et al. The burden of lung cancer in Latin- America and challenges in the access to genomic profiling, immunotherapy and targeted treatments. Lung Cancer. 2018;119:7-13. doi:10.1016/j.lungcan.2018.02.014spa
dc.relation.references29. Jeon SM, Kwon JW, Choi SH, Park HY. Economic burden of lung cancer: A retrospective cohort study in South Korea, 2002-2015. PLoS One. 2019;14(2):2002-2015. doi:10.1371/journal.pone.0212878spa
dc.relation.references30. Prada SI, Perez AM, Nieto-Aristizábal I, Tobón GJ. Direct cost of lupus care in the developing world: the case of Colombia. Lupus. 2019;28(8):970-976. doi:10.1177/0961203319856093spa
dc.relation.references31. Lee YR, Cho B, Jo MW, et al. Measuring the economic burden of disease and injury in Korea, 2015. J Korean Med Sci. 2019;34:1-11.spa
dc.relation.references32. Rice DP. Cost of illness studies: what is good about them? Inj Prev. 2000;6:177-179. doi:10.1136/ip.6.3.177spa
dc.relation.references33. Pichon-Riviere A, Alcaraz A, Palacios A, et al. The health and economic burden of smoking in 12 Latin American countries and the potential effect of increasing tobacco taxes: an economic modelling study. Lancet Glob Heal. 2020;8(10):e1282-e1294. doi:10.1016/S2214-109X(20)30311-9spa
dc.relation.references34. Choi H-J, Lee E-W. Methodology of Estimating Socioeconomic Burden of Disease Using National Health Insurance (NHI) Data. In: Evaluation of Health Services. ; 2019:1-17.spa
dc.relation.references35. Ghosh K, Bondarenko I, Messer KL, et al. Attributing medical spending to conditions: A comparison of methods. PLoS One. 2020;15(8 August):1-17. doi:10.1371/journal.pone.0237082spa
dc.relation.references36. Finkelstein EA, Trogdon JG, Cohen JW, Dietz W. Annual Medical Spending Attributable To Obesity: Payer-And Service-Specific Estimates. Health Aff. 2009;28(Supplement 1):w822-w831. doi:10.1377/hlthaff.28.5.w822spa
dc.relation.references37. Roberts RR, Scott RDII, Hota B, et al. Costs Attributable to Healthcare- Acquired Infection in Hospitalized Adults and a Comparison of Economic Methods. Med Care. 2010;48(11). https://journals.lww.com/lwwmedicalcare/ Fulltext/2010/11000/Costs_Attributable_to_Healthcare_Acquire d.12.aspx.spa
dc.relation.references38. Pagano E, Petrelli A, Picariello R, Merletti F, Gnavi R, Bruno G. Is the choice of the statistical model relevant in the cost estimation of patients with chronic diseases? An empirical approach by the Piedmont Diabetes Registry. BMC Health Serv Res. 2015;15(1):1-7. doi:10.1186/s12913-015- 1241-1spa
dc.relation.references39. Zhao Q-Y, Luo J-C, Su Y, Zhang Y-J, Tu G-W, Luo Z. Propensity score matching with R: conventional methods and new features. Ann Transl Med. 2021;9(9):812-812. doi:10.21037/atm-20-3998spa
dc.relation.references40. Xie L, Vaidya N, Xin K, et al. Evaluating The Economic Burden and Health Care Utilization of Lung Cancer in The Us Medicare Population. Value Heal. 2016;19(7):A726. doi:10.1016/j.jval.2016.09.2173spa
dc.relation.references41. Elze MC, Gregson J, Baber U, et al. Comparison of Propensity Score Methods and Covariate Adjustment: Evaluation in 4 Cardiovascular Studies. J Am Coll Cardiol. 2017;69(3):345-357. doi:10.1016/j.jacc.2016.10.060spa
dc.relation.references42. Austin PC. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behav Res. 2011;46(3):399-424. doi:10.1080/00273171.2011.568786spa
dc.relation.references43. Austin PC. Assessing balance in measured baseline covariates when using many-to-one matching on the propensity-score. Pharmacoepidemiol Drug Saf. 2008;17(12):1218-1225. doi:10.1002/pds.1674spa
dc.relation.references44. Austin PC. The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies. Med Decis Mak an Int J Soc Med Decis Mak. 2009;29(6):661-677. doi:10.1177/0272989X09341755spa
dc.relation.references45. Morgan SL, Todd JJ. 6. A Diagnostic Routine for the Detection of Consequential Heterogeneity of Causal Effects. Sociol Methodol. 2008;38(1):231-282. doi:10.1111/j.1467-9531.2008.00204.xspa
dc.relation.references46. Austin PC. Goodness-of-fit diagnostics for the propensity score model when estimating treatment effects using covariate adjustment with the propensity score. Pharmacoepidemiol Drug Saf. 2008;17(12):1202-1217.spa
dc.relation.references47. Imai K, King G, Stuart E. Misunderstandings Among Experimentalists and Observationalists about Causal Inference. J R Stat Soc Ser A. 2008;171, part:481{\textendash}502.spa
dc.relation.references48. Hagen T. Econometric Evaluation of a Placement Coaching Program for Recipients of Disability Insurance Benefits in Switzerland Working Paper Series: Business and Law Econometric Evaluation of a Placement Coaching Program for Recipients of Disability Insurance Bene. 2016.spa
dc.relation.references49. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70(1):41-55.spa
dc.relation.references50. Gardner M, Shepperd S, Godfrey M, et al. A retrospective propensity score matched analysis, using administrative data, of alternatives to hospital admission for older people. 2019. https://www.ncbi.nlm.nih.gov/books/NBK538039/. Accessed August 11, 2021.spa
dc.relation.references51. Rubin DB. Using propensity scores to help design observational studies: Application to the tobacco litigation. Matched Sampl Causal Eff. 2001:365- 382. doi:10.1017/CBO9780511810725.030spa
dc.relation.references52. Taber DJ, Gebregziabher M, Payne EH, Srinivas T, Baliga PK, Egede LE. Overall Graft Loss Versus Death-Censored Graft Loss: Unmasking the Magnitude of Racial Disparities in Outcomes among US Kidney Transplant Recipients. Transplantation. 2017;101(2):402-410. doi:10.1097/TP.0000000000001119spa
dc.relation.references53. Sheldon TA. Estimating treatment effects: real or the result of chance? Evid Based Nurs. 2000;3(2):36 LP - 39. doi:10.1136/ebn.3.2.36spa
dc.relation.references54. Schafer JL, Kang J. Average causal effects from nonrandomized studies: a practical guide and simulated example. Psychol Methods. 2008;13(4):279- 313. doi:10.1037/a0014268spa
dc.relation.references55. Abadie A, Imbens GW. Large sample properties of matching estimators for average treatment effects. Econometrica. 2006;74(1):235-267. doi:10.1111/j.1468-0262.2006.00655.xspa
dc.relation.references56. Austin PC. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Stat Med. 2011;30(11):1292-1301. doi:10.1002/sim.4200spa
dc.relation.references57. Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stat Med. 2013;32(16):2837-2849. doi:10.1002/sim.5705spa
dc.relation.references58. Gayat E, Resche-Rigon M, Mary J-Y, Porcher R. Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study. Pharm Stat. 2012;11(3):222-229. doi:10.1002/pst.537spa
dc.relation.references59. Dash S, Shakyawar SK, Sharma M, Kaushik S. Big data in healthcare: management, analysis and future prospects. J Big Data. 2019;6(1). doi:10.1186/s40537-019-0217-0spa
dc.relation.references60. Ehrenstein V, Nielsen H, Pedersen AB, Johnsen SP, Pedersen L. Clinical epidemiology in the era of big data: new opportunities, familiar challenges. Clin Epidemiol. 2017;Volume 9(4):245-250. doi:10.2147/CLEP.S129779spa
dc.relation.references61. Center for disease Control and Prevention (CDC). Administrative Claims Databases. https://www.cdc.gov/visionhealth/vehss/data/claims/index.html. Published 2020. Accessed August 5, 2021.spa
dc.relation.references62. Shih Y-CT, Liu L. Use of Claims Data for Cost and Cost-Effectiveness Research. Semin Radiat Oncol. 2019;29(4):348-353. doi:10.1016/j.semradonc.2019.05.009spa
dc.relation.references63. Riley GF. Administrative and claims records as sources of health care cost data. Med Care. 2009;47(7 Suppl 1):S51-5. doi:10.1097/MLR.0b013e31819c95aaspa
dc.relation.references64. Rosen AB, Cutler DM. Challenges in building disease-based national health accounts. Med Care. 2009;47:S7-13. doi:10.1097/MLR.0b013e3181a23e12spa
dc.relation.references65. Rizzo JA, Chen J, Gunnarsson CL, Naim A, Lofland JH. Adjusting for comorbidities in cost of illness studies. J Med Econ. 2015;18:12-28. doi:10.3111/13696998.2014.969434spa
dc.relation.references66. Lee DW, Meyer JW, Clouse J. Implications of controlling for comorbid conditions in cost-of-illness estimates: a case study of osteoarthritis from a managed care system perspective. Value Heal. 2001;4:329-334. doi:10.1046/j.1524-4733.2001.44012.xspa
dc.relation.references67. Piñeros M, Abriata MG, Vries E, et al. Progress, challenges and ways forward supporting cancer surveillance in Latin America. Int J Cancer. 2020;(June):1-9. doi:10.1002/ijc.33407spa
dc.relation.references68. Gomes AL, Turbay T, Venturella P, Cecagno L, Johnson G, Caleffi M. Cancer Diagnosis and Treatment: The Need for Compulsory Registration. J Glob Oncol. 2018;4(Supplement 2):153s-153s. doi:10.1200/jgo.18.70800spa
dc.relation.references69. Lengerich EJ, Siedlecki JC, Brownson R, et al. Mentorship and competencies for applied chronic disease epidemiology. J Public Health Manag Pract. 2003;9(4):275-283. doi:10.1097/00124784-200307000-00005spa
dc.relation.references70. Bray F, Colombet M, Mery L, Piñeros M, Znaor A ZR and FJ. CancerIncidence in Five Continents. (International Agency for Research on Cancer., ed.). Lyon; 2017.spa
dc.relation.references71. Bertram MY, Sweeny K, Lauer JA, et al. Investing in non-communicable diseases: an estimation of the return on investment for prevention and treatment services. Lancet. 2018;391(10134):2071-2078. doi:10.1016/S0140-6736(18)30665-2spa
dc.relation.references72. Fletcher R, Fletcher S. Risk: Looking Forward. In: Clinical Epidemiology The Essentials. Fourth edi. ; 2005:75-91.spa
dc.relation.references73. Kutikova L, Bowman L, Chang S, Long SR, Obasaju C, Crown WH. The economic burden of lung cancer and the associated costs of treatment failure in the United States. Lung Cancer. 2005;50(2):143-154. doi:10.1016/j.lungcan.2005.06.005spa
dc.relation.references74. Buitrago G, Amaya-Nieto J, Torres GF. Prevalence of lung cancer in Colombia and a new diagnostic algorithm using health administrative databases: A real-world evidence study. J Clin Oncol. 2021;39(S15):e18764.spa
dc.relation.references75. Ministerio de salud y protección social de Colombia. Estudio de Suficiencia y de Los Mecanismos de Ajuste Del Riesgo Para El Cálculo de La Unidad de Pago Por Capitación, Recursos Para Garantizar La Financiación de Tecnologías En Salud y Servicios En Los Regímenes Contributivo y Subsidiado. Año 2020. Bogotá D.C.; 2019.spa
dc.relation.references76. Mazzali C, Paganoni AM, Ieva F, et al. Methodological issues on the use of administrative data in healthcare research: the case of heart failure hospitalizations in Lombardy region, 2000 to 2012. BMC Health Serv Res. 2016;16(1):234. doi:10.1186/s12913-016-1489-0spa
dc.relation.references77. Boulton C, Wilkinson JM. Use of public datasets in the examination of multimorbidity: Opportunities and challenges. Mech Ageing Dev. 2020;190:111310. doi:https://doi.org/10.1016/j.mad.2020.111310spa
dc.relation.references78. Andrillon A, Pirracchio R, Chevret S. Performance of propensity score matching to estimate causal effects in small samples. Stat Methods Med Res. 2020;29(3):644-658. doi:10.1177/0962280219887196spa
dc.relation.references79. Champely S. Pwr: Basic Functions for Power Analysis.; 2020. https://cran.rproject. org/package=pwr.spa
dc.relation.references80. Cohen J. Statistical Power Analysis for the Behavioral Sciences (2nd Edition) 2nd Edition. Lauwerence.; 1988.spa
dc.relation.references81. Cuenta de alto costo. Situación Del Cáncer En La Población Adulta Atendida En El SGSSS de Colombia 2018. Bogotá D.C.; 2018.spa
dc.relation.references82. Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali WA. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol. 2004;57(12):1288-1294. doi:10.1016/j.jclinepi.2004.03.012spa
dc.relation.references83. Williamson EJ, Forbes A. Introduction to propensity scores. Respirology. 2014;19(5):625-635. doi:https://doi.org/10.1111/resp.12312spa
dc.relation.references84. Halpern EF. Behind the Numbers: Inverse Probability Weighting. Radiology. 2014;271(3):625-628. doi:10.1148/radiol.14140035spa
dc.relation.references85. Xu S, Ross C, Raebel MA, Shetterly S, Blanchette C, Smith D. Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals. Value Health. 2010;13(2):273-277. doi:10.1111/j.1524-4733.2009.00671.xspa
dc.relation.references86. Chesnaye NC, Stel VS, Tripepi G, et al. An introduction to inverse probability of treatment weighting in observational research. Clin Kidney J. 2022;15(1):14-20. doi:10.1093/ckj/sfab158spa
dc.relation.references87. Allan V, Ramagopalan S V., Mardekian J, et al. Propensity score matching and inverse probability of treatment weighting to address confounding by indication in comparative effectiveness research of oral anticoagulants. J Comp Eff Res. 2020;9(9):603-614. doi:10.2217/cer-2020-0013spa
dc.relation.references88. Cochran WG. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics. 1968;24(2):295-313.spa
dc.relation.references89. Rosenbaum PR, Rubin DB. Reducing Bias in Observational Studies Using Subclassification on the Propensity Score. J Am Stat Assoc. 1984;79(387):516-524. doi:10.1080/01621459.1984.10478078spa
dc.relation.references90. Austin PC. Using the Standardized Difference to Compare the Prevalence of a Binary Variable Between Two Groups in Observational Research. Commun Stat - Simul Comput. 2009;38(6):1228-1234. doi:10.1080/03610910902859574spa
dc.relation.references91. Wooldridge JM. Introductory Econometrics: A Modern Approach. Cengage learning; 2015.spa
dc.relation.references92. Rubin DB. Using Propensity Scores to Help Design Observational Studies: Application to the Tobacco Litigation. Heal Serv Outcomes Res Methodol 2001 23. 2001;2(3):169-188. doi:10.1023/A:1020363010465spa
dc.relation.references93. Leuven E, Sianesi B. “PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing.” 2003.spa
dc.relation.references94. Thomson S, Foubister T, Figueras J, Kutzin J, Permant G, Bryndova L. Addressing Financial Sustainability in Health Systems.; 2009. https://www.euro.who.int/__data/assets/pdf_file/0018/76041/E93058.pdf.spa
dc.relation.references95. Gregori D, Petrinco M, Bo S, Desideri A, Merletti F, Pagano E. Regression models for analyzing costs and their determinants in health care: an introductory review. Int J Qual Heal Care. 2011;23(3):331-341. doi:10.1093/INTQHC/MZR010spa
dc.relation.references96. Kim S, Park SJ, Byun SJ, Park KH, Suh HS. Incremental economic burden associated with exudative age-related macular degeneration: a populationbased study. BMC Health Serv Res. 2019;19(1):1-10. doi:10.1186/s12913- 019-4666-0spa
dc.relation.references97. Castro-Villarreal S, Beltran-Ostos A, Valencia CF. Estimation of Prevalence and Incremental Costs of Systemic Lupus Erythematosus in a Middle- Income Country Using Machine Learning on Administrative Health Data. Value Heal Reg Issues. 2021;26:98-104. doi:10.1016/j.vhri.2021.04.005spa
dc.relation.references98. Cai Y, Chen W, Wang X, et al. Contemporary trends on expenditure of hospital care on total cancer and its subtypes in China during 2008−2017. Chinese J Cancer Res. 2021;33(5):627-636. doi:10.21147/j.issn.1000- 9604.2021.05.09spa
dc.relation.references99. Liu W, Tao Z-W, Wang L, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl). 2020;133(9):1032-1038. doi:10.1097/CM9.0000000000000775spa
dc.relation.references100. Gouliaev A, Risikesan J, Christensen NL, et al. Direct and indirect economic burden of lung cancer in Denmark a nationwide study. Eur Clin Respir J. 2021;8(1). doi:10.1080/20018525.2021.1951963spa
dc.relation.references101. Cicin I, Oksuz E, Karadurmus N, et al. Economic burden of lung cancer in Turkey: a cost of illness study from payer perspective. Health Econ Rev. 2021;11(1):1-12. doi:10.1186/s13561-021-00322-2spa
dc.relation.references102. Granger E, Watkins T, Sergeant JC, Lunt M. A review of the use of propensity score diagnostics in papers published in high-ranking medical journals. BMC Med Res Methodol. 2020;20(1):1-9. doi:10.1186/s12874-020- 00994-0spa
dc.relation.references103. Crown WH. Propensity-score matching in economic analyses: Comparison with regression models, instrumental variables, residual inclusion, differences-in-differences, and decomposition methods. Appl Health Econ Health Policy. 2014;12(1):7-18. doi:10.1007/s40258-013-0075-4spa
dc.relation.references104. Ciminata G, Geue C, Wu O, Deidda M, Kreif N, Langhorne P. Propensity score methods for comparative-effectiveness analysis: A case study of direct oral anticoagulants in the atrial fibrillation population. PLoS One. 2022;17(1 1):1-14. doi:10.1371/journal.pone.0262293spa
dc.relation.references105. Austin PC, Stuart EA. The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes. Stat Methods Med Res. 2017;26(4):1654-1670. doi:10.1177/0962280215584401spa
dc.relation.references106. Austin PC. Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun Stat Simul Comput. 2009;38(6):1228-1234. doi:10.1080/03610910902859574spa
dc.relation.references107. Austin PC, Mamdani MM. A comparison of propensity score methods: acase-study estimating the effectiveness of post-AMI statin use. Stat Med. 2006;25(12):2084-2106. doi:10.1002/sim.2328spa
dc.relation.references108. Austin PC, Xin Yu AY, Vyas M V., Kapral MK. Applying Propensity Score Methods in Clinical Research in Neurology. Neurology. 2021;97(18):856- 863. doi:10.1212/WNL.0000000000012777spa
dc.relation.references109. Bugge C, Sæther EM, Brustugun OT, Kristiansen IS. Societal cost of cancer in Norway –Results of taking a broader cost perspective. Health Policy (New York). 2021;125(8):1100-1107. doi:10.1016/j.healthpol.2021.05.008spa
dc.relation.references110. Awano N, Izumo T, Inomata M, et al. Medical costs of lung cancer care in Japan during the first one or two years after initial diagnosis. Jpn J Clin Oncol. 2021;51(5):778-785. doi:10.1093/jjco/hyaa258spa
dc.relation.references111. Buja A, Rivera M, De Polo A, et al. Estimated direct costs of non-small cell lung cancer by stage at diagnosis and disease management phase: A whole-disease model. Thorac Cancer. 2021;12(1):13-20. doi:10.1111/1759- 7714.13616spa
dc.relation.references112. Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med. 2004;23(19):2937-2960. doi:10.1002/SIM.1903spa
dc.relation.references113. The Economist. EL CÁNCER DE PULMÓN EN AMÉRICA LATINA : Es tiempo de dejar de mirar hacia otro lado. 2018:67. http://www.vi-da.cl/wpcontent/ uploads/2018/09/EIU_Roche-Lung-cancer-in-Latin-America_Timeto- stop-looking-away_Español.pdf.spa
dc.relation.references114. Pérez N, Murillo R, Pinzón C, Hernández G. Costos de la atención médica del cáncer de pulmón, la EPOC y el IAM atribuibles al consumo de tabaco en Colombia (proyecto multicéntrico de la OPS). Rev colomb cancerol. 2007:241-249.spa
dc.relation.references115. Rossel J, Rousson V, Eggli Y. A comparison of statistical methods for allocating disease costs in the presence of interactions. Stat Med. 2021;(May 2020):1-13. doi:10.1002/sim.8950spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.lembCostos de la saludspa
dc.subject.otherNeoplasias Pulmonaresspa
dc.subject.otherLung Neoplasmseng
dc.subject.otherSistemas de Saludspa
dc.subject.otherHealth Systemseng
dc.subject.proposalCáncer de pulmónspa
dc.subject.proposalPuntaje de propensiónspa
dc.subject.proposalCosto incrementalspa
dc.subject.proposalLung Cancereng
dc.subject.proposalPropensity Scoreeng
dc.subject.proposalIncremental Cost of Illnesseng
dc.titleImpacto del diagnóstico de cáncer de pulmón en los costos del sistema de salud en Colombia: comparación de tres métodos de estimación basados en puntajes de propensiónspa
dc.title.translatedImpact of Lung Cancer Diagnosis on Health System Costs in Colombia: Comparison of Three Estimation Methods Based on Propensity Scoreseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015402427.2023.pdf
Tamaño:
1.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría de Epidemiología Clínica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: