Determinación de los hábitos dietarios de Anopheles darlingi proveniente de dos comunidades indígenas del Amazonas Colombiano
dc.contributor.advisor | Camargo Pinzon, Sandra Milena | spa |
dc.contributor.advisor | Patarroyo Gutiérrez, Manuel Alfonso | spa |
dc.contributor.author | Molano Rodriguez, Maira Alejandra | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Amazonas | spa |
dc.date.accessioned | 2025-04-03T14:14:32Z | |
dc.date.available | 2025-04-03T14:14:32Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, mapas, tablas | spa |
dc.description.abstract | La malaria es una enfermedad causada por parásitos del género Plasmodium, transmitidos al ser humano a través de la picadura de mosquitos hembra del género Anopheles. Se considera la enfermedad de mayor impacto en salud pública entre las enfermedades transmitidas por vectores (ETV). Los países tropicales y subtropicales cuentan con condiciones ambientales propicias para la proliferación del vector y la transmisión eficiente de la infección, lo que convierte a algunas de estas regiones en zonas endémicas para la malaria. Esta situación, sumada a los recursos limitados para el desarrollo de políticas públicas de control de enfermedades infecciosas en los países en vías de desarrollo, representa un desafío importante a nivel de políticas de salud. Aunque la implementación de estrategias terapéuticas, como el desarrollo de medicamentos, ha contribuido significativamente a reducir la carga de malaria, estas iniciativas no han sido suficientes para detener la transmisión de los parásitos en humanos. Es esencial enfocar los esfuerzos en esquemas de prevención durante la etapa asintomática de la enfermedad, con el fin de interrumpir fases críticas del ciclo de vida del parásito, como la fase sexual en el hospedero definitivo (el insecto). El uso de insecticidas de amplio espectro, aplicados en mosquiteros o mediante aspersión intradomiciliaria, sigue siendo una herramienta clave para el control vectorial y la prevención de la enfermedad. Sin embargo, factores ambientales como el cambio climático y la deforestación, junto con factores sociales como el desplazamiento de la población, han alterado la ecología y el comportamiento de los vectores, provocando cambios en la distribución de la malaria, con brotes en nuevas áreas o reemergencias en zonas previamente controladas. Es crucial realizar estudios epidemiológicos y entomológicos que ayuden a comprender la frecuencia de infección por Plasmodium spp. y la ecología de los vectores involucrados, para replantear las estrategias de control. En Colombia, la cuenca del Amazonas es un foco de transmisión parasitaria y carga de malaria, siendo una región endémica debido a sus características climáticas, como la alta humedad y temperaturas entre 26 y 28 °C, óptimas para la reproducción del vector. La presencia de abundantes cuerpos de agua (ríos, charcos y lagunas) proporciona criaderos ideales para los mosquitos, mientras que la densa cobertura forestal de la selva amazónica contribuye a su proliferación. Además, el acceso limitado a los servicios de salud en las comunidades indígenas dificulta el diagnóstico y tratamiento oportuno de enfermedades endémicas como la malaria. La alta circulación de esta enfermedad en la región se ve favorecida por la movilidad de la población entre zonas de alta y baja transmisión, la presencia de múltiples especies de Plasmodium y factores antropogénicos como la deforestación, la minería y la construcción de asentamientos humanos cerca de fuentes de agua. Para su estudio y control, se emplean métodos microscópicos, pruebas rápidas, estudios entomológicos, serológicos, de biología molecular y modelos epidemiológicos, los cuales han revelado una alta frecuencia de infección por Plasmodium vivax y Plasmodium falciparum en humanos, además de un subregistro de Plasmodium malariae. Investigaciones a nivel microgeográfico en comunidades indígenas como Tipisca y Doce de Octubre identificaron a Anopheles darlingi como el vector predominante. Ambas comunidades están ubicadas en el departamento del Amazonas colombiano; Doce de Octubre se encuentra en el municipio de Puerto Nariño, mientras que Tipisca está aproximadamente a dos horas de distancia. Estas comunidades forman parte de una serie de asentamientos indígenas que se extienden a lo largo del río Loretoyacu, conectando Puerto Nariño con la frontera peruana. Considerando que la malaria es un problema de salud pública relevante y que Anopheles darlingi es un vector de importancia en la transmisión de la enfermedad en Colombia, pero que existe poca información sobre su biología y comportamiento en el Amazonas Colombiano, se planteó el presente trabajo. En un estudio transversal retrospectivo realizado previamente, se reportó la abundancia de A. darlingi en dos comunidades indígenas del Amazonas Colombiano: Doce de Octubre y Tipisca, en un momento específico (junio de 2016). El presente proyecto tuvo como objetivo identificar las fuentes de alimentación con sangre de A. darlingi en el contexto de las infecciones por Plasmodium spp. en las comunidades indígenas de Doce de Octubre y Tipisca en al Amazonas colombiano, mediante análisis de un subconjunto de muestras que hacían parte del proyecto anterior. Este estudio se enmarcó en el proyecto “Estrategias de prevención y control de la malaria en la región amazónica en respuesta a un brote reciente de la enfermedad” (proyecto BPIN-266, convenio especial de cooperación No.0020 entre la Gobernación del Amazonas y la Fundación Instituto de Inmunología de Colombia), la fuente de muestra consistió en especímenes de A. darlingi capturados en dos comunidades indígenas durante el mes de junio de 2016. El muestreo se realizó en la comunidad Tipisca en dos ocasiones (Tp1 y Tp2) (3°41'49.96''S; 70°35:06.42''O), y una vez en la comunidad Doce de Octubre (DO) (3°44'14.04'' S; 70°30'08.45''O). Para la captura de los vectoresse empleó la técnica típica de cebo humano protegido. La colecta se realizó durante tres días consecutivos entre las 6:00 pm y 11:00 pm, sin impactar la representatividad, debido a las condiciones logísticas y que en estas horas se presenta uno de los mayores picos de actividad nocturna, con periodos de captura de 50 minutos y 10 minutos de descanso. Se consideraron tres ecotopos diferentes: intradomiciliario (dentro de la vivienda de estudio), peridomiciliario (área ubicada 10 metros alrededor intradomicilio) y extradomiciliario (área situada desde el borde del peridomicilio en adelante). Cada espécimen fue almacenado individualmente en tubos con gel de sílice, etiquetado con la hora de muestreo, el ecotopo y la comunidad de origen, y transportado en cadena de frío al laboratorio, donde se realizó su sacrificio (manteniéndolos en cadena de frio) y posterior procesamiento. Para cumplir con el objetivo del proyecto, se realizó disección del abdomen de los especímenes recolectados. La extracción del ADN se realizó usando el kit comercial Quick Extract Solution 1.0 (Lucigen®), siguiendo las instrucciones del fabricante. La detección de Plasmodium spp. en los mosquitos A. darlingi se llevó a cabo mediante PCR convencional para la detección de secuencias específicas de ADN del parásito proveniente de los abdómenes diseccionados, utilizando los cebadores (rPLU5 y rPLU6) (Snounou et al., 1993). Los cebadores empleados están diseñados para amplificar regiones específicas del gen de la subunidad ribosomal 18S (18S-RNA), lo que permite una identificación a nivel de género de Plasmodium spp. Posteriormente, se seleccionaron aleatoriamente 242 muestras de mosquitos, organizadas en 121 pools, para identificar las fuentes de alimentación sanguínea de origen vertebrado mediante secuenciación metagenómica shotgun en la plataforma Illumina NovaSeq. Para cumplir con el objetivo del estudio, se analizó el gen ARNr-12S del genoma mitocondrial, específico de vertebrados, debido a su alta conservación, ya que no está sometido a presión selectiva. Además, este gen contiene regiones variables características de cada grupo taxonómico y está presente en altas copias en la mitocondria, lo que facilita la detección de ADN incluso cuando se encuentra degradado o en baja abundancia. Asimismo, su amplia representación en bases de datos, lo convierte en un marcador ideal para estudios de metagenómica. El análisis de las secuencias comenzó con la evaluación de la calidad y limpieza mediante FastQC, MultiQC y Trimmomatic. Las fuentes de alimentación sanguínea se infirieron mediante BLASTn utilizando un conjunto de datos de referencia con secuencias de 12SrRNA de vertebrados del Amazonas colombiano, potenciales fuentes de alimentación para los mosquitos. La base de datos obtenida fue indizada y utilizada con Centrifuge v.1.0.3-beta para analizar las lecturas y determinar las preferencias alimentarias de A. darlingi. Los resultados se convirtieron al formato Kraken-Report y se visualizaron con Pavian y el paquete gplot en RStudio. De los 121 pools,se detectaron 45 fuentes de alimentación sanguínea, siendo la más frecuente la sangre humana (76,8%), seguida de murciélagos (10,5%), roedores (4,4%) y Didelphidae (tipo de marsupiales) (3,9%). En particular, Doce de Octubre mostró una mayor diversidad de vertebrados como fuente de alimentación para los mosquitos en comparación con la comunidad Tipisca, destacando especies como Tonatia saurophila (murciélago) y Procyon lotor (mapache) como principales fuentes de alimentación sanguinea. Se observaron diferencias estadísticamente significativas en la abundancia de vertebrados que son fuente de alimentación sanguínea de Anopheles entre los distintos ecotopos. Específicamente, Cavia porcellus (cuy) y Carollia perspicillata (murciélago) fueron más prevalentes en ambientes extradomiciliarios, mientras que Sus scrofa (jabalí) fue más abundante en áreas peridomiciliarias. El análisis multivariado reveló asociaciones entre las comunidades Tipisca y Doce de octubre y las fuentes de alimentación, mostrando una menor probabilidad de encontrar especies como Procyon lotor (mapache) (razón de momios ajustada [aOR]: 0,31; IC del 95% 0,11-0,84) y Homo sapiens (hombre) (aOR: 0,15; IC del 95% 0,09-0,56) en la comunidad de Tipisca. Además, se identificaron asociaciones positivas entre Carollia perspicillata (murciélago) (aOR 3,64; IC del 95% 1,63- 8,11), Procyon lotor (mapache) (aOR 2,07; IC del 95% 1,02-4,58) y Cavia porcellus (murciélago) (aOR 3,00; IC del 95% 1,29-6,96) con ecotopos extradomiciliarios. Finalmente, se encontró una asociación positiva significativa entre los mosquitos positivos para Plasmodium spp. y aquellos que se alimentaron de Homo sapiens (humano) (aOR 2,21; IC del 95% 1,57-5,44). Dado que la presente investigación utilizó muestras del estudio de Prado et al. (2019), cuyo objetivo fue la identificación taxonómica y molecular de especies del género Anopheles, así como la determinación de la frecuencia de infección por Plasmodium vivax, P. malariae y P. falciparum, es posible que el método de captura mediante cebo humano haya influido en los resultados, favoreciendo la identificación del ser humano como una fuente de alimentación sanguínea prevalente. Este estudio pionero en la Amazonía colombiana describe las fuentes de alimentación sanguínea de Anopheles darlingi mediante tecnología de secuenciación de alto rendimiento, lo que resulta fundamental para comprender los ciclos de transmisión de parásitos e identificar los hospedadores involucrados en su propagación, lo que a futuro contribuirá en el desarrollo de estrategias efectivas de control de vectores, reduciendo el contacto entre hospedadores, vectores y humanos. En este sentido, fomentar la presencia de los vertebrados identificados cerca de los asentamientos humanos podría contribuir a disminuir la incidencia de picaduras en personas en regiones endémicas de malaria. Los resultados de este estudio proporcionan información clave sobre los ciclos de transmisión y la dinámica de la enfermedad, resaltando la importancia de los programas de vigilancia y control. Asimismo, subrayan el papel de los reservorios no humanos en la reducción de la transmisión parasitaria y la influencia de factores ambientales en la propagación de la malaria, dado que estos afectan tanto la ecología del vector como la del parásito. Factores como la temperatura, la humedad, la deforestación, la actividad humana y el cambio climático inciden en la abundancia de Anopheles, la velocidad de transmisión y la distribución geográfica de la enfermedad (Texto tomado de la fuente). | spa |
dc.description.abstract | Malaria is a disease caused by parasites of the genus Plasmodium, transmitted to humans through the bite of female mosquitoes of the genus Anopheles. It is considered the vectorborne disease with the greatest public health impact. Tropical and subtropical countries provide favorable environmental conditions for vector proliferation and efficient infection transmission, making some of these regions endemic for malaria. This situation, combined with limited resources for developing public policies to control infectious diseases in developing countries, poses a major challenge for health policy management. Although the implementation of therapeutic strategies, such as drug development, has significantly contributed to reducing the malaria burden, these initiatives have not been sufficient to halt parasite transmission in humans. It is essential to focus efforts on preventive strategies during the asymptomatic stage of the disease to interrupt critical phases of the parasite's life cycle, such as the sexual stage in the definitive host (the insect). The use of broad-spectrum insecticides, applied in bed nets or through indoor residual spraying, remains a key tool for vector control and disease prevention. However, environmental factors such as climate change and deforestation, along with social factors like population displacement, have altered vector ecology and behavior, leading to changes in malaria distribution, with outbreaks in new areas or reemergence in previously controlled regions. Conducting epidemiological and entomological studies is crucial to understanding the frequency of Plasmodium spp. infections and the ecology of the vectors involved, thereby refining control strategies. In Colombia, the Amazon basin is a hotspot for parasite transmission and malaria burden, being an endemic region due to its climatic characteristics, such as high humidity and temperatures ranging from 26 to 28 °C, which are optimal for vector reproduction. The presence of abundant water bodies (rivers, ponds, and lagoons) provides ideal breeding sites for mosquitoes, while the dense forest coverage of the Amazon rainforest contributes to their proliferation. Additionally, limited access to healthcare services in indigenous communities hinders timely diagnosis and treatment of endemic diseases such as malaria. The high circulation of malaria in the region is influenced by population mobility between high- and low-transmission areas, the presence of multiple Plasmodium species, and anthropogenic factors such as deforestation, mining, and the establishment of human settlements near water sources. For malaria research and control, microscopic methods, rapid diagnostic tests, entomological surveys, serological studies, molecular biology techniques, and epidemiological models have revealed a high frequency of Plasmodium vivax and Plasmodium falciparum infections in humans, along with an underreporting of Plasmodium malariae. Microgeographic investigations in indigenous communities such as Tipisca and Doce de Octubre identified Anopheles darlingi as the predominant vector. Both communities are located in the Colombian Amazon department; Doce de Octubre is in the municipality of Puerto Nariño, while Tipisca is approximately two hours away. These communities are part of a network of indigenous settlements along the Loretoyaco River, connecting Puerto Nariño with the Peruvian border. Given that malaria is a significant public health concern and that Anopheles darlingi is an important vector for disease transmission in Colombia, little information is available on its biology and behavior in the Colombian Amazon. A retrospective cross-sectional study was conducted to assess the abundance of A. darlingi in two indigenous communities in the Colombian Amazon—Doce de Octubre and Tipisca—at a specific time point (June 2016). The analyzed data originated from past events, with no intervention in the present study regarding these samples. This study aimed to identify the blood-feeding sources of A. darlingi in the context of Plasmodium spp. infections in these communities. This study was part of the project "Strategies for Malaria Prevention and Control in the Amazon Region in Response to a Recent Malaria Outbreak" (BPIN-266 project, special cooperation agreement No. 0020 between the Amazonas Governor’s Office and the Fundación Instituto de Inmunología de Colombia). The sample source consisted of A. darlingi specimens captured in two indigenous communities during June 2016. Sampling was conducted twice in Tipisca (Tp1 and Tp2) (3°41'49.96''S; 70°35'06.42''W) and once in Doce de Octubre (DO) (3°44'14.04''S; 70°30'08.45''W). The mosquito collection method used was human landing catch (HLC) with protective measures. The collection was carried out over three consecutive nights between 6:00 PM and 11:00 PM, ensuring representativeness despite logistical constraints, as these hours correspond to a peak in nocturnal mosquito activity. Collection periods lasted 50 minutes, followed by 10- minute rest intervals. Three ecotopes were considered: indoor (inside the study dwelling), peridomestic (within a 10-meter radius around the dwelling), and outdoor (beyond the peridomestic area). Each specimen was individually stored in tubes with silica gel, labeled with the collection time, ecotope, and community of origin, and transported under a cold chain to the laboratory, where they were euthanized under the same conditions and subsequently processed. To achieve the study’s objective, the abdomens of the collected specimens were dissected. DNA extraction was performed using the Quick Extract Solution 1.0 commercial kit (Lucigen®), following the manufacturer's instructions. The detection of Plasmodium spp. in A. darlingi mosquitoes was carried out through conventional PCR targeting specific parasite DNA sequences from the dissected abdomens, using primers rPLU5 and rPLU6 (Snounou et al., 1993). These primers amplify specific regions of the 18S ribosomal RNA gene (18S rRNA), allowing for Plasmodium genus-level identification. Subsequently, 242 mosquito samples were randomly selected and grouped into 121 pools to identify vertebrate blood-feeding sources using shotgun metagenomic sequencing on the Illumina NovaSeq platform. To fulfill the study’s objective, the 12S rRNA gene of the mitochondrial genome was analyzed, as it is vertebrate-specific and highly conserved due to the absence of selective pressure. Additionally, this gene contains variable regions characteristic of each taxonomic group and is present in high copy numbers in mitochondria, facilitating the detection of DNA even when degraded or in low abundance. Moreover, its extensive representation in reference databases makes it an ideal marker for metagenomic studies. FastQC, MultiQC and Trimmomatic tools were used for quality and cleanliness assessment. BLASTn was used for inferring blood food sources via a reference dataset compiled from 12S-rRNA sequences from vertebrates native to Colombia’s Amazon region, i.e. potential food sources for mosquitoes. The resulting database was indexed and used with Centrifuge v.1.0.3-beta for analysing the reads and determining A. darlingi food preferences. The results were converted to Kraken-Report format and visualised by Pavian web application for exploring metagenomics classification and gplot in RStudio. From the 121 analyzed pools, 45 blood-feeding sources were identified, with human blood being the most frequent (76.8%), followed by bats (10.5%), rodents (4.4%), and marsupials of the Didelphidae family (3.9%). Notably, a greater diversity of vertebrate blood sources was observed in the Doce de Octubre community compared to Tipisca, with Tonatia saurophila (bat) and Procyon lotor (raccoon) being among the primary blood sources. Statistically significant differences were found in the abundance of vertebrates used as blood sources by Anopheles across different ecotopes. Specifically, Cavia porcellus (guinea pig) and Carollia perspicillata (bat) were more prevalent in peridomestic environments, whereas Sus scrofa (wild boar) was more abundant in peridomestic areas. Multivariate analysis revealed associations between the Tipisca and Doce de Octubre communities and their blood-feeding sources, showing a lower probability of detecting species such as Procyon lotor (raccoon) (adjusted odds ratio [aOR]: 0.31; 95% CI: 0.11–0.84) and Homo sapiens (human) (aOR: 0.15; 95% CI: 0.09–0.56) in Tipisca. Additionally, positive associations were identified between Carollia perspicillata (bat) (aOR: 3.64; 95% CI: 1.63–8.11), Procyon lotor (raccoon) (aOR: 2.07; 95% CI: 1.02–4.58), and Cavia porcellus (guinea pig) (aOR: 3.00; 95% CI: 1.29–6.96) with extradomestic ecotopes. Finally, a significant positive association was found between Plasmodium spp.-positive mosquitoes and those that had fed on Homo sapiens (human) (aOR: 2.21; 95% CI: 1.57–5.44). Since this study utilized samples from Prado et al. (2019), which aimed to identify Anopheles species taxonomically and molecularly and determine infection frequencies of Plasmodium vivax, P. malariae, and P. falciparum, the use of human-baited traps may have influenced the results, leading to a higher detection rate of humans as a primary blood source. This pioneering study in the Colombian Amazon describes the blood-feeding sources of Anopheles darlingi using high-throughput sequencing technology, which is essential for understanding parasite transmission cycles. Identifying the vertebrate hosts involved in Plasmodium transmission could contribute to the development of effective vector control strategies by reducing contact between hosts, vectors, and humans. In this regard, promoting the presence of the identified vertebrates near human settlements may help decrease human biting rates in malaria-endemic regions. The findings provide critical insights into transmission cycles and disease dynamics, emphasizing the importance of surveillance and control programs. Additionally, they highlight the role of non-human reservoirs in reducing parasite transmission and the influence of environmental factors on malaria spread, as these affect both vector and parasite ecology. Variables such as temperature, humidity, deforestation, human activity, and climate change influence Anopheles abundance, transmission rates, and the geographical distribution of the disease. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias – Microbiología | spa |
dc.description.methods | Las muestras de este estudio fueron recolectadas en junio de 2016 en dos comunidades indígenas del Amazonas colombiano con alta prevalencia de malaria, en respuesta a un brote registrado en la región en 2015 (Camargo et al., 2018; Camargo-Ayala et al., 2016; Prado et al., 2019). Las comunidades indígenas Tipisca y Doce de Octubre forman parte de una serie de asentamientos ubicados a lo largo del río Loretoyacu, conectando Puerto Nariño con la frontera peruana. Se tomaron dos muestras en la comunidad Tipisca (Tp1 y Tp2) (3°41'49.96''S; 70°35'06.42''O) y una en Doce de Octubre (DO) (3°44'14.04''S; 70°30'08.45''O) (Figura 8). La recolección de mosquitos se realizó mediante el método de cebo humano protegido, según lo descrito previamente (Prado et al., 2019). En cada comunidad, se seleccionó una vivienda con base en las recomendaciones de los trabajadores de salud locales. Se consideraron tres ecotopos distintos: intradomiciliario (interior de la vivienda de estudio), peridomiciliario (área situada en un radio de 10 metros alrededor de la vivienda) y extradomiciliario (zona a partir del límite del peridomicilio hacia el exterior). | spa |
dc.description.researcharea | Investigación Científica en Ciencias de la Salud, Medicina Básica | spa |
dc.format.extent | 99 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87831 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | spa |
dc.relation.references | Adedeji, E., Ogunlana, O., Fatumo, S., Beder, T., Ajamma, Y., & Koenig, R. (2020). Anopheles metabolic proteins in malaria transmission, prevention and control: A review. Parasites & Vectors, 13(1), 465. https://doi.org/10.1186/s13071-020-04342-5 | spa |
dc.relation.references | Adjalley, S., Scanfeld, D., Kozlowski, E., Llinás, M., & Fidock, D. A. (2015). Genome-wide transcriptome profiling reveals functional networks involving the Plasmodium falciparum drug resistance transporters PfCRT and PfMDR1. BMC Genomics, 16(1), 1090. https://doi.org/10.1186/s12864-015-2320-8 | spa |
dc.relation.references | Adugna, F., Wale, M., & Nibret, E. (2021). Review of Anopheles Mosquito Species, Abundance, and Distribution in Ethiopia. Journal of Tropical Medicine, 2021, 1-7. https://doi.org/10.1155/2021/6726622 | spa |
dc.relation.references | Adugna, T., Yewhelew, D., & Getu, E. (2021). Bloodmeal sources and feeding behavior of anopheline mosquitoes in Bure district, northwestern Ethiopia. Parasites & Vectors, 14(1), 166. https://doi.org/10.1186/s13071-021-04669-7 | spa |
dc.relation.references | Aguilar, J. B., & Gutierrez, J. B. (2020). An Epidemiological Model of Malaria Accounting for Asymptomatic Carriers. Bulletin of Mathematical Biology, 82(3), 42. https://doi.org/10.1007/s11538-020-00717-y | spa |
dc.relation.references | Ahmed, A., Abubakr, M., Ali, Y., Siddig, E. E., & Mohamed, N. S. (2022). Vector control strategy for Anopheles stephensi in Africa. The Lancet Microbe, 3(6), e403. https://doi.org/10.1016/S2666-5247(22)00039-8 | spa |
dc.relation.references | Ahmed, A., & Ahmed, M. (2012). Morphological Identification of Malaria Vectors within Anopheles Species in Parts of Kano State, Nigeria. Bayero Journal of Pure and Applied Sciences, 4(2), 160-163. https://doi.org/10.4314/bajopas.v4i2.32 | spa |
dc.relation.references | Akoniyon, O., Adewumi, T., Maharaj, L., Oyegoke, O., Roux, A., Adeleke, M., & Maharaj, R. (2022). Whole genome sequencing contributions and challenges in disease reduction focused on Malaria. Biology, 11(4), 587. https://doi.org/10.3390/biology11040587 | spa |
dc.relation.references | Akuamoah-Boateng, Y., Brenyah, R. C., Kwarteng, S. A., Obuam, P., Owusu-Frimpong, I., Agyapong, A. K., & Badu, K. (2021). Malaria transmission, vector diversity, and insecticide resistance at a peri-urban site in the forest zone of Ghana. Frontiers in Tropical Diseases, 2, 739771. https://doi.org/10.3389/fitd.2021.739771 | spa |
dc.relation.references | Altahir, O., AbdElbagi, H., Abubakr, M., Siddig, E. E., Ahmed, A., & Mohamed, N. S. (2022). Blood meal profile and positivity rate with malaria parasites among different malaria vectors in Sudan. Malaria Journal, 21(1), 124. https://doi.org/10.1186/s12936-022-04157-y | spa |
dc.relation.references | Alvarenga, D. A. M., Pina, A., Bianco, C., Moreira, S., Brasil, P., & Pissinatti, A. (2017). New potential Plasmodium brasilianum hosts: Tamarin and marmoset monkeys (family Callitrichidae). Malaria Journal, 16(1), 71. https://doi.org/10.1186/s12936-017-1724-0 | spa |
dc.relation.references | Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ | spa |
dc.relation.references | Antinori, S., Galimberti, L., Milazzo, L., & Corbellino, M. (2012). Biology of human malaria plasmodia including Plasmodium knowlesi. Mediterranean Journal of Hematology and Infectious Diseases, 4(1), e2012013. https://doi.org/10.4084/mjhid.2012.013 | spa |
dc.relation.references | Anton, S., Van Loon, J., Meijerink, J., Smid, H., Takken, W., & Jean-Pierre Rospars. (2003). Central projections of olfactory receptor neurons from single antennal and palpal sensilla in mosquitoes. Arthropod Structure & Development, 32(4), 319-327. https://doi.org/10.1016/j.asd.2003.09.002 | spa |
dc.relation.references | Antonio-Nkondjio, C., Sonhafouo-Chiana, N., Ngadjeu, C., Doumbe-Belisse, P., Talipouo, A., & Djamouko-Djonkam, L. (2017). Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017. Parasites & Vectors, 10(1), 472. https://doi.org/10.1186/s13071-017-2417-9 | spa |
dc.relation.references | Anyanwu, P., Fulton, J., Evans, E., & Paget, T. (2017). Exploring the role of socioeconomic factors in the development and spread of anti-malarial drug resistance: A qualitative study. Malaria Journal, 16(1), 203. https://doi.org/10.1186/s12936-017-1849-1 | spa |
dc.relation.references | Arias-Giraldo, L., Muñoz, M., Hernández, C., Herrera, G., Velásquez-Ortiz, N., & Cantillo-Barraza, O. (2020). Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing. Parasites & Vectors, 13(1), 434. https://doi.org/10.1186/s13071-020-04310-z | spa |
dc.relation.references | Arisco, N. J., Rice, B. L., Tantely, L. M., Girod, R., Emile, G. N., Randriamady, H. J., Castro, M. C., & Golden, C. D. (2020). Variation in Anopheles distribution and predictors of malaria infection risk across regions of Madagascar. Malaria Journal, 19(1), 348. https://doi.org/10.1186/s12936-020-03423-1 | spa |
dc.relation.references | Arnuphapprasert, A., Riana, E., Ngamprasertwong, T., Wangthongchaicharoen, M., Soisook, P., Thanee, S., Bhodhibundit, P., & Kaewthamasorn, M. (2020). First molecular investigation of haemosporidian parasites in Thai bat species. International Journal for Parasitology: Parasites and Wildlife, 13, 51-61. https://doi.org/10.1016/j.ijppaw.2020.07.010 | spa |
dc.relation.references | Arora, G., Chuang, Y.-M., Sinnis, P., Dimopoulos, G., & Fikrig, E. (2023). Malaria: Influence of Anopheles mosquito saliva on Plasmodium infection. Trends in Immunology, 44(4), 256-265. https://doi.org/10.1016/j.it.2023.02.005 | spa |
dc.relation.references | Asale, A., Duchateau, L., Devleesschauwer, B., Huisman, G., & Yewhalaw, D. (2017). Zooprophylaxis as a control strategy for malaria caused by the vector Anopheles arabiensis (Diptera: Culicidae): a systematic review. Infectious Diseases of Poverty, 6(1), 160. https://doi.org/10.1186/s40249-017-0366-3 | spa |
dc.relation.references | Aschar, M., Levi, J. E., Farinas, M., Montebello, S., Mendrone-Junior, A., & Di Santi, S. (2020). The hidden Plasmodium malariae in blood donors: A risk coming from areas of low transmission of malaria. Revista do Instituto de Medicina Tropical de São Paulo, 62, e100. https://doi.org/10.1590/s1678-9946202062100 | spa |
dc.relation.references | Ashley, E., Pyae Phyo, A., & Woodrow, C. (2018). Malaria. The Lancet, 391(10130), 1608-1621. https://doi.org/10.1016/S0140-6736(18)30324-6 | spa |
dc.relation.references | Azizi, K., Askari, M., Kalantari, M., & Moemenbellah-Fard, M. (2016). Molecular detection of Leishmania parasites and host blood meal identification in wild sand flies from a new endemic rural region, south of Iran. Pathogens and Global Health, 110(7-8), 303-309. https://doi.org/10.1080/20477724.2016.1253530 | spa |
dc.relation.references | Bakre, A., Kariithi, H. M., & Suarez, D. L. (2023). Alternative probe hybridization buffers for target RNA depletion and viral sequence recovery in NGS for poultry samples. Journal of Virological Methods, 321, 114793. https://doi.org/10.1016/j.jviromet.2023.114793 | spa |
dc.relation.references | Bannister-Tyrrell, M., Verdonck, K., Hausmann-Muela, S., Gryseels, C., Muela Ribera, J., & Peeters Grietens, K. (2017). Defining micro-epidemiology for malaria elimination: Systematic review and meta-analysis. Malaria Journal, 16(1), 164. https://doi.org/10.1186/s12936-017- 1792-1 | spa |
dc.relation.references | Barbosa, L., & Scarpassa, V. (2021). Blood-feeding behavior of Anopheles species (Diptera: Culicidae) in the district of Ilha de Santana, state of Amapá, eastern Brazilian Amazon. Revista Brasileira de Entomologia, 65(4), e20200048. https://doi.org/10.1590/1806-9665- rbent-2020-0048 | spa |
dc.relation.references | Barillas-Mury, C., Ribeiro, J., & Valenzuela, J. (2022). Understanding pathogen survival and transmission by arthropod vectors to prevent human disease. Science, 377(6614), eabc2757. https://doi.org/10.1126/science.abc2757 | spa |
dc.relation.references | Barros, F., & Honório, N. (2015). Deforestation and Malaria on the Amazon Frontier: Larval Clustering of Anopheles darlingi (Diptera: Culicidae) Determines Focal Distribution of Malaria. Am J Trop Med Hyg, 93(5), 939-953. https://doi.org/10.4269/ajtmh.15-0042 | spa |
dc.relation.references | Beloconi, A., Nyawanda, B., Bigogo, G., Khagayi, S., Obor, D., & Danquah, I. (2023). Malaria, climate variability, and interventions: Modelling transmission dynamics. Scientific Reports, 13(1), 7367. https://doi.org/10.1038/s41598-023-33868-8 | spa |
dc.relation.references | Ben Salah, A., Gonzalez, J., Jaouadi, K., Bennour, A., Bettaieb, J., & Ghawar, W. (2018). Blood meal analysis of Phlebotomine Sandflies (Diptera: Psychodidae: Phlebotominae) for Leishmania spp. identification and vertebrate blood origin, Central Tunisia, 2015–2016. The American Journal of Tropical Medicine and Hygiene, 98(1), 146-149. https://doi.org/10.4269/ajtmh.17-0313 | spa |
dc.relation.references | Boëte, C., & Paul, R. E. L. (2006). Can mosquitoes help to unravel the community structure of Plasmodium species? Trends in Parasitology, 22(1),21-25. https://doi.org/10.1016/j.pt.2005.11.007 | spa |
dc.relation.references | Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15)2114-2120. https://doi.org/10.1093/bioinformatics/btu170 | spa |
dc.relation.references | Borland, E., & Kading, R. (2021). Modernizing the toolkit for arthropod bloodmeal identification.Insects, 12(1), 37. https://doi.org/10.3390/insects12010037 | spa |
dc.relation.references | Bousema, T., Drakeley, C., Gesase, S., Hashim, R., Magesa, S., & Mosha, F. (2010). Identification of hot spots of Malaria transmission for targeted Malaria control. The Journal of Infectious Diseases, 201(11), 1764-1774. https://doi.org/10.1086/652456 | spa |
dc.relation.references | Breitwieser, F., & Salzberg, S. L. (2020). Pavian: Interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics, 36(4), 1303-1304. https://doi.org/10.1093/bioinformatics/btz715 | spa |
dc.relation.references | Buck, E., & Finnigan, N. (2023). Malaria. En StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK551711/ | spa |
dc.relation.references | Buermans, H. P. J., & Den Dunnen, J. T. (2014). Next generation sequencing technology: Advances and applications. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(10), 1932-1941. https://doi.org/10.1016/j.bbadis.2014.06.015 | spa |
dc.relation.references | Byers, K., Sanders, E., & Riffell, J. (2013). Identification of olfactory volatiles using gas chromatography-multi-unit recordings (GCMR) in the Insect antennal lobe. Journal of Visualized Experiments, 72, 4381. https://doi.org/10.3791/4381 | spa |
dc.relation.references | Camargo, M., Soto-De León, S., Del Río-Ospina, L., Páez, A., González, Z., & González, E. (2018). Micro-epidemiology of mixed-species malaria infections in a rural population living in the Colombian Amazon region. Scientific Reports, 8(1), 5543. https://doi.org/10.1038/s41598- 018-23801-9 | spa |
dc.relation.references | Camargo-Ayala, P., Cubides, J., Niño, C., Camargo, M., Rodríguez-Celis, C. A., Quiñones, T., Sánchez-Suárez, L., Patarroyo, M., & Patarroyo, M. (2016). High Plasmodium malariae Prevalence in an Endemic Area of the Colombian Amazon Region. PLOS ONE, 11(7), e0159968. https://doi.org/10.1371/journal.pone.0159968 | spa |
dc.relation.references | Campos, M., Alonso, D. P., Conn, J. E., Vinetz, J. M., Emerson, K. J., & Ribolla, P. E. M. (2019). Genetic diversity of Nyssorhynchus (Anopheles) darlingi related to biting behavior in western Amazon. Parasites & Vectors, 12(1), 242. https://doi.org/10.1186/s13071-019- 3498-4 | spa |
dc.relation.references | Cardenas, C., Correa, E., & Cuadras, L. (2020). Caracterización epidemiológica de pacientes con malaria, notificados por un asegurador en salud en Colombia, 2016-2017. Rev Cubana Med Trop, 72(1). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375- 07602020000100001 | spa |
dc.relation.references | Cardona-Arias, J., Salas-Zapata, W., & Carmona-Fonseca, J. (2019). Determinación y determinantes sociales de la malaria: Revisión sistemática, 1980-2018. Revista Panamericana de Salud Pública, 43, 1. https://doi.org/10.26633/RPSP.2019.39 | spa |
dc.relation.references | Carebilla Cuellar, M. (2018). Plan de Desarrollo 2016-2019 Gestión y Ejecución para el bienestar, la conservación Ambiental y la Paz. https://www.amazonas.gov.co/planes/plan-de- desarrollo-20162019-gestion-y-ejecucion-para | spa |
dc.relation.references | Carew, M. E., Pettigrove, V. J., Metzeling, L., & Hoffmann, A. A. (2013). Environmental monitoring using next generation sequencing: Rapid identification of macroinvertebrate bioindicator species. Frontiers in Zoology, 10(1), 45. https://doi.org/10.1186/1742-9994-10-45 | spa |
dc.relation.references | Carmona-Fonseca, J., Olivera, M., & Yasnot-Acosta, M. (2022). A retrospective review on severe Malaria in Colombia, 2007–2020. Pathogens,11(8), 893. https://doi.org/10.3390/pathogens11080893 | spa |
dc.relation.references | Carnevale, P., & Manguin, S. (2021). Review of Issues on Residual Malaria Transmission. The J Infect Dis, 223(Supplement_2), S61-S80. https://doi.org/10.1093/infdis/jiab084 | spa |
dc.relation.references | Carter, R., & Karunaweera, N. (2020). The role of improved housing and living environments in malaria control and elimination. Malaria Journal, 19(1),385. https://doi.org/10.1186/s12936-020-03450-y | spa |
dc.relation.references | Castro, M., & Peterka, C. (2023). Malaria is increasing in Indigenous and artisanal mining areas in the Brazilian Amazon. Nature Medicine, 29(4), 762-764. https://doi.org/10.1038/s41591- 023-02280-0 | spa |
dc.relation.references | Cawthorn, D.-M., Steinman, H. A., & Witthuhn, R. C. (2012). Evaluation of the 16S and 12S rRNA genes as universal markers for the identification of commercial fish species in South Africa. Gene, 491(1), 40-48. https://doi.org/10.1016/j.gene.2011.09.009 | spa |
dc.relation.references | Chavatte, J.-M., Tan, S. B. H., Snounou, G., & Lin, R. T. P. V. (2015). Molecular characterization of misidentified Plasmodium ovale imported cases in Singapore. Malaria Journal, 14(1), 454. https://doi.org/10.1186/s12936-015-0985-8 | spa |
dc.relation.references | Chaves, L., Bergo, E., Conn, J., Laporta, G., Prist, P., & Sallum, M. (2021). Anthropogenic landscape decreases mosquito biodiversity and drives malaria vector proliferation in the Amazon rainforest. PLOS ONE, 16(1), e0245087. https://doi.org/10.1371/journal.pone.0245087 | spa |
dc.relation.references | Chaves, W., Carignano Torres, P., & Parry, L. (2023). The species-specific role of wildlife in the Amazonian food system. Ecology and Society, 28(2), art28. https://doi.org/10.5751/ES- 14051-280228 | spa |
dc.relation.references | Chelsea, M., & Petri, W. (2023). Paludismo (malaria) (Manual MSD). https://www.msdmanuals.com/es/hogar/infecciones/infecciones-parasitarias-protozoos- extraintestinales/paludismo-malaria | spa |
dc.relation.references | Chen, P., Ding, S., Zanghì, G., Soulard, V., DiMaggio, P., & Matthew. (2016). Plasmodium falciparum PfSET7: Enzymatic characterization and cellular localization of a novel protein methyltransferase in sporozoite, liver and erythrocytic stage parasites. Scientific Reports, 6(1), 21802. https://doi.org/10.1038/srep21802 | spa |
dc.relation.references | Chora, Â. F., Mota, M. M., & Prudêncio, M. (2022). The reciprocal influence of the liver and blood stages of the malaria parasite’s life cycle. International Journal for Parasitology, 52(11), 711-715. https://doi.org/10.1016/j.ijpara.2022.02.002 | spa |
dc.relation.references | Clarke, J., Wu, H.-C., Jayasinghe, L., Patel, A., Reid, S., & Bayley, H. (2009). Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnology, 4(4), 265-270. https://doi.org/10.1038/nnano.2009.12 | spa |
dc.relation.references | Cohuet, A., Harris, C., Robert, V., & Fontenille, D. (2010). Evolutionary forces on Anopheles: What makes a malaria vector? Trends in Parasitology, 26(3), 130-136. https://doi.org/10.1016/j.pt.2009.12.001 | spa |
dc.relation.references | Confalonieri, U., Margonari, C., & Quintão, A. (2014). Environmental change and the dynamics of parasitic diseases in the Amazon. Acta Tropica, 129, 33-41. https://doi.org/10.1016/j.actatropica.2013.09.013 | spa |
dc.relation.references | Cooper, C., Keatley, S., Northover, A., Gofton, A. W., Brigg, F., Lymbery, A. J., Pallant, L., Clode, P. L., & Thompson, R. C. A. (2018). Next generation sequencing reveals widespread trypanosome diversity and polyparasitism in marsupials from Western Australia. International Journal for Parasitology: Parasites and Wildlife, 7(1), 58-67. https://doi.org/10.1016/j.ijppaw.2018.01.005 | spa |
dc.relation.references | Cortés, L. J., & Guerra, Á. P. (2020). Análisis de concordancia de tres pruebas para el diagnóstico de malaria en la población sintomática de los municipios endémicos de Colombia. Biomédica, 40(1), 117-128. https://doi.org/10.7705/biomedica.4893. | spa |
dc.relation.references | Cowman, A., Healer, J., Marapana, D., & Marsh, K. (2016). Malaria: Biology and Disease. Cell, 167(3), 610-624. https://doi.org/10.1016/j.cell.2016.07.055 | spa |
dc.relation.references | Da Silva Ferreira Lima, A., Galardo, A., Müller, J., De Andrade Corrêa, A., Ribeiro, K. A. N., & Silveira, G. (2023). Evaluation of Long-lasting insecticidal nets (LLINs) for malaria control in an endemic area in Brazil. Parasites & Vectors, 16(1), 162. https://doi.org/10.1186/s13071-023-05759-4 | spa |
dc.relation.references | Daza Criado, L. A. (2018). Uso del gen citocromo oxidasa i (coi) y código de barras en estudios de genética y biología molecular para la identificación de especies de animales. https://repository.unad.edu.co/bitstream/handle/10596/21038/1049620140.pdf?sequence=1 | spa |
dc.relation.references | De Alvarenga, D. A. M., Culleton, R., De Pina, A., Rodrigues, D. F., Bianco, C., & Silva, S. (2018). An assay for the identification of Plasmodium simium infection for diagnosis of zoonotic malaria in the Brazilian Atlantic Forest. Scientific Reports, 8(1), 86. https://doi.org/10.1038/s41598-017-18216-x | spa |
dc.relation.references | De Koning-Ward, T. F., Dixon, M., Tilley, L., & Gilson, P. (2016). Plasmodium species: Master renovators of their host cells. Nature Reviews Microbiology, 14(8), 494-507. https://doi.org/10.1038/nrmicro.2016.79 | spa |
dc.relation.references | De Thoisy, B., Michel, J.-C., Vogel, I., & Vié, J.-C. (2000). A SURVEY OF HEMOPARASITE INFECTIONS IN FREE-RANGING MAMMALS AND REPTILES IN FRENCH GUIANA. Journal of Parasitology, 86(5), 1035-1040. https://doi.org/10.1645/0022- 3395(2000)086[1035:ASOHII]2.0.CO;2 | spa |
dc.relation.references | Debrah, I., Afrane, Y. A., Amoah, L. E., Ochwedo, K. O., Mukabana, W. R., Zhong, D., Zhou, G., Lee, M., Onyango, S. A., Magomere, E. O., Atieli, H., Githeko, A. K., & Yan, G. (2021). Larval ecology and bionomics of Anopheles funestus in highland and lowland sites in western Kenya. PLOS ONE, 16(10), e0255321. https://doi.org/10.1371/journal.pone.0255321 | spa |
dc.relation.references | Del Vecchio, F., Mastroiaco, V., Di Marco, A., Compagnoni, C., Capece, D., Zazzeroni, F., Capalbo, C., Alesse, E., & Tessitore, A. (2017). Next-generation sequencing: Recent applications to the analysis of colorectal cancer. Journal of Translational Medicine, 15(1), 246. https://doi.org/10.1186/s12967-017-1353-y | spa |
dc.relation.references | Diakité, N., Guindo-Coulibaly, N., Adja, A., Ouattara, M., Coulibaly, J. T., Utzinger, J., & N’Goran, E. K. (2015). Spatial and temporal variation of malaria entomological parameters at the onset of a hydro-agricultural development in central Côte d’Ivoire. Malaria Journal, 14(1), 340. https://doi.org/10.1186/s12936-015-0871-4 | spa |
dc.relation.references | Driss, A., Hibbert, J., Wilson, N., Iqbal, S., Adamkiewicz, T., & Stiles, J. (2011). Genetic polymorphisms linked to susceptibility to malaria. Malaria Journal, 10(1), 271. https://doi.org/10.1186/1475-2875-10-271 | spa |
dc.relation.references | Dumonteil, E., Ramirez-Sierra, M.-J., Pérez-Carrillo, S., Teh-Poot, C., Herrera, C., Gourbière, S., & Waleckx, E. (2018). Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: Implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Scientific Reports, 8(1), 4140. https://doi.org/10.1038/s41598-018-22455-x | spa |
dc.relation.references | Dumonteil, E., Ramos-Ligonio, A., Torres-Montero, J., & López-Monteon, A. (2012). House infestation dynamics and feeding sources of triatoma dimidiata in Central Veracruz, Mexico. The American Journal of Tropical Medicine and Hygiene, 86(4), 677-682. https://doi.org/10.4269/ajtmh.2012.11-0746 | spa |
dc.relation.references | Dzul, F., & Patricia, P. (2007). Susceptibilidad y mecanismos de resistencia a insecticidas en Anopheles albimanus del sur de la Península de Yucatán, México. 49(4), 302-311. | spa |
dc.relation.references | Ekoko, W., Awono-Ambene, P., Bigoga, J., Mandeng, S., Piameu, M., & Nvondo, N. (2019). Patterns of anopheline feeding/resting behaviour and Plasmodium infections in North Cameroon, 2011–2014: Implications for malaria control. Parasites & Vectors, 12(1), 297. https://doi.org/10.1186/s13071-019-3552-2 | spa |
dc.relation.references | Escobar, D., Ascencio, K., Ortiz, A., Palma, A., Sánchez, A., & Fontecha, G. (2020). Blood Meal Sources of Anopheles spp. In Malaria Endemic Areas of Honduras. Insects, 11(7), 450. https://doi.org/10.3390/insects11070450 | spa |
dc.relation.references | Ewels, P. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. https://multiqc.info/ | spa |
dc.relation.references | Fandeur, T., Volney, B., Peneau, C., & De Thoisy, B. (2000). Monkeys of the rainforest in French Guiana are natural reservoirs for P. brasilianum / P. malariae malaria. Parasitology, 120(1), 11-21. https://doi.org/10.1017/S0031182099005168 | spa |
dc.relation.references | Fernández, R., Vera, H., & Calderón, G. (2014). Revisión histórica de la distribución de Anopheles (Nyssorhynchus) darlingi (Diptera: Culicidae) en la Amazonía peruana. Revista Peruana de Medicina Experimental y Salud Pública, 31(2). https://doi.org/10.17843/rpmesp.2014.312.52 | spa |
dc.relation.references | Ferreira, M., Gamboa, D., Torres, K., Rodriguez-Ferrucci, H., Soto-Calle, V. E., & Pardo, K. (2022). Evidence-Based Malaria Control and Elimination in the Amazon: Input from the International Center of Excellence in Malaria Research Network in Peru and Brazil. The American Journal of Tropical Medicine and Hygiene, 107(4_Suppl), 160-167. https://doi.org/10.4269/ajtmh.21-1272 | spa |
dc.relation.references | Ferrero, C., & Pedraza, J. (2022). Informe de evento Malaria. https://www.ins.gov.co/buscador- eventos/Informesdeevento/MALARIA%201%20SEMESTRE%202022.pdf | spa |
dc.relation.references | Fernández, R., Vera, H., & Calderón, G. (2014). Revisión histórica de la distribución de Anopheles (Nyssorhynchus) darlingi (Diptera: Culicidae) en la amazonía peruana. Revista Peruana de Medicina Experimental y Salud Publica, 31(2), 310-318. | spa |
dc.relation.references | Finney, M., McKenzie, B. A., Rabaovola, B., Sutcliffe, A., Dotson, E., & Zohdy, S. (2021). Widespread zoophagy and detection of Plasmodium spp. In Anopheles mosquitoes in southeastern Madagascar. Malaria Journal, 20(1), 25. https://doi.org/10.1186/s12936-020- 03539-4 | spa |
dc.relation.references | Fitri, L. E., Widaningrum, T., Endharti, A., Prabowo, M., Winaris, N., & Nugraha, R. (2022). Malaria diagnostic update: From conventional to advanced method. Journal of Clinical Laboratory Analysis, 36(4), e24314. https://doi.org/10.1002/jcla.24314 | spa |
dc.relation.references | Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294-299 | spa |
dc.relation.references | Fornace, K., Topazian, H., Routledge, I., Asyraf, S., Jelip, J., & Lindblade, K. (2023). No evidence of sustained nonzoonotic Plasmodium knowlesi transmission in Malaysia from modelling malaria case data. Nature Communications, 14(1), 2945. https://doi.org/10.1038/s41467- 023-38476-8 | spa |
dc.relation.references | Foster, P., De Oliveira, T., Bergo, E., Conn, J., Sant’Ana, D. C., & Nagaki, S. (2017). Phylogeny of Anophelinae using mitochondrial protein coding genes. Royal Society Open Science, 4(11), 170758. https://doi.org/10.1098/rsos.170758 | spa |
dc.relation.references | Fuentes, A., Jiménez, M., Castro, R., Romero, J., & Dolz, G. (2017). Molecular detection of Plasmodium malariae/Plasmodium brasilianum in non-human primates in captivity in Costa Rica. PLOS ONE, 12(1), e0170704. https://doi.org/10.1371/journal.pone.0170704 | spa |
dc.relation.references | Fuller, D., Alimi, T., Herrera, S., Beier, J., & Quiñones, M. (2016). Spatial association between malaria vector species richness and malaria in Colombia. Acta Tropica, 158, 197-200. https://doi.org/10.1016/j.actatropica.2016.03.008 | spa |
dc.relation.references | Furnival-Adams, J., Olanga, E. A., Napier, M., & Garner, P. (2021). House modifications for preventing malaria. Cochrane Database of Systematic Reviews, 2021(1). https://doi.org/10.1002/14651858.CD013398.pub3 | spa |
dc.relation.references | Garcia, M., O’Day, S., Fisher-Hoch, S., Gorchakov, R., Patino, R., & Feria Arroyo, T. (2016). One Health Interactions of Chagas Disease Vectors, Canid Hosts, and Human Residents along the Texas-Mexico Border. PLOS Neglected Tropical Diseases, 10(11), e0005074. https://doi.org/10.1371/journal.pntd.0005074 | spa |
dc.relation.references | Garcia-Rejon, J. E., Blitvich, B. J., Farfan-Ale, J. A., Loroño-Pino, M. A., Chi Chim, W. A., Flores- Flores, L. F., Rosado-Paredes, E., Baak-Baak, C., Perez-Mutul, J., Suarez-Solis, V., Fernandez-Salas, I., & Beaty, B. J. (2010). Host-Feeding Preference of the Mosquito, Culex quinquefasciatus, in Yucatan State, Mexico. Journal of Insect Science, 10(32), 1-12. https://doi.org/10.1673/031.010.3201 | spa |
dc.relation.references | Gari, T., & Lindtjørn, B. (2018). Reshaping the vector control strategy for malaria elimination in Ethiopia in the context of current evidence and new tools: Opportunities and challenges. Malaria Journal, 17(1), 454. https://doi.org/10.1186/s12936-018-2607-8 | spa |
dc.relation.references | Gonçalves, A. A., Dias, A., Monteiro, D., Varela, I., & Da Veiga Leal, S. (2023). Blood meal survey reveals insights into mosquito-borne diseases on the island of Santiago, Cape Verde. Frontiers in Tropical Diseases, 4, 1070172. https://doi.org/10.3389/fitd.2023.1070172 | spa |
dc.relation.references | Gonçalves, B. P., Kapulu, M. C., Sawa, P., Guelbéogo, W. M., Tiono, A. B., Grignard, L., Stone, W., Hellewell, J., Lanke, K., Bastiaens, G. J. H., Bradley, J., Nébié, I., Ngoi, J. M., Oriango, R., Mkabili, D., Nyaurah, M., Midega, J., Wirth, D. F., Marsh, K., … Bousema, T. (2017). Examining the human infectious reservoir for Plasmodium falciparum malaria in areas of differing transmission intensity. Nature Communications, 8(1), 1133. https://doi.org/10.1038/s41467-017-01270-4 | spa |
dc.relation.references | Gonzalez, O., Carrejo, R., & Soraya, N. (2018). Introducción al estudio taxónomico de Anopheles de Colombia: Claves y notas de distribución. Programa Editorial Universidad del Valle. https://hdl.handle.net/10893/18842 | spa |
dc.relation.references | Gonzalez-Daza, W., Vivero-Gómez, R., Altamiranda-Saavedra, M., Muylaert, R., & Landeiro, V. (2023). Time lag effect on malaria transmission dynamics in an Amazonian Colombian municipality and importance for early warning systems. Scientific Reports, 13(1), 18636. https://doi.org/10.1038/s41598-023-44821-0 | spa |
dc.relation.references | González-Sanz, M., Berzosa, P., & Norman, F. F. (2023). Updates on Malaria Epidemiology and Prevention Strategies. Current Infectious Disease Reports, 25(7), 131-139. https://doi.org/10.1007/s11908-023-00805-9 | spa |
dc.relation.references | Gorchakov, R., Trosclair, L., Wozniak, E., Feria, P., Garcia, M., & Sarah M. Gunter. (2016). Trypanosoma cruzi Infection Prevalence and Bloodmeal Analysis in Triatomine Vectors of Chagas Disease From Rural Peridomestic Locations in Texas, 2013–2014. Journal of Medical Entomology, 53(4), 911-918. https://doi.org/10.1093/jme/tjw040 | spa |
dc.relation.references | Grillet, M., Hernández-Villena, J., Llewellyn, M., Paniz-Mondolfi, A., Tami, A., Vincenti-Gonzalez, M., Marquez, M., Mogollon-Mendoza, A., Hernandez-Pereira, C., & Plaza-Morr, J. (2019). Venezuela’s humanitarian crisis, resurgence of vector-borne diseases, and implications for spillover in the region. The Lancet Infectious Diseases, 19(5), e149-e161. https://doi.org/10.1016/S1473-3099(18)30757-6 | spa |
dc.relation.references | Guizetti, J., & Frischknecht, F. (2021). Apicomplexans: A conoid ring unites them all. PLOS Biology, 19(3), e3001105. https://doi.org/10.1371/journal.pbio.3001105 | spa |
dc.relation.references | Gunter, S., Brown, E., Gorchakov, R., Murray, K., & Garcia, M. (2017). Sylvatic Transmission of Trypanosoma cruzi Among Domestic and Wildlife Reservoirs in Texas, USA: A Review of the Historical Literature. Zoonoses and Public Health, 64(5), 313-327. https://doi.org/10.1111/zph.12330 | spa |
dc.relation.references | Gutierrez, J., Galinski, M., Cantrell, S., & Voit, E. O. (2015). From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Mathematical Biosciences, 270, 143-155. https://doi.org/10.1016/j.mbs.2015.10.002 | spa |
dc.relation.references | Haema. (2019). Microscopical Diagnosis of Blood Parasites. https://haema-journal.gr/?p=1436 Harding, C., & Frischknecht, F. (2020). The riveting cellular structures of Apicomplexan parasites. Trends in Parasitology, 36(12), 979-991. https://doi.org/10.1016/j.pt.2020.09.001 | spa |
dc.relation.references | Hebert, P., Ratnasingham, S., & De Waard, J. (2003). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl_1). https://doi.org/10.1098/rsbl.2003.0025 | spa |
dc.relation.references | Henao, G. (2010). Sistemas de información geográfica y sensores remotos. Aplicaciones en enfermedades transmitidas por vectores. https://www.redalyc.org/articulo.oa?id=261119512006 | spa |
dc.relation.references | Hedrick, P. W. (2011). Population genetics of malaria resistance in humans. Heredity, 107(4), 283-304. https://doi.org/10.1038/hdy.2011.16 | spa |
dc.relation.references | Henry, N., Sermé, S., Siciliano, G., Sombié, S., Diarra, A., & Sagnon, N. (2019). Biology of Plasmodium falciparum gametocyte sex ratio and implications in malaria parasite transmission. Malaria Journal, 18(1), 70. https://doi.org/10.1186/s12936-019-2707-0 | spa |
dc.relation.references | Hernández, M., Quijada, N. M., Rodríguez-Lázaro, D., & Eiros, J. M. (2020). Aplicación de la secuenciación masiva y la bioinformática al diagnóstico microbiológico clínico. Revista Argentina de Microbiología, 52(2), 150-161. https://doi.org/10.1016/j.ram.2019.06.003 | spa |
dc.relation.references | Hiwat, H., & Bretas, G. (2011). Ecology of Anopheles darlingi Root with respect to vector importance: A review. Parasites & Vectors, 4(1), 177. https://doi.org/10.1186/1756-3305-4- 177 | spa |
dc.relation.references | Idalyd Fonseca, Rocio Cardenas, Wilber Gomez, Liliana Santacoloma, Helena Brochero, Clara Ocampo, & Miriam Salazar. (2010). Dosis diagnósticas para vigilar la resistencia a insecticidas de los vectores de malaria en Colombia. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882010000100011 | spa |
dc.relation.references | IGAC. (2017). Terms and Conditions of Use. http://www.igac.gov.co/wps/wcm/connect/0b3aa8004eef2fd4a7abf730262db5f2/Licencia_ y_condiciones_de_uso_car.pdf?MOD=AJPERES. | spa |
dc.relation.references | illumina. (2024). Introduction to NGS. https://www.illumina.com/science/technology/next- generation-sequencing.html | spa |
dc.relation.references | Instituto Nacional de Salud. (2025). Boletín Epidemiológico Semanal 2025 (Semana epidemiológica 11; p. 29). https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2025_Boletin_epidemiologico_semana_11.pdf | spa |
dc.relation.references | Jeyaprakasam, N., Low, V., Liew, J., Pramasivan, S., Wan-Sulaiman, W., & Saeung, A. (2022). Blood meal analysis of Anopheles vectors of simian malaria based on laboratory and field studies. Scientific Reports, 12(1), 354. https://doi.org/10.1038/s41598-021-04106-w | spa |
dc.relation.references | Johnson, E., Kumar, R., Cuenca, P., Byrne, I., Salgado, M., & Shahar, Z. (2024). Landscape drives zoonotic malaria prevalence in non-human primates [Preprint]. https://doi.org/10.7554/eLife.88616.3 | spa |
dc.relation.references | Josling, G. A., Williamson, K. C., & Llinás, M. (2018). Regulation of Sexual Commitment and Gametocytogenesis in Malaria Parasites. Annual Review of Microbiology, 72(1), 501-519. https://doi.org/10.1146/annurev-micro-090817-062712 | spa |
dc.relation.references | Josling, G., & Llinás, M. (2015). Sexual development in Plasmodium parasites: Knowing when it’s time to commit. Nature Reviews Microbiology, 13(9), 573-587. https://doi.org/10.1038/nrmicro3519 | spa |
dc.relation.references | Keleta, Y., Ramelow, J., Cui, L., & Li, J. (2021). Molecular interactions between parasite and mosquito during midgut invasion as targets to block malaria transmission. Npj Vaccines, 6(1), 140. https://doi.org/10.1038/s41541-021-00401-9 | spa |
dc.relation.references | Keven, J., Katusele, M., Vinit, R., Rodríguez-Rodríguez, D., Hetzel, M., & Robinson, L. J. (2021). Nonrandom Selection and Multiple Blood Feeding of Human Hosts by Anopheles Vectors: Implications for Malaria Transmission in Papua New Guinea. The American Journal of Tropical Medicine and Hygiene, 105(6), 1747-1758. https://doi.org/10.4269/ajtmh.21-0210 | spa |
dc.relation.references | Killeen, G. F., Masalu, J. P., Chinula, D., Fotakis, E. A., Kavishe, D. R., Malone, D., & Okumu, F. (2017). Control of Malaria Vector Mosquitoes by Insecticide-Treated Combinations of Window Screens and Eave Baffles. Emerging Infectious Diseases, 23(5), 782-789. https://doi.org/10.3201/eid2305.160662 | spa |
dc.relation.references | Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Research, 26(12), 1721-1729. https://doi.org/10.1101/gr.210641.116 | spa |
dc.relation.references | Koenraadt, C. J. M. (2021). 8. Larval source management for malaria control: Prospects for new technologies and community involvement. En C. Koenraadt, J. Spitzen, & W. Takken (Eds.), Ecology and Control of Vector-borne Diseases (Vol. 6, pp. 155-167). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-895-7_8 | spa |
dc.relation.references | Koepfli, C., Nguitragool, W., De Almeida, A. C. G., Kuehn, A., Waltmann, A., Kattenberg, E., Ome- Kaius, M., Rarau, P., Obadia, T., Kazura, J., Monteiro, W., Darcy, A. W., Wini, L., Bassat, Q., Felger, I., Sattabongkot, J., Robinson, L. J., Lacerda, M., & Mueller, I. (2021). Identification of the asymptomatic Plasmodium falciparum and Plasmodium vivax gametocyte reservoir under different transmission intensities. PLOS Neglected Tropical Diseases, 15(8), e0009672. https://doi.org/10.1371/journal.pntd.0009672 | spa |
dc.relation.references | Konopka, J., Task, D., Afify, A., Raji, J., Deibel, K., Maguire, S., Lawrence, R., & Potter, C. J. (2021). Olfaction in Anopheles mosquitoes. Chemical Senses, 46, bjab021. https://doi.org/10.1093/chemse/bjab021 | spa |
dc.relation.references | Kori, L., Valecha, N., & Anvikar, A. (2018). Insights into the early liver stage biology of Plasmodium. Journal of Vector Borne Diseases, 55(1), 9. https://doi.org/10.4103/0972- 9062.234631 | spa |
dc.relation.references | Kreppel, K., Viana, M., Main, B., Johnson, P., Govella, N., & Lee, Y. (2020). Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Scientific Reports, 10(1), 14527. https://doi.org/10.1038/s41598-020-71187-4 | spa |
dc.relation.references | Krzywinski, M., Schein, J., Birol, İ., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., & Marra, M. A. (2009). Circos: An information aesthetic for comparative genomics. Genome Research, 19(9), 1639-1645. https://doi.org/10.1101/gr.092759.109 | spa |
dc.relation.references | Kunasol, C., Dondorp, A., Batty, E., Nakhonsri, V., Sinjanakhom, P., Day, N., & Imwong, M. (2022). Comparative analysis of targeted next-generation sequencing for Plasmodium falciparum drug resistance markers. Scientific Reports, 12(1), 5563. https://doi.org/10.1038/s41598-022-09474-5 | spa |
dc.relation.references | Lalremruata, A., Jeyaraj, S., Engleitner, T., Joanny, F., Lang, A., & Bélard, S. (2017). Species and genotype diversity of Plasmodium in malaria patients from Gabon analysed by next generation sequencing. Malaria Journal, 16(1), 398. https://doi.org/10.1186/s12936-017- 2044-0 | spa |
dc.relation.references | Lalremruata, A., Magris, M., Vivas-Martínez, S., Koehler, M., Esen, M., & Kempaiah, P. (2015). Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon. EBioMedicine, 2(9), 1186-1192. https://doi.org/10.1016/j.ebiom.2015.07.033 | spa |
dc.relation.references | Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923 | spa |
dc.relation.references | Laporta, G., Ilacqua, R., Bergo, E., Chaves, L., Rodovalho, S., & Moresco, G. (2021). Malaria transmission in landscapes with varying deforestation levels and timelines in the Amazon: A longitudinal spatiotemporal study. Scientific Reports, 11(1), 6477. https://doi.org/10.1038/s41598-021-85890-3 | spa |
dc.relation.references | Lee, K.-S., Divis, P., Zakaria, S., Matusop, A., Julin, R., & Conway, D. (2011). Plasmodium knowlesi: Reservoir Hosts and Tracking the Emergence in Humans and Macaques. PLoS Pathogens, 7(4), e1002015. https://doi.org/10.1371/journal.ppat.1002015 | spa |
dc.relation.references | Logue, K., Keven, J., Cannon, M., Reimer, L., Siba, P., & Walker, E. D. (2016). Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing. PLOS Neglected Tropical Diseases, 10(3), e0004512. https://doi.org/10.1371/journal.pntd.0004512 | spa |
dc.relation.references | Lu, Y., Shen, Y., Warren, W., & Walter, R. (2016). Next Generation Sequencing in Aquatic Models. En J. K. Kulski (Ed.), Next Generation Sequencing—Advances, Applications and Challenges. InTech. https://doi.org/10.5772/61657 | spa |
dc.relation.references | Luna, N., Muñoz, M., Castillo-Castañeda, A., Hernandez, C., Urbano, P., Shaban, M., Paniz- Mondolfi, A., & Ramírez, J. D. (2023). Characterizing the blood microbiota of omnivorous and frugivorous bats (Chiroptera: Phyllostomidae) in Casanare, eastern Colombia. PeerJ, 11, e15169. https://doi.org/10.7717/peerj.15169 | spa |
dc.relation.references | Lutz, E., Lahondère, C., Vinauger, C., & Riffell, J. (2017). Olfactory learning and chemical ecology of olfaction in disease vector mosquitoes: A life history perspective. Current Opinion in Insect Science, 20, 75-83. https://doi.org/10.1016/j.cois.2017.03.002 | spa |
dc.relation.references | Maekawa, E., Aonuma, H., Nelson, B., Yoshimura, A., Tokunaga, F., Fukumoto, S., & Kanuka, H. (2011). The role of proboscis of the malaria vector mosquito Anopheles stephensi in host- seeking behavior. Parasites & Vectors, 4(1), 10. https://doi.org/10.1186/1756-3305-4-10 | spa |
dc.relation.references | Mahamat, O. (2023). Assessing the effectiveness of antimalarial drugs in preventing vertical transmission of malaria parasites and alleviating fetal oxidative stress. American Journal of Biomedical Science & Research, 19(2), 237-246. https://doi.org/10.34297/AJBSR.2023.19.002578 | spa |
dc.relation.references | Mahande, A., Mosha, F., Mahande, J., & Kweka, E. (2007). Feeding and resting behaviour of malaria vector, Anopheles arabiensis with reference to zooprophylaxis. Malaria Journal, 6(1), 100. https://doi.org/10.1186/1475-2875-6-100 | spa |
dc.relation.references | Maia, C., Parreira, R., Cristóvão, J., Freitas, F., Afonso, M., & Campino, L. (2015). Molecular detection of Leishmania DNA and identification of blood meals in wild caught phlebotomine sand flies (Diptera: Psychodidae) from southern Portugal. Parasites & Vectors, 8(1), 173. https://doi.org/10.1186/s13071-015-0787-4 | spa |
dc.relation.references | Maia, M., Kreppel, K., Mbeyela, E., Roman, D., Mayagaya, V., & Lobo, N. (2016). A crossover study to evaluate the diversion of malaria vectors in a community with incomplete coverage of spatial repellents in the Kilombero Valley, Tanzania. Parasites & Vectors, 9(1), 451. https://doi.org/10.1186/s13071-016-1738-4 | spa |
dc.relation.references | Main, B., Lee, Y., Ferguson, H., Kreppel, K., Kihonda, A., & Govella, N. (2016). The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis. PLOS Genetics, 12(9), e1006303. https://doi.org/10.1371/journal.pgen.1006303 | spa |
dc.relation.references | Mandy, A., Muhammad, Z., & Aisha, F. (2023). Enzyme Linked Immunosorbent Assay. https://www.ncbi.nlm.nih.gov/books/NBK555922/ | spa |
dc.relation.references | Martinez, J., Showering, A., Oke, C., Jones, R. T., & Logan, J. G. (2021). Differential attraction in mosquito–human interactions and implications for disease control. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1818), 20190811. https://doi.org/10.1098/rstb.2019.0811 | spa |
dc.relation.references | Mazigo, E., Kidima, W., Myamba, J., & Kweka, E. J. (2019). The impact of Anopheles gambiae egg storage for mass rearing and production success. Malaria Journal, 18(1), 52. https://doi.org/10.1186/s12936-019-2691-4 | spa |
dc.relation.references | Mbanefo, A., & Kumar, N. (2020). Evaluation of malaria diagnostic methods as a key for successful control and elimination programs. Tropical Medicine and Infectious Disease, 5(2), 102. https://doi.org/10.3390/tropicalmed5020102 | spa |
dc.relation.references | Mbewe, R. B., Keven, J. B., Mangani, C., Wilson, M. L., Mzilahowa, T., Mathanga, D. P., Valim, C., Laufer, M. K., Walker, E. D., & Cohee, L. M. (2023). Genotyping of Anopheles mosquito blood meals reveals nonrandom human host selection: Implications for human-to-mosquito Plasmodium falciparum transmission. Malaria Journal, 22(1), 115. https://doi.org/10.1186/s12936-023-04541-2 | spa |
dc.relation.references | Mbewe, R., Keven, J., Mzilahowa, T., Mathanga, D., Wilson, M., & Cohee, L. (2022). Blood- feeding patterns of Anopheles vectors of human malaria in Malawi: Implications for malaria transmission and effectiveness of LLIN interventions. Malaria Journal, 21(1), 67. https://doi.org/10.1186/s12936-022-04089-7 | spa |
dc.relation.references | McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 | spa |
dc.relation.references | Meireles, A. C. A., Da Silva, L. R., Simplício, M. F., De Lima, A. A., Rios, F. G. F., De Menezes, C. A., Feitoza, L. H. M., & Julião, G. R. (2022). Anopheline diversity in urban and peri- urban malaria foci: Comparison between alternative traps and seasonal effects in a city in the Western Brazilian Amazon. Malaria Journal, 21(1), 258. https://doi.org/10.1186/s12936- 022-04274-8 | spa |
dc.relation.references | Melero, A. (2021). Anopheles. https://fundacionio.com/salud-io/one-health/entomologia-para- todos/anopheles/ | spa |
dc.relation.references | Melgarejo-Colmenares, K., Cardo, M., & Vezzani, D. (2022). Blood feeding habits of mosquitoes: Hardly a bite in South America. Parasitology Research, 121(7), 1829-1852. https://doi.org/10.1007/s00436-022-07537-0 | spa |
dc.relation.references | Mendes-Sousa, A., Queiroz, D., Vale, V. F., Ribeiro, J., Valenzuela, J., Gontijo, N., & Andersen, J. (2016). An inhibitor of the alternative pathway of complement in saliva of new world Anopheline mosquitoes. The Journal of Immunology, 197(2), 599-610. https://doi.org/10.4049/jimmunol.1600020 | spa |
dc.relation.references | Merriman, B., R&D Team, I. T., & Rothberg, J. M. (2012). Progress in Ion Torrent semiconductor chip based sequencing. ELECTROPHORESIS, 33(23), 3397-3417. https://doi.org/10.1002/elps.201200424 | spa |
dc.relation.references | Milner, D. (2018). Malaria Pathogenesis. Cold Spring Harbor Perspectives in Medicine, 8(1), a025569. https://doi.org/10.1101/cshperspect.a025569 | spa |
dc.relation.references | Ministerio de Salud. (2021, abril 25). Colombia avanza en meta de eliminación de la malaria a 2030. https://www.minsalud.gov.co/Paginas/Colombia-avanza-en-meta-de-eliminacion-de-la- malaria-a-2030.aspx | spa |
dc.relation.references | Ministerio de Salud. (2022, agosto 3). Incremento de casos y ocurrencia de brotes por malaria a nivel nacional. https://www.dge.gob.pe/epipublic/uploads/alertas/alertas_202218_04_141525.pdf | spa |
dc.relation.references | Ministerio de Salud y Protección Social. (2012). Plan Decenal de Salud Pública 2012-2021. https://www.minsalud.gov.co/plandecenal/Paginas/home2013.aspx | spa |
dc.relation.references | MinSalud. (2016). Manual Metodológico para la elaboración e implementación de las RIAS. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/Manual- metodologico-rias.pdf | spa |
dc.relation.references | MinSalud. (2018). Lineamiento técnico y operativo: Ruta integral de atención para promoción y mantenimiento de la salud. https://unisalud.unicauca.edu.co/unisalud/sites/default/files/lineamiento-ruta-promocion-de- la-salud-consulta_publica.pdf | spa |
dc.relation.references | Mnzava, A. P., Knox, T. B., Temu, E. A., Trett, A., Fornadel, C., Hemingway, J., & Renshaw, M. (2015). Implementation of the global plan for insecticide resistance management in malaria vectors: Progress, challenges and the way forward. Malaria Journal, 14(1), 173. https://doi.org/10.1186/s12936-015-0693-4 | spa |
dc.relation.references | Moiroux, N., Gomez, M. B., Pennetier, C., Elanga, E., Djènontin, A., Chandre, F., Djègbé, I., Guis, H., & Corbel, V. (2012). Changes in Anopheles funestus Biting Behavior Following Universal Coverage of Long-Lasting Insecticidal Nets in Benin. The Journal of Infectious Diseases, 206(10), 1622-1629. https://doi.org/10.1093/infdis/jis565 | spa |
dc.relation.references | Montoya-Lerma, J., Solarte, Y., Giraldo-Calderón, G., Quiñones, M., Ruiz-López, F., Wilkerson, R., & González, R. (2011). Malaria vector species in Colombia: A review. Memórias do Instituto Oswaldo Cruz, 106(suppl 1), 223-238. https://doi.org/10.1590/S0074- 02762011000900028 | spa |
dc.relation.references | Morales, D., Herrera, M., Albuja, M., Quiroga, C., Diaz, G., & Del Aguila, C. (2021). New records of Anopheles benarrochi B (Diptera: Culicidae) in malaria hotspots in the Amazon regions of Ecuador and Peru. Journal of Medical Entomology, 58(3), 1234-1240. https://doi.org/10.1093/jme/tjaa293 | spa |
dc.relation.references | Moreno, J., Rubio‐Palis, Y., Páez, E., Pérez, E., & Sánchez, V. (2007). Abundance, biting behaviour and parous rate of anopheline mosquito species in relation to malaria incidence in gold‐ mining areas of southern Venezuela. Medical and Veterinary Entomology, 21(4), 339-349. https://doi.org/10.1111/j.1365-2915.2007.00704.x | spa |
dc.relation.references | Moreno, M., Saavedra, M., Bickersmith, S., Prussing, C., Michalski, A., Tong Rios, C., Vinetz, J., & Conn, J. (2017). Intensive trapping of blood-fed Anopheles darlingi in Amazonian Peru reveals unexpectedly high proportions of avian blood-meals. PLOS Neglected Tropical Diseases, 11(2), e0005337. https://doi.org/10.1371/journal.pntd.0005337 | spa |
dc.relation.references | Nabet, C., Kone, A. K., Dia, A. K., Sylla, M., Gautier, M., Yattara, M., Thera, M. A., Faye, O., Braack, L., Manguin, S., Beavogui, A. H., Doumbo, O., Gay, F., & Piarroux, R. (2021). New assessment of Anopheles vector species identification using MALDI-TOF MS. Malaria Journal, 20(1), 33. https://doi.org/10.1186/s12936-020-03557-2 | spa |
dc.relation.references | Nagaki, S. S., Chaves, L., López, R., Bergo, E., & Laporta, G. (2021). Host feeding patterns of Nyssorhynchus darlingi (Diptera: Culicidae) in the Brazilian Amazon. Acta Tropica, 213, 105751. https://doi.org/10.1016/j.actatropica.2020.105751 | spa |
dc.relation.references | Naranjo-Diaz, N., Rosero, D., Rua-Uribe, G., Luckhart, S., & Margarita. (2013). Abundance, behavior and entomological inoculation rates of anthropophilic anophelines from a primary Colombian malaria endemic area. Parasites & Vectors, 6(1), 61. https://doi.org/10.1186/1756-3305-6-61 | spa |
dc.relation.references | Neafsey, D. E., Taylor, A. R., & MacInnis, B. L. (2021). Advances and opportunities in malaria population genomics. Nature Reviews Genetics, 22(8), 502-517. https://doi.org/10.1038/s41576-021-00349-5 | spa |
dc.relation.references | Niederhauser, C., & Galel, S. (2022). Transfusion-transmitted malaria and mitigation strategies in nonendemic regions. Transfusion Medicine and Hemotherapy, 49(4), 205-217. https://doi.org/10.1159/000525414 | spa |
dc.relation.references | Nkya, T. E., Akhouayri, I., Kisinza, W., & David, J.-P. (2013). Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects. Insect Biochemistry and Molecular Biology, 43(4), 407-416. https://doi.org/10.1016/j.ibmb.2012.10.006 | spa |
dc.relation.references | Norris, D., Glass, G., Norris, L., & Fornadel, C. (2010). Analysis of Anopheles arabiensis Blood Feeding Behavior in Southern Zambia during the Two Years after Introduction of Insecticide-Treated Bed Nets. The American Journal of Tropical Medicine and Hygiene, 83(4), 848-853. https://doi.org/10.4269/ajtmh.2010.10-0242 | spa |
dc.relation.references | Nsanzabana, C. (2019). Strengthening surveillance systems for Malaria elimination by Integrating molecular and genomic data. Tropical Medicine and Infectious Disease, 4(4), 139. https://doi.org/10.3390/tropicalmed4040139 | spa |
dc.relation.references | Nureye, D., & Assefa, S. (2020). Old and recent advances in life cycle, pathogenesis, diagnosis, prevention, and treatment of Malaria including perspectives in Ethiopia. The Scientific World Journal, 2020, 1-17. https://doi.org/10.1155/2020/1295381 | spa |
dc.relation.references | Nzioki, I., Machani, M. G., Onyango, S. A., Kabui, K. K., Githeko, A. K., & Ochomo, E. (2023). Differences in malaria vector biting behavior and changing vulnerability to malaria transmission in contrasting ecosystems of western Kenya. Parasites & Vectors, 16(1), 376. https://doi.org/10.1186/s13071-023-05944-5 | spa |
dc.relation.references | Oguike, M., Betson, M., Burke, M., Nolder, D., Stothard, J. R., & Kleinschmidt, I. (2011). Plasmodium ovale curtisi and Plasmodium ovale wallikeri circulate simultaneously in African communities. International Journal for Parasitology, 41(6), 677-683. https://doi.org/10.1016/j.ijpara.2011.01.004 | spa |
dc.relation.references | Oke, C., Ingham, V., Walling, C., & Reece, S. (2022). Vector control: Agents of selection on malaria parasites? Trends in Parasitology, 38(10), 890-903. https://doi.org/10.1016/j.pt.2022.07.006 Oliveira, T., Laporta, G., Bergo, E., Chaves, L., & Antunes, J. L. F. (2021). Vector role and human biting activity of Anophelinae mosquitoes in different landscapes in the Brazilian Amazon. | spa |
dc.relation.references | Parasites & Vectors, 14(1), 236. https://doi.org/10.1186/s13071-021-04725-2 OMS. (2022). Guía de Práctica Clínica Diagnóstico y tratamiento de la malaria. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/Guia- atencion-clinica-malaria.pdf | spa |
dc.relation.references | OMS. (2023). Paludismo. https://www.who.int/es/news-room/fact-sheets/detail/malaria | spa |
dc.relation.references | Opoku, S., Addison, T., Gebre, Y., Mutala, A., Antwi, K., & Abbas, D. (2023). Accuracy of diagnosis among clinical malaria patients: Comparing microscopy, RDT and a highly sensitive quantitative PCR looking at the implications for submicroscopic infections. Malaria Journal, 22(1), 76. https://doi.org/10.1186/s12936-023-04506-5 | spa |
dc.relation.references | OPS. (2017). Marco para la eliminación de la malaria. https://iris.paho.org/bitstream/handle/10665.2/34172/9789275319659-spa.pdf?ua=1 | spa |
dc.relation.references | OPS & OMS. (2017, febrero 15). Alerta epidemiológica aumento de casos de malaria. https://www.paho.org/sites/default/files/2017-feb-15-phe-alerta-epi-malaria.pdf | spa |
dc.relation.references | Organización Mundial de la Salud. (2021). Estrategia técnica mundial contra la malaria 2016-2030. World Health Organization. https://iris.who.int/bitstream/handle/10665/351332/9789240041547-spa.pdf?sequence=1 | spa |
dc.relation.references | Organización Panamericana de la Salud. (2020, junio 10). A ctualización Epidemiológica: Situación de la malaria en las Américas en el contexto de la pandemia de COVID-19. https://www.paho.org/sites/default/files/2020-06/2020-junio-10-phe-actualizacion-malaria- v2.pdf | spa |
dc.relation.references | Overgaard, H., Abaga, S., Pappa, V., Reddy, M., & Caccone, A. (2011). Estimation of the human blood index in malaria mosquito vectors in Equatorial Guinea after indoor antivector interventions. The American Journal of Tropical Medicine and Hygiene, 84(2), 298-301. https://doi.org/10.4269/ajtmh.2011.10-0463 | spa |
dc.relation.references | Padilla-Rodríguez, J. C., Olivera, M. J., Ahumada-Franco, M. L., & Paredes-Medina, A. E. (2021). Malaria risk stratification in Colombia 2010 to 2019. PLOS ONE, 16(3), e0247811. https://doi.org/10.1371/journal.pone.0247811 | spa |
dc.relation.references | Paez-Triana, L., Herrera, G., Vega, L., García-Corredor, D., Pulido Medellín, M. O., Paniz- Mondolfi, A., Muñoz, M., & Ramírez, J. D. (2023). Metagenomic exploration of endosymbionts and pathogens in the tropical lineage of Rhipicephalus sanguineus sensu lato (s.l.) ticks in Colombia. Metabarcoding and Metagenomics, 7, e109085. https://doi.org/10.3897/mbmg.7.109085 | spa |
dc.relation.references | PAHO & WHO. (2016). Report on the Situation of Malaria in the Americas, 2000-2015. https://www3.paho.org/hq/dmdocuments/2017/2017-cha-report-situation-malaria-amer-00- 15.pdf | spa |
dc.relation.references | Pajuelo-Reyes, C., Rojas, L., Campos, C., Saavedra-Samillan, M., Bernal, J., & Tejedo, J. (2022). Malaria and COVID-19 in native communities of Amazonas, Peru. Revista de la Facultad de Medicina Humana, 22(3), 533-539. https://doi.org/10.25176/RFMH.v22i3.5044 | spa |
dc.relation.references | Pathak, A. K., Shiau, J. C., Freitas, R. C. S., & Kyle, D. E. (2023). Blood meals from ‘dead-end’ vertebrate hosts enhance transmission potential of malaria-infected mosquitoes. One Health, 17, 100582. https://doi.org/10.1016/j.onehlt.2023.100582 | spa |
dc.relation.references | Patz, J. A. (2018). Altered Disease Risk from Climate Change. EcoHealth, 15(3), 693-694. https://doi.org/10.1007/s10393-018-1382-x | spa |
dc.relation.references | Patz, J., & Thomson, M. (2018). Climate change and health: Moving from theory to practice. PLOS Medicine, 15(7), e1002628. https://doi.org/10.1371/journal.pmed.1002628 | spa |
dc.relation.references | Pervez, M. T., Hasnain, M. J. U., Abbas, S. H., Moustafa, M. F., Aslam, N., & Shah, S. S. M. (2022). A comprehensive review of performance of Next-Generation sequencing platforms. BioMed Research International, 2022, 1-12. https://doi.org/10.1155/2022/3457806 | spa |
dc.relation.references | Pfeiffer, F., Gröber, C., Blank, M., Händler, K., Beyer, M., Schultze, J. L., & Mayer, G. (2018). Systematic evaluation of error rates and causes in short samples in next-generation sequencing. Scientific Reports, 8(1), 10950. https://doi.org/10.1038/s41598-018-29325-6 | spa |
dc.relation.references | Phillips, M., Burrows, J., Manyando, C., Van Huijsduijnen, R., Van Voorhis, W., & Wells, T. (2017). Malaria. Nature Reviews Disease Primers, 3(1), 17050. https://doi.org/10.1038/nrdp.2017.50 | spa |
dc.relation.references | Piedrahita, S., Álvarez, N., Naranjo-Díaz, N., Bickersmith, S., Conn, J., & Correa, M. (2022). Anopheles blood meal sources and entomological indicators related to Plasmodium transmission in malaria endemic areas of Colombia. Acta Tropica, 233, 106567. https://doi.org/10.1016/j.actatropica.2022.106567 | spa |
dc.relation.references | Pimenta, P., & Nieves, E. (2002). Influence of vertebrate blood meals on the development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sand fly Lutzomyia migonei (Diptera: Psychodidae). The American Journal of Tropical Medicine and Hygiene, 67(6), 640-647. https://doi.org/10.4269/ajtmh.2002.67.640 | spa |
dc.relation.references | Pompanon, F., Deagle, B., Symondson, W., Brown, D., Jarman, S., & Taberlet, P. (2012). Who is eating what: Diet assessment using next generation sequencing. Molecular Ecology, 21(8), 1931-1950. https://doi.org/10.1111/j.1365-294X.2011.05403.x | spa |
dc.relation.references | Pourtois, J., Tallam, K., Jones, I., Hyde, E., Chamberlin, A., & Evans, M. (2023). Climatic, land-use and socio-economic factors can predict malaria dynamics at fine spatial scales relevant to local health actors: Evidence from rural Madagascar. PLOS Global Public Health, 3(2), e0001607. https://doi.org/10.1371/journal.pgph.0001607 | spa |
dc.relation.references | Prado, C., Alvarado-Cabrera, L. A., Camargo-Ayala, P., Garzón-Ospina, D., Camargo, M., Soto-De León, S., Cubides, J., Celis-Giraldo, C., Patarroyo, M., & Patarroyo, M. (2019). Behavior and abundance of Anopheles darlingi in communities living in the Colombian Amazon riverside. PLOS ONE, 14(3), e0213335. https://doi.org/10.1371/journal.pone.0213335. | spa |
dc.relation.references | Programa de las Naciones Unidas & para el Desarrollo. (2015). Objetivos de desarrollo del milenio informe. https://www.undp.org/es/latin-america/publications/informe-2015-objetivos-de- desarrollo-del-milenio-informe-de-2015 | spa |
dc.relation.references | Programa Mundial sobre Malaria. (2012, mayo 8). Plan mundial para el manejo de la resistencia a insecticidas en los vectores de malaria: Resumen ejecutivo. https://www.who.int/es/publications/i/item/WHO-HTM-GMP-2012.5 | spa |
dc.relation.references | Prudêncio, M., Rodriguez, A., & Mota, M. M. (2006). The silent path to thousands of merozoites: The Plasmodium liver stage. Nature Reviews Microbiology, 4(11), 849-856. https://doi.org/10.1038/nrmicro1529 | spa |
dc.relation.references | Pryce, J., Medley, N., & Choi, L. (2022). Indoor residual spraying for preventing malaria in communities using insecticide-treated nets. Cochrane Database of Systematic Reviews, 2022(1). https://doi.org/10.1002/14651858.CD012688.pub3 | spa |
dc.relation.references | Qiu, Y., Van Loon, J., Takken, W., Meijerink, J., & Smid, H. (2006). Olfactory coding in antennal neurons of the malaria mosquito, Anopheles gambiae. Chemical Senses, 31(9), 845-863. https://doi.org/10.1093/chemse/bjl027 | spa |
dc.relation.references | Rabinovich, R., Drakeley, C., Djimde, A., Hall, B. F., Hay, S., & Hemingway, J. (2017). An updated research agenda for malaria elimination and eradication. PLOS Medicine, 14(11), e1002456. https://doi.org/10.1371/journal.pmed.1002456 | spa |
dc.relation.references | Ramirez, J., Garver, L., & Dimopoulos, G. (2009). Challenges and Approaches for Mosquito Targeted Malaria Control. Current Molecular Medicine, 9(2), 116-130. https://doi.org/10.2174/156652409787581600 | spa |
dc.relation.references | Ranson, H. (2017). Current and future prospects for preventing malaria transmission via the use of insecticides. Cold Spring Harbor Perspectives in Medicine, 7(11), a026823. https://doi.org/10.1101/cshperspect.a026823 | spa |
dc.relation.references | Rasoanoro, M., Goodman, S. M., Randrianarivelojosia, M., Rakotondratsimba, M., Dellagi, K., Tortosa, P., & Ramasindrazana, B. (2021). Diversity, distribution, and drivers of Polychromophilus infection in Malagasy bats. Malaria Journal, 20(1), 157. https://doi.org/10.1186/s12936-021-03696-0 | spa |
dc.relation.references | Riabinina, O., Task, D., Marr, E., Lin, C., Alford, R., O’Brochta, D., & Potter, C. (2016). Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nature Communications, 7(1), 13010. https://doi.org/10.1038/ncomms13010 | spa |
dc.relation.references | Riveron, J., Tchouakui, M., Mugenzi, L., & Menze, B. (2018). Insecticide Resistance in Malaria Vectors: An Update at a Global Scale. En S. Manguin & V. Dev (Eds.), Towards Malaria Elimination—A Leap Forward. InTech. https://doi.org/10.5772/intechopen.78375 | spa |
dc.relation.references | Rocha, E., Katak, R., Campos De Oliveira, J., Araujo, M., Carlos, B., & Galizi, R. (2020). Vector- focused approaches to curb Malaria transmission in the Brazilian Amazon: An overview of current and future challenges and strategies. Tropical Medicine and Infectious Disease, 5(4), 161. https://doi.org/10.3390/tropicalmed5040161 | spa |
dc.relation.references | Rodríguez, M., Pérez, L., Caicedo, J., Prieto, G., Arroyo, J., & Kaur, H. (2009). Composition and Biting Activity of Anopheles (Diptera: Culicidae) in the Amazon Region of Colombia. J Med Entomol, 46(2), 307-315. https://doi.org/10.1603/033.046.0215 | spa |
dc.relation.references | Rondón, S., León, C., Link, A., & González, C. (2019). Prevalence of Plasmodium parasites in non- human primates and mosquitoes in areas with different degrees of fragmentation in Colombia. Malaria Journal, 18(1), 276. https://doi.org/10.1186/s12936-019-2910-z | spa |
dc.relation.references | Rubio, S., Pacheco-Orozco, R. A., Gómez, A. M., Perdomo, S., & García-Robles, R. (2020). Secuenciación de nueva generación (NGS) de ADN: Presente y futuro en la práctica clínica. Universitas Médica, 61(2). https://doi.org/10.11144/Javeriana.umed61-2.sngs | spa |
dc.relation.references | Rubio-Palis, Y. (2000). Anopheles (Nyssorhynchus) de Venezuela taxonomía, bionomía, ecología e importancia médica. IAES. https://www.researchgate.net/publication/281347445_Anopheles_Nyssorhynchus_de_Vene zuela_Taxonomia_Bionomia_Ecologia_e_Importancia_Medica | spa |
dc.relation.references | Rueda, L. M., & Debboun, M. (2020). Taxonomy, Identification, and Biology of Mosquitoes. En Mosquitoes, Communities, and Public Health in Texas (pp. 3-7). Elsevier. https://doi.org/10.1016/B978-0-12-814545-6.00001-8 | spa |
dc.relation.references | Rychert, J. (2019). Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms. Journal of Infectiology, 2(4), 1-5. https://doi.org/10.29245/2689- 9981/2019/4.1142 | spa |
dc.relation.references | Saavedra, M. P., Conn, J., Alava, F., Carrasco-Escobar, G., Prussing, C., & Bickersmith, S. (2019). Higher risk of malaria transmission outdoors than indoors by Nyssorhynchus darlingi in riverine communities in the Peruvian Amazon. Parasites & Vectors, 12(1), 374. https://doi.org/10.1186/s13071-019-3619-0 | spa |
dc.relation.references | Salgado, C., Ayodo, G., Macklin, M. D., Gould, M. P., Nallandhighal, S., Odhiambo, E. O., Obala, A., O’Meara, W. P., John, C. C., & Tran, T. M. (2021). The prevalence and density of asymptomatic Plasmodium falciparum infections among children and adults in three communities of western Kenya. Malaria Journal, 20(1), 371. https://doi.org/10.1186/s12936-021-03905-w | spa |
dc.relation.references | Sallum, M. A. M., Obando, R. G., Carrejo, N., & Wilkerson, R. C. (2020). Identification keys to the Anopheles mosquitoes of South America (Diptera: Culicidae). I. Introduction. Parasites & Vectors, 13(1), 583. https://doi.org/10.1186/s13071-020-04298-6 | spa |
dc.relation.references | Sampaio, V. S., Siqueira, A. M., Alecrim, M. D. G. C., Mourão, M. P. G., Marchesini, P. B., Albuquerque, B. C., Nascimento, J., Figueira, É. A. G., Alecrim, W. D., Monteiro, W. M., & Lacerda, M. V. G. (2015). Malaria in the State of Amazonas: A typical Brazilian tropical disease influenced by waves of economic development. Revista da Sociedade Brasileira de Medicina Tropical, 48(suppl 1), 4-11. https://doi.org/10.1590/0037-8682-0275-2014 | spa |
dc.relation.references | Sato, S. (2021). Plasmodium-a brief introduction to the parasites causing human malaria and their basic biology. Journal of Physiological Anthropology, 40(1), 1. https://doi.org/10.1186/s40101-020-00251-9 | spa |
dc.relation.references | Savi, M. K. (2022). An overview of Malaria transmission mechanisms, control, and modeling. Medical Sciences, 11(1), 3. https://doi.org/10.3390/medsci11010003 | spa |
dc.relation.references | Schon, E. A., DiMauro, S., & Hirano, M. (2012). Human mitochondrial DNA: Roles of inherited and somatic mutations. Nature Reviews Genetics, 13(12), 878-890. https://doi.org/10.1038/nrg3275 | spa |
dc.relation.references | Shaw, W. R., & Catteruccia, F. (2018). Vector biology meets disease control: Using basic research to fight vector-borne diseases. Nature Microbiology, 4(1), 20-34. https://doi.org/10.1038/s41564-018-0214-7 | spa |
dc.relation.references | Shtolz, N., & Mishmar, D. (2019). The mitochondrial genome–on selective constraints and signatures at the organism, cell, and single mitochondrion levels. Frontiers in Ecology and Evolution, 7, 342. https://doi.org/10.3389/fevo.2019.00342 | spa |
dc.relation.references | SIAT-AC. (2022). Territorial environmental information system of the Colombian Amazon. https://siatac.co/en/sobre-siatac/ | spa |
dc.relation.references | Siddappa, C. M., Saini, M., Das, A., Doreswamy, R., Sharma, A. K., & Gupta, P. K. (2013). Sequence characterization of mitochondrial 12S rRNA gene in mouse deer ( Moschiola indica ) for PCR-RFLP based species identification. Molecular Biology International, 2013, 1-6. https://doi.org/10.1155/2013/783925 | spa |
dc.relation.references | Silva, A., Santos, J., & Martins, A. (2014). Mutations in the voltage-gated sodium channel gene of anophelines and their association with resistance to pyrethroids – a review. Parasites & Vectors, 7(1), 450. https://doi.org/10.1186/1756-3305-7-450 | spa |
dc.relation.references | Situación de la malaria en Colombia – Fundación iO. (s. f.) (2023). Recuperado 28 de marzo de 2025, de https://fundacionio.com/situacion-de-la-malaria-en-colombia-5/ | spa |
dc.relation.references | Sims, D., Sudbery, I., Ilott, N. E., Heger, A., & Ponting, C. P. (2014). Sequencing depth and coverage: Key considerations in genomic analyses. Nature Reviews Genetics, 15(2), 121- 132. https://doi.org/10.1038/nrg3642 | spa |
dc.relation.references | Sinchi. (2022). Informe del Estado y Tendencias de los Recursos Naturales de la Amazonia colombiana. https://ierna.sinchi.org.co/ | spa |
dc.relation.references | Sinka, M., Bangs, M., Manguin, S., Rubio-Palis, Y., Chareonviriyaphap, T., & Coetzee, M. (2012). A global map of dominant malaria vectors. Parasites & Vectors, 5(1), 69. https://doi.org/10.1186/1756-3305-5-69 | spa |
dc.relation.references | Sinka, M. E. (2013). Global Distribution of the Dominant Vector Species of Malaria. En S. Manguin (Ed.), Anopheles mosquitoes—New insights into malaria vectors. InTech. https://doi.org/10.5772/54163 | spa |
dc.relation.references | Slater, L., Ashraf, S., Zahid, O., Ali, Q., Oneeb, M., & Akbar, M. H. (2022). Current methods for the detection of Plasmodium parasite species infecting humans. Current Research in Parasitology & Vector-Borne Diseases, 2, 100086. https://doi.org/10.1016/j.crpvbd.2022.100086 | spa |
dc.relation.references | Slatko, B., Gardner, A., & Ausubel, F. M. (2018). Overview of Next‐Generation sequencing technologies. Current Protocols in Molecular Biology, 122(1), e59. https://doi.org/10.1002/cpmb.59 | spa |
dc.relation.references | Smallegange, R., Van Gemert, G., Van De Vegte-Bolmer, M., Gezan, S., Takken, W., & Sauerwein, R. (2013). Malaria Infected Mosquitoes Express Enhanced Attraction to Human Odor. PLoS ONE, 8(5), e63602. https://doi.org/10.1371/journal.pone.0063602 | spa |
dc.relation.references | Smith, M. L., & Styczynski, M. P. (2018). Systems Biology-Based Investigation of Host– Plasmodium Interactions. Trends in Parasitology, 34(7), 617-632. https://doi.org/10.1016/j.pt.2018.04.003 | spa |
dc.relation.references | Snounou, G., Viriyakosol, S., Xin Ping Zhu, Jarra, W., Pinheiro, L., Do Rosario, V. E., Thaithong, S., & Brown, K. N. (1993). High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Molecular and Biochemical Parasitology, 61(2), 315-320. https://doi.org/10.1016/0166-6851(93)90077-B | spa |
dc.relation.references | Sokhna, C., Ndiath, M. O., & Rogier, C. (2013). The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clinical Microbiology and Infection, 19(10), 902-907. https://doi.org/10.1111/1469-0691.12314 | spa |
dc.relation.references | Sougoufara, S., Ottih, E. C., & Tripet, F. (2020). The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities. Parasites & Vectors, 13(1), 295. https://doi.org/10.1186/s13071-020-04170-7 | spa |
dc.relation.references | Soulard, V., Bosson-Vanga, H., Lorthiois, A., Roucher, C., Franetich, J.-F., Zanghi, G., Bordessoulles, M., Tefit, M., Thellier, M., Morosan, S., Le Naour, G., Capron, F., Suemizu, H., Snounou, G., Moreno-Sabater, A., & Mazier, D. (2015). Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice. Nature Communications, 6(1), 7690. https://doi.org/10.1038/ncomms8690 | spa |
dc.relation.references | Souza-Santos, R. (2002). Distribuição sazonal de vetores da malária em Machadinho d’Oeste, Rondônia, Região Amazônica, Brasil. Cadernos de Saúde Pública, 18(6), 1813-1818. https://doi.org/10.1590/S0102-311X2002000600039 | spa |
dc.relation.references | St. Laurent, B., Burton, T., Zubaidah, S., Miller, H., Asih, P., Baharuddin, A., Kosasih, S., Shinta, Firman, S., Hawley, W. A., Burkot, T. R., Syafruddin, D., Sukowati, S., Collins, F. H., & Lobo, N. F. (2017). Host attraction and biting behaviour of Anopheles mosquitoes in South Halmahera, Indonesia. Malaria Journal, 16(1), 310. https://doi.org/10.1186/s12936-017- 1950-5 | spa |
dc.relation.references | Stauning, M. A., Jensen, C. S., Staalsøe, T., & Kurtzhals, J. A. L. (2023). Detection and quantification of Plasmodium falciparum in human blood by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: A proof-of-concept study. Malaria Journal, 22(1), 285. https://doi.org/10.1186/s12936-023-04719-8 | spa |
dc.relation.references | Steverding, D. (2020). The spreading of parasites by human migratory activities. Virulence, 11(1), 1177-1191. https://doi.org/10.1080/21505594.2020.1809963 | spa |
dc.relation.references | Su, X., Zhang, C., & Joy, D. A. (2020). Host-Malaria Parasite interactions and impacts on mutual evolution. Frontiers in Cellular and Infection Microbiology, 10, 587933. https://doi.org/10.3389/fcimb.2020.587933 | spa |
dc.relation.references | Su, X.-Z., & Wu, J. (2021). Zoonotic transmissions and host switches of Malaria parasites. Zoonoses (Burlington, Mass.), 1(1), 11. https://doi.org/10.15212/zoonoses-2021-0015 | spa |
dc.relation.references | Suh, P. F., Elanga-Ndille, E., Tchouakui, M., Sandeu, M., Tagne, D., & Wondji, C. (2023). Impact of insecticide resistance on malaria vector competence: A literature review. Malaria Journal, 22(1), 19. https://doi.org/10.1186/s12936-023-04444-2 | spa |
dc.relation.references | Sutanto, E., Pava, Z., Echeverry, D., Lopera-Mesa, T., Montenegro, L., & Yasnot-Acosta, M. (2023). Genomics of Plasmodium vivax in Colombia reveals evidence of local bottle-necking and inter-country connectivity in the Americas. Scientific Reports, 13(1), 19779. https://doi.org/10.1038/s41598-023-46076-1 | spa |
dc.relation.references | Takken, W., & Koenraadt, C. J. M. (Eds.). (2013). Ecology of parasite-vector interactions. WA. https://doi.org/10.3920/978-90-8686-744-8 | spa |
dc.relation.references | Takken, W., & Verhulst, N. O. (2013). Host Preferences of Blood-Feeding Mosquitoes. Annual Review of Entomology, 58(1), 433-453. https://doi.org/10.1146/annurev-ento-120811-153618 | spa |
dc.relation.references | Talundzic, E., Ravishankar, S., Kelley, J., Patel, D., Plucinski, M., & Schmedes, S. (2018). Next- Generation Sequencing and Bioinformatics Protocol for Malaria Drug Resistance Marker Surveillance. Antimicrobial Agents and Chemotherapy, 62(4), e02474-17. https://doi.org/10.1128/AAC.02474-17 | spa |
dc.relation.references | Tandina, F., Niare, S., Almeras, L., Davoust, B., Doumbo, O. K., Raoult, D., Parola, P., & Laroche, M. (2020). Identification of mixed and successive blood meals of mosquitoes using MALDI- TOF MS protein profiling. Parasitology, 147(3), 329-339. https://doi.org/10.1017/S003118201900163X | spa |
dc.relation.references | Tessema, S., Raman, J., Duffy, C., Ishengoma, D., Amambua-Ngwa, A., & Greenhouse, B. (2019). Applying next-generation sequencing to track falciparum malaria in sub-Saharan Africa. Malaria Journal, 18(1), 268. https://doi.org/10.1186/s12936-019-2880-1 | spa |
dc.relation.references | Tian, H. (2023). Modeling malaria elimination with changing landscapes, climate, and potentially invasive vectors. Proceedings of the National Academy of Sciences, 120(11), e2301653120. https://doi.org/10.1073/pnas.2301653120 | spa |
dc.relation.references | Torres, K., Ferreira, M., Castro, M., Escalante, A., Conn, J., & Villasis, E. (2022). Malaria Resilience in South America: Epidemiology, Vector Biology, and Immunology Insights from the Amazonian International Center of Excellence in Malaria Research Network in Peru and Brazil. The American Journal of Tropical Medicine and Hygiene, 107(4_Suppl), 168-181. https://doi.org/10.4269/ajtmh.22-0127 | spa |
dc.relation.references | Unwin, J., Sherrard-Smith, E., Churcher, T., & Ghani, A. (2023). Quantifying the direct and indirect protection provided by insecticide treated bed nets against malaria. Nature Communications, 14(1), 676. https://doi.org/10.1038/s41467-023-36356-9 | spa |
dc.relation.references | Valle, D., & Tucker Lima, J. M. (2014). Large-scale drivers of malaria and priority areas for prevention and control in the Brazilian Amazon region using a novel multi-pathogen geospatial model. Malaria Journal, 13(1), 443. https://doi.org/10.1186/1475-2875-13-443 | spa |
dc.relation.references | Van Den Hoogen, L., Bareng, P., Alves, J., Reyes, R., Macalinao, M., Rodrigues, J. M., Fernandes, J. M., Goméz, L. F., Hall, T., Singh, S. K., Fornace, K., Luchavez, J., Kitchen, A., Chiodini, P., Espino, F., Tetteh, K. K. A., Stresman, G., Sepúlveda, N., & Drakeley, C. (2020). Comparison of Commercial ELISA kits to confirm the absence of transmission in malaria elimination settings. Frontiers in Public Health, 8, 480. https://doi.org/10.3389/fpubh.2020.00480 | spa |
dc.relation.references | Van Den Hoogen, L., & Drakeley, C. (2015). Malaria Diagnostic Platform, Antibody Detection. En M. Hommel & P. G. Kremsner (Eds.), Encyclopedia of Malaria (pp. 1-8). Springer New York. https://doi.org/10.1007/978-1-4614-8757-9_111-1 | spa |
dc.relation.references | Vantaux, A., Moiroux, N., Dabiré, K. R., Cohuet, A., & Lefèvre, T. (2023). Multiple hosts, multiple impacts: The role of vertebrate host diversity in shaping mosquito life history and pathogen transmission. Peer Community Journal, 3, e54. https://doi.org/10.24072/pcjournal.288 | spa |
dc.relation.references | Vaughan, A. M., Mikolajczak, S. A., Wilson, E. M., Grompe, M., Kaushansky, A., Camargo, N., Bial, J., Ploss, A., & Kappe, S. H. I. (2012). Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. Journal of Clinical Investigation, 122(10), 3618-3628. https://doi.org/10.1172/JCI62684 | spa |
dc.relation.references | Venugopal, K., Hentzschel, F., Valkiūnas, G., & Marti, M. (2020). Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nature Reviews Microbiology, 18(3), 177-189. https://doi.org/10.1038/s41579-019-0306-2 | spa |
dc.relation.references | Warnes, G., Bolker, B., Bonebakker, L., Gentleman, R., & Huber, W. (2024). gplots: Various R Programming Tools for Plotting Data. https://github.com/talgalili/gplots | spa |
dc.relation.references | Williams., T. N., & Obaro, S. K. (2011). Sickle cell disease and malaria morbidity: A tale with two tails. Trends in Parasitology, 27(7), 315-320. https://doi.org/10.1016/j.pt.2011.02.004 | spa |
dc.relation.references | WHO. (s. f.). Vector-borne diseases. https://www.who.int/news-room/fact-sheets/detail/vector- borne-diseases | spa |
dc.relation.references | WHO. (2021). World malaria report 2021. https://www.who.int/teams/global-malaria- programme/reports/world-malaria-report-2021 | spa |
dc.relation.references | WHO. (2023, marzo 14). Rrecommendations on two new types of insecticide-treated nets. https://www.who.int/news/item/14-03-2023-who-publishes-recommendations-on-two-new- types-of-insecticide-treated-nets | spa |
dc.relation.references | Wilson, A., Courtenay, O., Kelly-Hope, L., Scott, T., Takken, W., & Torr, S. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLOS Neglected Tropical Diseases, 14(1). https://doi.org/10.1371/journal.pntd.0007831 | spa |
dc.relation.references | World Health Organization. (2013). Malaria entomology and vector control. https://iris.who.int/handle/10665/85890 | spa |
dc.relation.references | World Health Organization. (2015). Global technical strategy for malaria 2016-2030. World Health Organization. https://iris.who.int/handle/10665/176712 | spa |
dc.relation.references | World Health Organization. (2018). WHO certifies Paraguay malaria-free. https://www.who.int/news-room/detail/11-06-2018-who-certifies-paraguay-malaria-free | spa |
dc.relation.references | World Health Organization. (2023a). World malaria report 2023 (World Health Organization). https://www.who.int/publications/i/item/9789240086173 | spa |
dc.relation.references | World Health Organization. (2023b, octubre 16). Guidelines for malaria. https://www.who.int/publications/i/item/guidelines-for-malaria | spa |
dc.relation.references | Yang, L., Tan, Z., Wang, D., Xue, L., Guan, M., Huang, T., & Li, R. (2014). Species identification through mitochondrial rRNA genetic analysis. Scientific Reports, 4(1), 4089. https://doi.org/10.1038/srep04089 | spa |
dc.relation.references | Yusuf, M., Vatandoost, H., Oshaghi, M., Hanafi-Bojd, A., Manu, A., & Enayati, A. (2021). Biochemical Mechanism of Insecticide Resistance in Malaria Vector, Anopheles gambiae s.l in Nigeria. Iranian Journal of Public Health. https://doi.org/10.18502/ijph.v50i1.5076 | spa |
dc.relation.references | Zhou, Y., Zhang, W.-X., Tembo, E., Xie, M.-Z., Zhang, S.-S., Wang, X.-R., Wei, T.-T., Feng, X., Zhang, Y.-L., Du, J., Liu, Y.-Q., Zhang, X., Cui, F., & Lu, Q.-B. (2022). Effectiveness of indoor residual spraying on malaria control: A systematic review and meta-analysis. Infectious Diseases of Poverty, 11(1), 83. https://doi.org/10.1186/s40249-022-01005-8 | spa |
dc.relation.references | Zimmerman, R., Galardo, A., Lounibos, P., Arruda, M., & Wirtz, R. (2006). Bloodmeal hosts of Anopheles species (Diptera: Culicidae) in a Malaria-endemic area of the Brazilian Amazon. Journal of Medical Entomology, 43(5), 947-956. https://doi.org/10.1093/jmedent/43.5.947 | spa |
dc.relation.references | Zimmerman, R., Galardo, A., Lounibos, P., Galardo, C., Bahar, K., & Van Santen, E. (2022). Vectorial capacities for malaria in eastern Amazonian Brazil depend on village, vector species, season, and parasite species. Malaria Journal, 21(1), 237. https://doi.org/10.1186/s12936-022-04255-x | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
dc.subject.ddc | 610 - Medicina y salud::612 - Fisiología humana | spa |
dc.subject.decs | Servicios Públicos de Salud | spa |
dc.subject.decs | Public Health Services | eng |
dc.subject.decs | Enfermedades Endémicas | spa |
dc.subject.decs | Endemic Diseases | eng |
dc.subject.decs | Epidemiología | spa |
dc.subject.decs | Epidemiology | eng |
dc.subject.decs | Microbiología | spa |
dc.subject.decs | Microbiology | eng |
dc.subject.lemb | ANOFELES | spa |
dc.subject.lemb | Anopheles | eng |
dc.subject.lemb | MALARIA | spa |
dc.subject.lemb | PROBLEMAS SOCIALES | spa |
dc.subject.lemb | Social problems | eng |
dc.subject.lemb | COMUNIDADES INDIGENAS | spa |
dc.subject.lemb | Indigenous peoples | eng |
dc.subject.proposal | A darlingi | spa |
dc.subject.proposal | Secuenciación de nueva generación | spa |
dc.subject.proposal | Hábitos dietarios | spa |
dc.subject.proposal | Amazonia Colombiana | spa |
dc.subject.proposal | A darlingi, | eng |
dc.subject.proposal | Next-generation sequencing | eng |
dc.subject.proposal | Dietary habits | eng |
dc.subject.proposal | Colombian Amazon | eng |
dc.title | Determinación de los hábitos dietarios de Anopheles darlingi proveniente de dos comunidades indígenas del Amazonas Colombiano | |
dc.title.translated | Determination of the dietary habits of Anopheles darlingi from two indigenous communities in the Colombian Amazon | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1023945181.2025.pdf
- Tamaño:
- 2.48 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: