Integrated photonic circuits based on plasmonic modes in microstructured optical fibers

dc.contributor.advisorTorres Trujillo, Pedro Ignaciospa
dc.contributor.authorGómez-Cardona, Nelson Dariospa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupFotónica y Opto-electrónicaspa
dc.date.accessioned2021-02-03T20:28:33Zspa
dc.date.available2021-02-03T20:28:33Zspa
dc.date.issued2020-11-06spa
dc.description.abstractThis thesis considers the phenomena associated with plasmon modes excited in MOFs, with a particular interest in higher-order plasmon modes and their coupling with propagation modes of the MOF. These multiple couplings, according to our prior knowledge, are the cause of the multiple resonances that occur in the transmittance spectrum of the SC-MOF. At this point, the study of symmetrical structures, in which the medium surrounding the metal film is homogeneous, and antisymmetric structures, in which the upper and lower media are different, was also addressed, but in these cases, multilayer structures were used because of it offers the possibility of modifying the propagation properties of the excited plasmon modes and tuning the resonance condition, improving the performance of the devices. Following this line of analysis, the excitation of plasmon modes in MOFs containing metal-filled holes was also considered. To facilitate the modeling of the structure and a better understanding of the associated phenomena the metal-filled holes were considered as nanowires with smoothed walls, avoiding the presence of localized modes in corners formed by inhomogeneities. Overall, modeling and understanding these structures was possible obtaining conditions for exciting hybrid modes, which appear to be ideal for photonic circuitsspa
dc.description.abstractThis thesis considers the phenomena associated with plasmon modes excited in MOFs, with a particular interest in higher-order plasmon modes and their coupling with propagation modes of the MOF. These multiple couplings are the cause of the multiple resonances that occur in the transmittance spectrum of the SC-MOF. At this point, the study of symmetrical structures, in which the medium surrounding the metal film is homogeneous, and antisymmetric structures, in which the upper and lower media are different, was also addressed, but in these cases, multilayer structures were used because of it offers the possibility of modifying the propagation properties of the excited plasmon modes and tuning the resonance condition, improving the performance of the devices. Following this line of analysis, the excitation of plasmon modes in MOFs containing metal-filled holes was also considered. To facilitate the modeling of the structure and a better understanding of the associated phenomena the metal-filled holes were considered as nanowires with smoothed walls, avoiding the presence of localized modes in corners formed by inhomogeneities. Overall, modeling and understanding these structures was possible obtaining conditions for exciting hybrid modes, which appear to be ideal for photonic circuits.spa
dc.description.degreelevelDoctoradospa
dc.format.extent89spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citation@PHDTHESIS{Gomez01, author = "Nelson Gomez-Cardona and Pedro Torres", title = "Integrated Photonic Circuits Based on Plasmonic Modes in Microstructured Optical Fibers", school = "Escuela de F\'isica, Universidad Nacional de Colombia - Sede Medell\'in", year = "2020", type = "", month = "November", }spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79063
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de físicaspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesN/Aspa
dc.relation.referencesT. T k no nd J. H m s ki, “Prop g ting modes of met l-clad dielectric-slab waveguide for integr ted optics,” IEEE Journal of Quantum Electronics, vol. 7, no. 6, p. 1964, 1971, doi: 10.1109/JQE.1971.1076693.spa
dc.relation.referencesV. V. Cherny, “Confined guided modes in W-fi re with squ re core,” Electronics Letters, vol. 15, no. 10, p. 281, 1979, doi: 10.1049/el:19790200spa
dc.relation.referencesF. P. K pron, “Err tum: M ximum inform tion c p city of fi re-optic w veguides,” Electronics Letters, vol. 13, no. 9, p. 272, 1977, doi: 10.1049/el:19770197spa
dc.relation.referencesA. Ihaya, H. Furut , nd H. Nod , “Thin-film Optic l Direction l Coupler.,”Proceedings of the IEEE, vol. 60, no. 4, pp. 470–471, 1972, doi:10.1109/PROC.1972.8676.spa
dc.relation.referencesM. G. F. Wilson nd G. A. Teh, “T pered Optic l Direction l Coupler,” IEEETransactions on Microwave Theory and Techniques, vol. 23, no. 1, 1975, doi:10.1109/TMTT.1975.1128508.spa
dc.relation.referencesA. Shi uk w nd M. Ko y shi, “Comp ct optic l circul tor for ne r-infrared region,” Electronics Letters, vol. 14, no. 25. p. 816, 1978, doi: 10.1049/el:19780551spa
dc.relation.referencesa. Yi-Y n, J. . H. Wilkinson, nd C. D. W. Wilkinson, “Optic l w veguide filters for the visi le spectrum,” IEE Proceedings H Microwaves, Optics and Antennas, vol. 127, no. 6, p. 335, 1980, doi: 10.1049/ip-h-1.1980.0071.spa
dc.relation.referencesK. Rollke nd W. Sohler, “Met l-clad waveguide as cutoff polarizer for integrated optics,” IEEE Journal of Quantum Electronics, vol. 13, no. 4, 1977, doi: 10.1109/JQE.1977.1069317.spa
dc.relation.referencesM. P puchon nd S. V toux, “Integr ted optic l pol riser on LiN O3:Ti ch nnel w veguides using proton exch nge,” Electronics Letters, vol. 19, no. 16. p. 612,1983, doi: 10.1049/el:19830417.spa
dc.relation.referencesW. Lin, H. Li, Y. J. Chen, M. D gen is, nd D. Stone, “Du l-channel-spacing phased-array waveguide grating multi/demultiplexers,” IEEE Photonics Technology Letters, vol. 8, no. 11, pp. 1501–1503, 1996, doi: 10.1109/68.541563spa
dc.relation.referencesA. Neyer, “Integr ted-optical multichannel wavelength multiplexer for monomode systems,” Electronics Letters, vol. 20, no. 18, p. 744, 1984, doi: 10.1049/el:19840509.spa
dc.relation.referencesA. D. Kersey and A. D ndridge, “Applic tions of fi er-optic sensors,” IEEEtransactions on components, hybrids, and manufacturing technology, vol. 13, no. 1, pp. 137–143, 1990, doi: 10.1109/33.52861spa
dc.relation.referencesB. Culsh w, “Optic l Fi er Sensor Technologies: Opportunities nd - Perhaps - Pitf lls,” in Journal of Lightwave Technology, 2004, vol. 22, no. 1, pp. 39–50, doi: 10.1109/JLT.2003.822139.spa
dc.relation.referencesH. Goln i, “Design nd oper tion of different optic l fi er sensors for displ cement me surements,” Review of Scientific Instruments, vol. 70, no. 6, p. 2875, 1999, doi: 10.1063/1.1149812.spa
dc.relation.referencesR. F. Oulton, G. B rt l, D. F. P. Pile, nd X. Zh ng, “Confinement nd prop g tion characteristics of su w velength pl smonic modes,” New Journal of Physics, vol.10, pp. 0–14, 2008, doi: 10.1088/1367-2630/10/10/105018.spa
dc.relation.referencesY. Song, J. W ng, Q. Li, M. Y n, nd M. Qiu, “Bro d nd coupler etween silicon w veguide nd hy rid pl smonic w veguide,” Opt. Express, vol. 18, pp. 13173–13179, 2010.spa
dc.relation.referencesS. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Ch nnel plasmon subwavelength waveguide components including interferometers nd ring reson tors.,” Nature, vol. 440, no. 7083, pp. 508–511, 2006, doi: 10.1038/nature04594.spa
dc.relation.referencesS. Wang, V. Vaidyanath n, nd B. Borden, “Polymer optic l ch nnel w veguide components f ric ted y using l ser direct writing system,” Journal of Applied Science & …, pp. 47–52, 2009, [Online]. vailable:https://library.rit.edu/oajournals/index.php/jaset/article/view/215.spa
dc.relation.referencesA. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Tri ngul r met l wedges for subwavelength plasmon-polariton guiding t telecom w velengths.,” Optics express, vol. 16, no. 8, pp. 5252–5260, 2008, doi: 10.1364/OE.16.005252.spa
dc.relation.referencesA. Ch ndr n, E. S. B rn rd, J. S. White, nd M. L. Brongersm , “Met l-dielectricmetal surface plasmon-pol riton reson tors,” Physical Review B - Condensed Matter and Materials Physics, vol. 85, no. 8, pp. 1–9, 2012, doi:10.1103/PhysRevB.85.085416.spa
dc.relation.referencesL. Gao, L. Tang, F. Hu, R. Guo, X. W ng, nd Z. Zhou, “Active met l strip hy rid plasmonic waveguide with low critical materi l g in,” Optics Express, vol. 20, no. 10,p. 11487, 2012, doi: 10.1364/OE.20.011487spa
dc.relation.referencesF. F. Lu et al., “Surf ce pl smon pol riton enh nced y optic l p r metric amplification in nonlinear hybrid w veguide.,” Opspa
dc.relation.referencesR. S. Windeler, J. L. W gener, nd D. J. DiGiov nni, “Silic -air microstructured fi ers: properties nd pplic tions,” OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, vol. 4, no. 908, pp. 106–107, 1999, doi: 10.1109/OFC.1999.766009.spa
dc.relation.referencesY. Zh ng, C. Zhou, L. Xi , X. Yu, nd D. Liu, “W gon wheel fi er sed multich nnel pl smonic sensor,” Opt. Express, vol. 19, p. 22863, 2011.spa
dc.relation.referencesP. Berini, “Pl smon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Physical Review B, vol. 61, no. 15, pp. 10484–10503, 2000, doi: 10.1103/PhysRevB.61.10484.spa
dc.relation.referencesD. Marcuse, Light Transmission Optics. VAN NOSTRAND REINHOLD COMPANY, 1982.spa
dc.relation.referencesA. Varshney, “Prop g tion Ch r cteristics of Photonic Cryst l Fi er: Sc l r Effective Index Method nd Fully Vectori l Effective Index Method,” Adv. Studies Theor. Phys, vol. 1, no. 2, pp. 75–85, 2007, [Online]. Available: ttp://www.mhikari.com/astp/astp2007/astp1-4-2007/varshneyASTP1-4-2007.pspa
dc.relation.referencesI. . Gonch renko nd M. M rcini k, “Photonic cryst l fi re ch r cteris tion with the method of lines,” Journal of Telecommunications and Information Technology, vol. 1, pp. 106–111, 2004, [Online]. Available: http://www.itl.waw.pl/czasopisma/JTIT/2004/1/106.pdf.spa
dc.relation.referencesP. Berini, “Pl smon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Physical Review B, vol. 61, no. 15, pp.10484–10503, 2000, doi: 10.1103/PhysRevB.61.10484spa
dc.relation.referencesA. Boltasseva and S. I. Bozhevolnyi, “Direction l Couplers Using Long-Range Surf ce Pl smon Pol riton W veguides,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1233–1241, 2006, doi: 10.1109/JSTQE.2006.882659spa
dc.relation.referencesJ. M. Montgomery nd S. K. Gr y, “Enh ncing surf ce pl smon pol riton propagation lengths via coupling to asymmetric w veguide structures,” Physical Review B - Condensed Matter and Materials Physics, vol. 77, no. 12, pp. 1–9, 2008, doi: 10.1103/PhysRevB.77.125407spa
dc.relation.referencesP. Berini nd I. de Leon, “Surf ce pl smon-pol riton mplifiers nd l sers,” Nature Photonics, vol. 6, no. 1. pp. 16–24, Jan. 2012, doi: 10.1038/nphoton.2011.285.spa
dc.relation.referencesB. Fan et al., “Integr ted refr ctive index sensor based on hybrid coupler with short r nge surf ce pl smon pol riton nd dielectric w veguide,” Sensors and Actuators, B: Chemical, vol. 186, pp. 495–505, 2013, doi: 10.1016/j.snb.2013.06.005.spa
dc.relation.referencesE. Oz y, “Plasmonics: merging photonics and electronics at nanoscale dimensions.,” Science (New York, N.Y.), vol. 311, no. 5758, pp. 189–193, 2006, doi: 10.1126/science.1114849spa
dc.relation.referencesJ. N. Reddy, “An Introduction to the Finite Element Method, 3rd Edition-McGrawHill Education (ISE Editions .” McGr w-Hill Education: New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto, p. 763, 2005, Accessed: May 12, 2020. [Online]spa
dc.relation.referencesL. Lévesque nd B. E. P ton, “Detection of defects in multiple-layer structures by using surf ce pl smon reson nce,” Applied Optics, vol. 36, no. 28, p. 7199, Oct. 1997, doi: 10.1364/ao.36.007199.spa
dc.relation.referencesJ. Grandidier et al., “Dielectric-loaded surface plasmon polariton waveguides on a finite-width met l strip,” Applied Physics Letters, vol. 96, no. 6, pp. 2010–2013, 2010, doi: 10.1063/1.3300839.spa
dc.relation.referencesM. S. Kwon nd S. Y. Shin, “Simple and fast numerical analysis of multilayer w veguide modes,” Optics Communications, vol. 233, no. 1–3, pp. 119–126, Mar. 2004, doi: 10.1016/j.optcom.2004.01.037.spa
dc.relation.referencesA. K. Gh t k, K. Thy g r j n, nd M. R. Shenoy, “Numeric l An lysis of Pl n r Optical Waveguides Using Matrix Appro ch,” Journal of Lightwave Technology, vol. 5, no. 5, pp. 660–667, 1987, doi: 10.1109/JLT.1987.1075553.spa
dc.relation.referencesF. M. Cox, R. Lwin, M. C. J. L rge, nd C. M. B. Cordeiro, “Opening up optic l fi res,” Optics Express, vol. 15, no. 19, p. 11843, Sep. 2007, doi: 10.1364/oe.15.011843.spa
dc.relation.referencesN. M. Y. Zhang et al., “Design nd n lysis of surf ce pl smon reson nce sensor based on high- irefringent microstructured optic l fi er,” Journal of Optics, vol. 18, no. 6, p. 065005, May 2016, doi: 10.1088/2040-8978/18/6/065005.spa
dc.relation.referencesM. Z. Alam, J. S. Aitchison, nd M. Moj hedi, “Comp ct nd silicon-on-insulatorcompatible hybrid plasmonic TE-p ss pol rizer,” Optics Letters, vol. 37, no. 1, p. 55, 2012, doi: 10.1364/OL.37.000055.spa
dc.relation.referencesN. Gomez-Cardona, E. Reyes-Vera, C. Jimenez-Durango, J. Usuga-Restrepo, nd P. Torres, “Novel Wide-Bandwidth Polarization Filter Based on H-Shaped Micro-Structured Optical Fiber ith Gold Nano-strip,” in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), Sep. 2018, pp. 538–541.spa
dc.relation.referencesN. D. Gomez-Cardona, E. Reyes-Ver , nd P. I. Torres, “Multi-Plasmon Resonances in Microstructured Optical Fibers: Extending the Detection Range of SPR Sensors andspa
dc.relation.referencesP. L l nne, “Effective medium theory applied to photonic crystals composed of cu ic or squ re cylinders,” Appl. Opt., vol. 35, pp. 5369–5380, 1996.spa
dc.relation.referencesW. Zhang, Z. Lian, T. Benson, X. Wang, nd S. Lou, “A refr ctive index sensor based on a D-sh ped photonic cryst l fi er with n nosc le gold elt.,” Opt. Quantum Electron., vol. 50, pp. 1–12, 2018.spa
dc.relation.referencesZ.-K. Fan, S.-G. Li, Y.-Q. Fan, W. Zhang, G.-W. An, and Y.-J. B o, “Designing analysis of the polarization beam splitter in two communication bands based on a gold-filled dual-core photonic cryst l fi er,” Chinese Physics B, vol. 23, no. 9, p. 94212, Sep. 2014, doi: 10.1088/1674-1056/23/9/094212.spa
dc.relation.referencesT. Muñoz-Hernández, E. Reyes-Ver , nd P. Torres, “Tun le Whispering Gallery Mode Photonic Device Based on Microstructured Optical Fiber with I ternal Electrodes,” Scientific Reports, vol. 9, no. 1, p. 12083, Dec. 2019, doi: 10.1038/s41598-019-48598-z.spa
dc.relation.referencesK. Saitoh, Y. Sato, nd M. Koshi , “Coupling ch r cteristics of du l-core photonic crystal fi er couplers.,” Optics express, vol. 11, no. 24, pp. 3188–3195, Dec. 2003, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19471444.spa
dc.relation.referencesS. L. A. C rr r , B. Y. Kim, nd H. J. Sh w, “El sto-optic alignment of birefringent axes in polarization-holding optic l fspa
dc.relation.referencesJ. F. Botero-Cadavid, J. D. Causado-Buelv s, nd P. Torres, “Spectr l properties of locally pressed fiber bragg gr tings written in pol riz tion m int ining fi ers,” Journal of Lightwave Technology, vol. 28, no. 9, 2010, doi: 10.1109/JLT.2010.2040804.spa
dc.relation.referencesX. W ng, S. Li, Q. Liu, Z. F n, G. W ng, nd Y. Zh o, “High-extinction ratio and short-length polarization splitter based on microstructured optical fiber with tellurite gl ss,” Optical Materials, vol. 66, pp. 542–546, Apr. 2017, doi: 10.1016/j.optmat.2017.02.024.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalMicrostructured optical fibereng
dc.subject.proposalFibra óptica micro-estructuradaspa
dc.subject.proposalPhotonic crystal fibereng
dc.subject.proposalFibra de cristal fotónicospa
dc.subject.proposalOptical waveguideeng
dc.subject.proposalGuía de ondas ópticasspa
dc.subject.proposalSurface plasmon polaritoneng
dc.subject.proposalPolaritón de plasmón de superficiespa
dc.subject.proposalResonancia de plasmón de superficiespa
dc.subject.proposalSurface plasmon resonanceeng
dc.subject.proposalOptical fiber deviceseng
dc.subject.proposalSensor de fibra ópticaspa
dc.subject.proposalOptical fiber sensoreng
dc.subject.proposalDispositivos de fibra ópticaspa
dc.titleIntegrated photonic circuits based on plasmonic modes in microstructured optical fibersspa
dc.title.alternativeCircuitos fotónicos integrados basados en modos plasmonicos en fibras ópticas micro-estructuradasspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71779814.2020.pdf
Tamaño:
3.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: