Actividad antioxidante de la Silimarina y sus componentes (Silidianina, Silicristina y Silibinina) y su efecto sobre la conservación de semen porcino (Sus scrofa) refrigerado

dc.contributor.advisorRestrepo Betancur, Giovanni
dc.contributor.authorZapata Carmona, Kelly Vanessa
dc.contributor.orcidZapata Carmona, Kelly Vanessa [0000-0002-3559-5783]spa
dc.contributor.researchgroupGrupo de Investigación en Biotecnología Animal (Giba)spa
dc.date.accessioned2023-02-06T15:23:28Z
dc.date.available2023-02-06T15:23:28Z
dc.date.issued2022-11
dc.descriptionilustraciones, diagramasspa
dc.description.abstractDurante la refrigeración, el espermatozoide porcino puede experimentar estrés oxidativo, osmótico, químico y térmico, que afectan su capacidad fecundante. La adición de antioxidantes al diluyente espermático constituye una alternativa para mitigar dichas alteraciones. El objetivo de esta investigación fue evaluar la capacidad antioxidante de la Silimarina y sus componentes (Silidianina, Silicristina y Silibinina) y su efecto sobre la conservación de semen porcino (Sus scrofa) sometido a refrigeración. Para ello, quince eyaculados de cinco cerdos fueron diluidos en MRA, suplementados con Silimarina, Silibinina, Silicristina y Silidianina y refrigerados cinco días a 16°C. Cada 24 h se evaluó la movilidad y cinética espermática con un CASA IVOS. A las 0 y 96 h se determinaron la funcionalidad de membrana por test hipoosmótico; la producción de EROs y la capacidad antioxidante total (ABTS-FRAP), por espectrofluorimetría; el potencial de membrana mitocondrial, la integridad estructural y la peroxidación lipídica mediante citometría de flujo, con JC-1, SYBR14/IP y Bodipy respectivamente. Se realizaron comparaciones de medias por Duncan, se calculó un índice para calidad espermática y se hicieron análisis de regresión para movilidad y cinética espermática, y para cinética de EROs. La suplementación con Silidianina (10-20 µM) incrementó MT, MP, Δ¥M y VE, y redujo la producción de EROs. Silicristina, a partir de 20 µM, disminuyó la MT, MP, Δ¥M y VE. Mientras que Silimarina redujo la producción de EROs/minuto. En definitiva, la Silimarina y sus componentes pueden incrementar la calidad espermática, reducir la generación de EROs, potenciar la CAT y modificar el Δ¥M en el semen porcino refrigerado. (Texto tomado de la fuente)spa
dc.description.abstractIn refrigerated conditions, boar spermatozoa are susceptible to oxidative, osmotic, chemical and thermal stress, affecting their fertilizing capacity. The addition of antioxidants to the sperm extender is an alternative to mitigate these alterations. The objective of this research was to evaluate the antioxidant capacity of Silymarin and its components (Silidianin, Silicristin and Silibinin) and their effect on the preservation of refrigerated boar semen (Sus scrofa). For this purpose, fifteen ejaculates from five swine were diluted in MRA, supplemented with Silymarin, Silybinin, Silychristin and Silydianin and refrigerated for five days at 16°C. Sperm motility and sperm kinetics were evaluated every 24 h with a CASA IVOS. At 0 and 96 h, membrane functionality was determined by hypoosmotic test; EROs production and total antioxidant capacity (ABTS-FRAP), by spectrofluorimetry; mitochondrial membrane potential, structural integrity and lipid peroxidation by flow cytometry with JC-1, SYBR14/PI and Bodipy probes, respectively. Duncan mean comparisons were performed, an index for sperm quality was calculated and regression analyses were performed for sperm motility and sperm kinetics, and for EROs kinetics. Silydianin supplementation (10-20 µM) increased MT, MP, Δ¥M and VE, and reduced EROs production. Silychristin, from 20 µM, decreased MT, MP, Δ¥M and VE. While Silymarin reduced EROs/minute production. In conclusion, Silymarin and its components can improve sperm quality, reduce EROs generation, enhance CAT and modify Δ¥M in refrigerated boar semen.eng
dc.description.curricularareaÁrea Curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaReproducción Animalspa
dc.format.extentxvi, 107 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83312
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbouzid, S., & Ahmed, O. M. (2013). Silymarin flavonolignans: Structure-activity relationship and biosynthesis. Studies in Natural Products Chemistry (Vol. 40, pp. 469–484). https://doi.org/10.1016/B978-0-444-59603-1.00014-Xspa
dc.relation.referencesAghashahi, M., Momeni, H. R., & Darbandi, N. (2020). Impact of aluminium toxicity on vital human sperm parameters—Protective effects of silymarin. Andrologia, 1–10. https://doi.org/10.1111/and.13742spa
dc.relation.referencesAhmed, H., Amin, H., Clement, A. (2022). Silymarin abrogates acrylamide-induced oxidative stressmediated testicular toxicity via modulation of antioxidant mechanism, DNA damage, endocrine deficit and sperm quality in rats. Andrologia, 54(9). https://doi.org/10.1111/and.14491spa
dc.relation.referencesAitken, R. J., Gibb, Z., Baker, M. A., Drevet, J., & Gharagozloo, P. (2016). Causes and consequences of oxidative stress in Spermatozoa. Reproduction, Fertility and Development, 28(1–2), 1–10. https://doi.org/10.1071/RD15325spa
dc.relation.referencesArts, M., Dallinga, J., Voss, H., Haenen, G., & Bast, A. (2004). A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chemistry, 88(4), 567–570. https://doi.org/10.1016/J.FOODCHEM.2004.02.008spa
dc.relation.referencesAwda, B. J., Mackenzie-Bell, M., & Buhr, M. M. (2009). Reactive oxygen species and boar sperm function. Biology of Reproduction, 81(3), 553–561. https://doi.org/10.1095/biolreprod.109.076471spa
dc.relation.referencesBaeeri, M., Mohammadi-Nejad, S., Rahimifard, M., Navaei-Nigjeh, M., Moeini-Nodeh, S., Khorasani, R., & Abdollahi, M. (2018). Molecular and biochemical evidence on the protective role of ellagic acid and silybin against oxidative stress-induced cellular aging. Molecular and Cellular Biochemistry, 441(1–2), 21–33. https://doi.org/10.1007/s11010-017-3172-0spa
dc.relation.referencesBenzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/ABIO.1996.0292spa
dc.relation.referencesBiedermann, D., Buchta, M., Holečková, V., Sedlák, D., Valentová, K., Cvačka, J., Bednárová, L., Křenková, A., Kuzma, M., Škuta, C., Peikerová, Ž., Bartůněk, P., & Křen, V. (2016). Silychristin: Skeletal Alterations and Biological Activities. Journal of Natural Products, 79(12), 3086–3092. https://doi.org/10.1021/acs.jnatprod.6b00750spa
dc.relation.referencesBiedermann, D., Moravcová, V., Valentová, K., Kuzma, M., Petrásková, L., Císařová, I., & Křen, V. (2019). Oxidation of flavonolignan silydianin to unexpected lactone-acid derivative. Phytochemistry Letters, 14–20. https://doi.org/10.1016/j.phytol.2019.01.006spa
dc.relation.referencesBollwein, H., & Bittner, L. (2018). Impacts of oxidative stress on bovine sperm function and subsequent in vitro embryo development. Animal Reproduction, 15, 703–710. https://doi.org/10.21451/1984- 3143-AR2018-0041spa
dc.relation.referencesCordova, A., Ruiz, C., Córdova, C., Córdova, M., Eulogio, J., Guerra, J., Rodríguez, B., & Salinas, K. (2009). Estrés oxidativo y antioxidantes en la conservación espermática. Revista Computense de Ciencias Veterinarias, 3(1), 1–38.spa
dc.relation.referencesEl-Sheshtawy, R., & El-Nattat, W. (2017). Impact of silymarin enriched semen extender on bull sperm preservability. Asian Pacific Journal of Reproduction, 6(2), 81–84. https://doi.org/10.12980/apjr.6.20170206spa
dc.relation.referencesEskandari, F., & Momeni, H. R. (2016). Protective effect of silymarin on viability, motility and mitochondrial membrane potential of ram sperm treated with sodium arsenite. International Journal of Reproductive BioMedicine, 14(6), 397–402. https://doi.org/10.29252/ijrm.14.6.397spa
dc.relation.referencesEtemadi, T., Reza, H., & Asghar, A. (2020). Impact of silymarin on cadmium-induced apoptosis in human spermatozoa. Andrologia, 52(11), 1-9. https://doi.org/10.1111/and.13795.spa
dc.relation.referencesEtemadi, T., Reza, H., Darbandi, N., & Hussein, M. (2022). Silymarin modulates cadmium-induced oxidative stress in human spermatozoa. Andrologia, 52(11), 1-9. https://doi.org/ 10.1111/and.14475spa
dc.relation.referencesFair, S., & Romero-Aguirregomezcorta, J. (2019). Implications of boar sperm kinematics and rheotaxis for fertility after preservation. Theriogenology, 137, 15–22. https://doi.org/10.1016/J.THERIOGENOLOGY.2019.05.032spa
dc.relation.referencesFaudale, M., Viladomat, F., Bastida, J., Poli, F., & Codina, C. (2008). Antioxidant activity and phenolic composition of wild, edible, and medicinal fennel from different Mediterranean countries. Journal of Agricultural and Food Chemistry, 56(6), 1912–1920. https://doi.org/10.1021/jf073083cspa
dc.relation.referencesFeng, T. Y., Lv, D. L., Zhang, X., Du, Y. Q., Yuan, Y. T., Chen, M. J., Xi, H. M., Li, Y., Han, N., & Hu, J. H. (2020). Rosmarinic acid improves boar sperm quality, antioxidant capacity and energy metabolism at 17°C via AMPK activation. Reproduction in Domestic Animals, 55(12), 1714–1724. https://doi.org/10.1111/rda.13828spa
dc.relation.referencesFunahashi, H., & Sano, T. (2005). Select antioxidants improve the function of extended boar semen stored at 10°C. Theriogenology, 63(6), 1605–1616. https://doi.org/10.1016/j.theriogenology.2004.06.016spa
dc.relation.referencesGillan, L., Evans, G., & Maxwell, W. M. C. (2005). Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology, 63(2), 445–457. https://doi.org/10.1016/j.theriogenology.2004.09.024spa
dc.relation.referencesGülçin, İ. (2010). Antioxidant properties of resveratrol: A structure-activity insight. Innovative Food Science and Emerging Technologies, 11, 210–218. https://doi.org/10.1016/j.ifset.2009.07.002spa
dc.relation.referencesGulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94, 651–715. https://doi.org/10.1007/s00204-020-02689-3spa
dc.relation.referencesGuo, H., Gong, Y., He, B., & Zhao, R. (2017). Relationships between mitochondrial DNA content, mitochondrial activity, and boar sperm motility. Theriogenology, 87, 276–283. https://doi.org/10.1016/j.theriogenology.2016.09.005spa
dc.relation.referencesGuthrie, H. D., & Welch, G. R. (2006). Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescenceactivated flow cytometry. Journal of Animal Science, 84(8), 2089–2100. https://doi.org/10.2527/JAS.2005-766spa
dc.relation.referencesHaddad, P. S., Haddad, Y., Vallerand, D., & Brault, A. (2011). Antioxidant and Hepatoprotective Effects of Silibinin in a Rat Model of Nonalcoholic Steatohepatitis. Evidence-Based Complementary and Alternative Medicine : ECAM, 2011, 1–10. https://doi.org/10.1093/ECAM/NEP164spa
dc.relation.referencesHidalgo, D. M., Barón, F. J., Bragado, M. J., Carmona, P., Robina, A., García-Marín, L. J., & Gil, M. C. (2011). The effect of melatonin on the quality of extended boar semen after long-term storage at 17 °C. Theriogenology, 75(8), 1550–1560. https://doi.org/10.1016/j.theriogenology.2010.12.021spa
dc.relation.referencesHidalgo, D. M. (2013). Fisiología celular y calidad seminal durante la conservación del semen porcino refrigerado. In Fisiología celular y calidad seminal durante la conservación del semen porcino refrigerado. [Universidad de Extremadura]. https://dehesa.unex.es:8443/handle/10662/799?mode=fullspa
dc.relation.referencesJang, H.-Y., Kong, H. S., Choi, B.-Y., Shin, J.-S., Cheong, H.-T., Kim, J.-T., Park, I.-C., Park, C.-K., & Yang, B.- K. (2011). Protective Effects of Silymarin against the Toxicity of Bisphenol A (BPA) on Boar Sperm Quality. Journal of Embryo Transfer, 26(4), 257–263.spa
dc.relation.referencesJuarez, J. D. (2009). Efecto de la velocidad de enfriamiento en la congelabilidad de espermatozoides porcinos. [Universidad de Murcia]. https://riunet.upv.es:443/handle/10251/14316spa
dc.relation.referencesKhoi, H. X., Shimizu, K., Yoneda, Y., Minagawa, I., Abe, Y., Kuwabara, Y., Sasanami, T., & Kohsaka, T. (2021). Monitoring the reactive oxygen species in spermatozoa during liquid storage of boar semen and its correlation with sperm motility, free thiol content and seasonality. Andrologia, 53(11), e14237. https://doi.org/10.1111/AND.14237spa
dc.relation.referencesKumaresan, A., Kadirvel, G., Bujarbaruah, K. M., Bardoloi, R. K., Das, A., Kumar, S., & Naskar, S. (2009). Preservation of boar semen at 18°C induces lipid peroxidation and apoptosis like changes in spermatozoa. Animal Reproduction Science, 110, 162–171. https://doi.org/10.1016/j.anireprosci.2008.01.006spa
dc.relation.referencesLuberda, Z. (2005). The role of glutathione in mammalian gametes. Reproductive Biology, 5(1), 5–17.spa
dc.relation.referencesMartín-Hidalgo, D., Hurtado de Llera, A., Henning, H., Wallner, U., Waberski, D., Bragado, M. J., Gil, M. C., & García-Marín, L. J. (2013). The Effect of Resveratrol on the Quality of Extended Boar Semen During Storage at 17oC. Journal of Agricultural Science, 5(8), 231–242. https://doi.org/10.5539/jas.v5n8p231spa
dc.relation.referencesMartínez, F., Mata, M., Álvarez, M., Álvarez, M., Anel, L., & de Paz, P. (2010). Probes and techniques for sperm evaluation by flow cytometry. Reproduction in Domestic Animals, 45(SUPPL. 2), 67–78. https://doi.org/10.1111/j.1439-0531.2010.01622.xspa
dc.relation.referencesMerino, O., Figueroa, E., Cheuquemán, C., Valdebenito, I., Isachenko, V., Isachenko, E., Sánchez, R., Farías, J., & Risopatrón, J. (2017). Short-term storage of salmonids semen in a sodium alginatebased extender. Andrologia, 49(5), 1–5. https://doi.org/10.1111/and.12661spa
dc.relation.referencesMunteanu, I. G., & Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, 22(7). https://doi.org/10.3390/IJMS22073380spa
dc.relation.referencesOufi, H. G., & Al-Shawi, N. N. (2014). The effects of different doses of silibinin in combination with methotrexate on testicular tissue of mice. European Journal of Pharmacology, 730(1), 36–40. https://doi.org/10.1016/J.EJPHAR.2014.02.010spa
dc.relation.referencesPascual, C., Gonz, R., Armesto, J., & Muriel, P. (1993). Effect of silymarin and silybinin on oxygen radicals. Drug Development Research, 29(1), 73–77. https://doi.org/10.1002/ddr.430290109spa
dc.relation.referencesPereira, B. A., Rocha, L. G. P., Teles, M. C., Silva, W. E., Barbosa, J. A., Rabelo, S. S., Uchoa, A. S., RodriguezGil, J. E., Pereira, L. J., & Zangeronimo, M. G. (2019). Addition of chlorogenic acid and caffeine during the processing of cooled boar semen. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 71(2), 489–499. https://doi.org/10.1590/1678-4162-10415spa
dc.relation.referencesPezo, F., Romero, F., Zambrano, F., & Sánchez, R. S. (2019). Preservation of boar semen: An update. Reproduction in Domestic Animals, 54(3), 423–434. https://doi.org/10.1111/rda.13389spa
dc.relation.referencesPotra, G., Babes, P., Calniceanu, H., Popa, A., Ciavoi, G., Iova, G., Ganea, M., & Scrobotă, I. (2021). AntiInflammatory and Antioxidant Properties of Carvacrol and Magnolol, in Periodontal Disease and Diabetes Mellitus. Molecules, 26(22), 6899. https://doi.org/10.3390/molecules26226899spa
dc.relation.referencesPourheydar, B., Azarm, F., Farjah, G., Karimipour, M., & Pourheydar, M. (2021). Effect of silymarin and metformin on the sperm parameters and histopathological changes of testes in diabetic rats: An experimental study. International Journal of Reproductive BioMedicine, 19(12), 1091–1104. https://doi.org/10.18502/ijrm.v19i12.10060spa
dc.relation.referencesPyszková, M., Biler, M., Biedermann, D., Valentová, K., Kuzma, M., Vrba, J., Ulrichová, J., Sokolová, R., Mojović, M., Popović-Bijelić, A., Kubala, M., Trouillas, P., Křen, V., & Vacek, J. (2016). Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radical Biology and Medicine, 90, 114–125. https://doi.org/10.1016/j.freeradbiomed.2015.11.014spa
dc.relation.referencesRajnochová, A., Gabrielová, · Eva, Ulrichová, J., Zálešák, B., Biedermann, · David, & Vostálová, J. (2019). A pilot study of the UVA-photoprotective potential of dehydrosilybin, isosilybin, silychristin, and silydianin on human dermal fibroblasts. Archives of Dermatological Research, 311, 477–490. https://doi.org/10.1007/s00403-019-01928-7spa
dc.relation.referencesReina, M., & Martínez, A. (2016). Is Silybin the Best Free Radical Scavenger Compound in Silymarin? Journal of Physical Chemistry B, 120(20), 4568–4578. https://doi.org/10.1021/acs.jpcb.6b02807spa
dc.relation.referencesRoostaei-Ali Mehr, M., & Parisoush, P. (2016). Effect of different levels of silymarin and caproic acid on storage of ram semen in liquid form. Reproduction in Domestic Animals, 51(4), 569–574. https://doi.org/10.1111/rda.12721spa
dc.relation.referencesSurai, P. F. (2015). Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants, 4(1), 204–247. https://doi.org/10.3390/antiox4010204spa
dc.relation.referencesTaleb, A., Ahmad, K. A., Ihsan, A. U., Qu, J., Lin, N., Hezam, K., Koju, N., Hui, L., & Qilong, D. (2018). Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomedicine and Pharmacotherapy, 102(January), 689–698. https://doi.org/10.1016/j.biopha.2018.03.140spa
dc.relation.referencesTemamogullari, F., Atessahin, A., Cebi Sen, C., Yumusak, N., & Dogru, M. (2021). Protective role of silibinin over nickel sulfate-induced reproductive toxicity in male rats. Polish Journal of Veterinary Sciences, 24(1), 29–34. https://doi.org/10.24425/pjvs.2020.135817spa
dc.relation.referencesTeixeira, S. M. P., Chaveiro, A., & Moreira da Silva, F. (2015). Effect of Conjugated Linoleic Acid on Boar Semen Quality After Long-term Refrigeration at 17°C. Reproduction in Domestic Animals, 50(4), 604–610. https://doi.org/10.1111/rda.12535spa
dc.relation.referencesTian, X., Li, D., He, Y., Zhang, W., He, H., Du, R., Pang, W., Yang, G., & Yu, T. (2019). Supplementation of salvianic acid A to boar semen extender to improve seminal quality and antioxidant capacity. Animal Science Journal, 90(9), 1142–1148. https://doi.org/10.1111/ASJ.13263spa
dc.relation.referencesTorres, P., Fischman, M. L., Acerbo, M., García, C., Míguez, M., Domínguez, J., & Cisale, H. (2014). Análisis de diluyentes comerciales de semen porcino refrigerado durante 4 días: resultados preliminares. Archivos de Zootecnia, 63(243), 547–550. https://doi.org/10.4321/s0004-05922014000300015spa
dc.relation.referencesWellington, K., & Jarvis, B. (2001). Silymarin: A review of its clinical properties in the management of hepatic disordersspa
dc.relation.referencesZielińska-Przyjemska, M., & Wiktorowicz, K. (2006). An In vitro Study of the Protective Effect of the Flavonoid Silydianin against Reactive Oxygen Species. Phytother. Res, 20, 115–119. https://doi.org/10.1002/ptr.1812spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc590 - Animales::599 - Mamíferosspa
dc.subject.lembConservación del semenspa
dc.subject.lembSemen conservationeng
dc.subject.proposalCalidad seminalspa
dc.subject.proposalEstado redoxspa
dc.subject.proposalFlavonolignanosspa
dc.subject.proposalRefrigeraciónspa
dc.subject.proposalSilimarinaspa
dc.subject.proposalSemen porcinospa
dc.subject.proposalFlavonolignanseng
dc.subject.proposalPorcine semeneng
dc.subject.proposalRedox statuseng
dc.subject.proposalRefrigerationeng
dc.subject.proposalSeminal qualityeng
dc.subject.proposalSilymarineng
dc.titleActividad antioxidante de la Silimarina y sus componentes (Silidianina, Silicristina y Silibinina) y su efecto sobre la conservación de semen porcino (Sus scrofa) refrigeradospa
dc.title.translatedAntioxidant activity of silymarin and its components (silydianin, silychristin and silybinin) and their effect on the preservation of refrigerated boar semen (Sus scrofa)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152696683.2022.pdf
Tamaño:
2.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: