Determinación y caracterización de las regiones de unión de PfRON4 a eritrocitos y hepatocitos humanos

dc.contributor.advisorArévalo Pinzón, Gabriela
dc.contributor.advisorPatarroyo Gutiérrez, Manuel Alfonso
dc.contributor.authorPulido Quevedo, Fredy Alexander
dc.contributor.orcidhttps://orcid.org/0000-0003-4395-3672spa
dc.contributor.researchgroupReceptor-Ligandospa
dc.date.accessioned2023-01-18T16:27:59Z
dc.date.available2023-01-18T16:27:59Z
dc.date.issued2023-01-17
dc.descriptionilustracionesspa
dc.description.abstractPlasmodium falciparum durante su ciclo de vida, expresa una amplia gama de proteínas entre las que se destaca la proteína del cuello de las roptrias 4 (PfRON4). Este es un candidato promisorio a vacuna, ya que se expresa tanto en merozoítos como esporozoítos, participa durante la formación del enlace fuerte con la célula hospedera a través del complejo RONs/AMA1 y es refractario a deleción genética. Pese a ello, aún no se conocen las regiones clave de este antígeno que interactúan con las células hospederas, siendo esta información de gran utilidad para combatir la enfermedad causada por este parásito. Por tal motivo, en este trabajo de investigación se sintetizaron 32 péptidos derivados de la región conservada de PfRON4 y se llevaron a cabo ensayos de interacción receptor-ligando para determinar la capacidad de unión de cada péptido a células hospederas, así como determinar la naturaleza del receptor y habilidad de éstos para inhibir la invasión del parásito en cultivo continuo in vitro con la cepa FCB2. Se identificaron cinco HABPs (High Activity Binding Peptides) denominados 42477, 42479, 42480, 42505 y 42513, los cuales se unieron con alta afinidad y especificidad a receptores de tipo proteico sobre la membrana de los eritrocitos. Por su parte, los péptidos 42477 y 42480 se unieron a la membrana de las células HepG2 con constantes de disociación en el rango sub-micromolar, siendo esta interacción dependiente de receptores tipo heparina y/o sulfato de condroitina. Los ensayos de inhibición de la invasión mostraron que los HABPs de PfRON4 fueron capaces de bloquear la entrada de los merozoítos a los eritrocitos hasta en un 50%. En conclusión, se encontró que las regiones de PfRON4 800-819 (42477) y 860-879 (42480) interactúan específicamente con las células hospederas y esto soporta su inclusión en el desarrollo de una vacuna multi-antígeno, multi-estadio basada en subunidades contra P. falciparum (Texto tomado de la fuente)spa
dc.description.abstractPlasmodium falciparum expresses a wide range of proteins during its lifecycle, among which one the most important is rhoptry neck protein 4 (PfRON4); it is a promising vaccine candidate since it is expressed in merozoites and sporozoites, participates in a strong bond formation with host cells via the RONs/AMA-1 complex and is refractory to genetic deletion. Despite this, PfRON4’s key regions interacting with host cells remain unknown; such information would be extremely useful for combating P. falciparum-related malaria. For this reason, in this research work, thirty-two PfRON4 conserved region-derived synthetic peptides were chemically synthesized, and receptor-ligand interaction/binding assays were carried out for determining the binding capacity of each peptide to host cells, the nature of their receptors and their ability to inhibit in vitro parasite invasion with the FCB2 strain. Five HABPS (High Activity Binding Peptides) named 42477, 42479, 42480, 42505 and 42513 were identified, which bound with high affinity and specificity to protein-like receptors on the erythrocyte membrane. Peptides 42477 and 42480 bound to HepG2 cells’ membrane, both of them having submicromolar range kD, the interaction being dependent on heparin and/or chondroitin sulphate proteoglycan receptors. Invasion inhibition assays showed that PfRON4 HABPs were able to block merozoite entry into erythrocytes by up to 50%. In conclusion, PfRON4 regions 800-819 (42477) and 860-879 (42480) were found to specifically interact with host cells, which supports their inclusion in the development of a subunit-based, multi-antigen, multistage anti-malarial vaccine against P. falciparumeng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Bioquímicaspa
dc.description.researchareaBioquímica y Biología Molecularspa
dc.format.extentxv, 90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83010
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Bioquímicaspa
dc.relation.references1. White N, Pukrittayakamee S, Hien T, Faiz M, Mokuolu O, Dondorp A. Malaria. Lancet [Internet]. 2014; 383 (9918): 723–35spa
dc.relation.references2. Source WHOJR. World malaria report 2021. 2021. 2022.spa
dc.relation.references3. Salud INd. Boletín epidemiológico semanal, Semana epidemiológica 52 de 2021. 2021. p. 14.spa
dc.relation.references4. Weiss DJ, Lucas TC, Nguyen M, Nandi AK, Bisanzio D, Battle KE, et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. 2019;394(10195):322-31.spa
dc.relation.references5. Ashley EA, Phyo APJD. Drugs in development for malaria. 2018;78(9):861- 79.spa
dc.relation.references6. Kumar S, Bhardwaj T, Prasad D, Singh RKJB, Pharmacotherapy. Drug targets for resistant malaria: historic to future perspectives. 2018;104:8-27.spa
dc.relation.references7. Rosenthal MR, Ng CLJAid. Plasmodium falciparum artemisinin resistance: the effect of heme, protein damage, and parasite cell stress response. 2020;6(7):1599-614.spa
dc.relation.references8. Alout H, Labbé P, Chandre F, Cohuet AJTip. Malaria vector control still matters despite insecticide resistance. 2017;33(8):610-8.spa
dc.relation.references9. Matuschewski KJTFj. Vaccines against malaria—still a long way to go. 2017;284(16):2560-8.spa
dc.relation.references10. Sibley LJS. Intracellular parasite invasion strategies. 2004;304(5668):248- 53.spa
dc.relation.references11. Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, et al. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiology Reviews. 2019;43(3):223-38.spa
dc.relation.references12. Cowman AF, Berry D, Baum JJJocB. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. 2012;198(6):961-71.spa
dc.relation.references13. Preiser P, Kaviratne M, Khan S, Bannister L, Jarra WJM, Infection. The apical organelles of malaria merozoites: host cell selection, invasion, host immunity and immune evasion. 2000;2(12):1461-77.spa
dc.relation.references14. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, de Jong NW, Harvey KL, et al. Revealing the sequence and resulting cellular morphology of receptor ligand interactions during Plasmodium falciparum invasion of erythrocytes. 2015;11(2):e1004670.spa
dc.relation.references15. Richard D, MacRaild CA, Riglar DT, Chan J-A, Foley M, Baum J, et al. Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. 2010;285(19):14815-22.spa
dc.relation.references16. Collins CR, Withers-Martinez C, Hackett F, Blackman MJJPp. An inhibitory antibody blocks interactions between components of the malarial invasion machinery. 2009;5(1):e1000273.spa
dc.relation.references17. Riglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. 2011;9(1):9-20.spa
dc.relation.references18. Srinivasan P, Yasgar A, Luci DK, Beatty WL, Hu X, Andersen J, et al. Disrupting malaria parasite AMA1–RON2 interaction with a small molecule prevents erythrocyte invasion. 2013;4(1):1-9.spa
dc.relation.references19. Tonkin ML, Roques M, Lamarque MH, Pugnière M, Douguet D, Crawford J, et al. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. 2011;333(6041):463-7.spa
dc.relation.references20. Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J, et al. The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. 2011;7(2):e1001276.spa
dc.relation.references21. Prudêncio M, Rodriguez A, Mota MMJNRM. The silent path to thousands of merozoites: the Plasmodium liver stage. 2006;4(11):849-56.spa
dc.relation.references22. Morahan BJ, Sallmann GB, Huestis R, Dubljevic V, Waller KLJEp. Plasmodium falciparum: genetic and immunogenic characterisation of the rhoptry neck protein PfRON4. 2009;122(4):280-8.spa
dc.relation.references23. O'Donnell RA, Saul A, Cowman AF, Crabb BSJNm. Functional conservation of the malaria vaccine antigen MSP-1 19 across distantly related Plasmodium species. 2000;6(1):91-5.spa
dc.relation.references24. Bai T, Becker M, Gupta A, Strike P, Murphy VJ, Anders RF, et al. Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. 2005;102(36):12736-41.spa
dc.relation.references25. Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo MEJCr. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. 2008;108(9):3656-705.spa
dc.relation.references26. Curtidor H, Vanegas M, P Alba M, E Patarroyo MJCmc. Functional, immunological and three-dimensional analysis of chemically synthesised sporozoite peptides as components of a fully-effective antimalarial vaccine. 2011;18(29):4470- 502.spa
dc.relation.references27. Patarroyo ME, Patarroyo MAJAocr. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. 2008;41(3):377-86.spa
dc.relation.references28. Patarroyo ME, Bermúdez A, Patarroyo MAJCr. Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. 2011;111(5):3459-507.spa
dc.relation.references29. Arévalo-Pinzón G, Curtidor H, Muñoz M, Patarroyo MA, Bermudez A, Patarroyo MEJV. A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. 2012;30(3):637-46.spa
dc.relation.references30. Tolia NH, Enemark EJ, Sim BKL, Joshua-Tor LJC. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. 2005;122(2):183-93.spa
dc.relation.references31. Patarroyo ME, Patarroyo MA, Pabón L, Curtidor H, Poloche LAJV. Immune protection-inducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. 2015;33(52):7525-37.spa
dc.relation.references32. Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ, Duraisingh MT, et al. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. 2005;309(5739):1384-7.spa
dc.relation.references33. Cao J, Kaneko O, Thongkukiatkul A, Tachibana M, Otsuki H, Gao Q, et al. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. 2009;58(1):29-35.spa
dc.relation.references34. Alexander DL, Arastu-Kapur S, Dubremetz J-F, Boothroyd JCJEc. Plasmodium falciparum AMA1 binds a rhoptry neck protein homologous to TgRON4, a component of the moving junction in Toxoplasma gondii. 2006;5(7):1169-73.spa
dc.relation.references35. Besteiro S, Michelin A, Poncet J, Dubremetz J-F, Lebrun MJPp. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. 2009;5(2):e1000309.spa
dc.relation.references36. Giovannini D, Späth S, Lacroix C, Perazzi A, Bargieri D, Lagal V, et al. Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa. 2011;10(6):591-602.spa
dc.relation.references37. Quintana MdP, Ch’ng J-H, Zandian A, Imam M, Hultenby K, Theisen M, et al. SURGE complex of Plasmodium falciparum in the rhoptry-neck (SURFIN4. 2- RON4-GLURP) contributes to merozoite invasion. 2018;13(8):e0201669.spa
dc.relation.references38. Lew VL, Tiffert TJTip. Is invasion efficiency in malaria controlled by pre invasion events? 2007;23(10):481-4.spa
dc.relation.references39. Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. 2011;480(7378):534-7.spa
dc.relation.references40. Patarroyo MA, Molina-Franky J, Gómez M, Arévalo-Pinzón G, Patarroyo MEJIjoms. Hotspots in plasmodium and RBC receptor-ligand interactions: Key pieces for inhibiting malarial parasite invasion. 2020;21(13):4729.spa
dc.relation.references41. Sim B, Chitnis C, Wasniowska K, Hadley T, Miller LJS. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. 1994;264(5167):1941-4.spa
dc.relation.references42. Angrisano F, Riglar DT, Sturm A, Volz JC, Delves MJ, Zuccala ES, et al. Spatial localisation of actin filaments across developmental stages of the malaria parasite. 2012;7(2):e32188.spa
dc.relation.references43. Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, et al. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. 2011;108(32):13275-80.spa
dc.relation.references44. Arévalo-Pinzón G, Curtidor H, Abril J, Patarroyo MAJMj. Annotation and characterization of the Plasmodium vivax rhoptry neck protein 4 (Pv RON4). 2013;12(1):1-10.spa
dc.relation.references45. Nozaki M, Baba M, Tachibana M, Tokunaga N, Torii M, Ishino TJM. Detection of the rhoptry neck protein complex in Plasmodium sporozoites and its contribution to sporozoite invasion of salivary glands. 2020;5(4).spa
dc.relation.references46. Patarroyo ME, Salazar LM, Cifuentes G, Lozano JM, Delgado G, Rivera Z, et al. Protective cellular immunity against P. falciparum malaria merozoites is associated with a different P7 and P8 residue orientation in the MHC–peptide–TCR complex. 2006;88(2):219-30.spa
dc.relation.references47. Miller LH, Ackerman HC, Su X-z, Wellems TEJNm. Malaria biology and disease pathogenesis: insights for new treatments. 2013;19(2):156-67.spa
dc.relation.references48. Organization WH. World malaria report 2020: 20 years of global progress and challenges. 2020.spa
dc.relation.references49. Cowman AF, Crabb BSJC. Invasion of red blood cells by malaria parasites. 2006;124(4):755-66.spa
dc.relation.references50. Warrell DA. Clinical features of malaria. Essential malariology: CRC Press; 2017. p. 191-205.spa
dc.relation.references51. Salud OPdl. Directrices para el tratamiento de la malaria. OPS Washington, DC; 2011.spa
dc.relation.references52. Gueirard P, Tavares J, Thiberge S, Bernex F, Ishino T, Milon G, et al. Development of the malaria parasite in the skin of the mammalian host. 2010;107(43):18640-5.spa
dc.relation.references53. Rowe JA, Claessens A, Corrigan RA, Arman MJErimm. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. 2009;11.spa
dc.relation.references54. (CDC) CfDCaP. Where Malaria Occurs 2020 [updated April 9, 2020. Available from: https://www.cdc.gov/malaria/about/distribution.html.spa
dc.relation.references55. Pradel G, Frevert UJH. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. 2001;33(5):1154-65.spa
dc.relation.references56. Kori LD, Valecha N, Anvikar ARJJoVBD. Insights into the early liver stage biology of Plasmodium. 2018;55(1):9.spa
dc.relation.references57. Radfar A, Méndez D, Moneriz C, Linares M, Marín-García P, Puyet A, et al. Synchronous culture of Plasmodium falciparum at high parasitemia levels. 2009;4(12):1899.spa
dc.relation.references58. Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH, et al. Malaria: progress, perils, and prospects for eradication. 2008;118(4):1266-76.spa
dc.relation.references59. Kuehn A, Pradel GJJoB, Biotechnology. The coming-out of malaria gametocytes. 2010;2010.spa
dc.relation.references60. Lacroix R, Mukabana WR, Gouagna LC, Koella JCJPB. Malaria infection increases attractiveness of humans to mosquitoes. 2005;3(9):e298.spa
dc.relation.references61. Wright GJ, Rayner JCJPP. Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. 2014;10(3):e1003943.spa
dc.relation.references62. Sultan AA, Thathy V, Frevert U, Robson KJ, Crisanti A, Nussenzweig V, et al. TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. 1997;90(3):511-22.spa
dc.relation.references63. Sherling ES, Perrin AJ, Knuepfer E, Russell MR, Collinson LM, Miller LH, et al. The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion. 2019;15(9):e1008049.spa
dc.relation.references64. Hanssen E, Goldie KN, Tilley LJMicb. Ultrastructure of the asexual blood stages of Plasmodium falciparum. 2010;96:93-116.spa
dc.relation.references65. Tonkin CJ, Pearce JA, McFadden GI, Cowman AFJCoim. Protein targeting to destinations of the secretory pathway in the malaria parasite Plasmodium falciparum. 2006;9(4):381-7.spa
dc.relation.references66. Zuccala ES, Gout AM, Dekiwadia C, Marapana DS, Angrisano F, Turnbull L, et al. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite. 2012;7(9):e46160.spa
dc.relation.references67. Singh S, Alam MM, Pal-Bhowmick I, Brzostowski JA, Chitnis CEJPP. Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. 2010;6(2):e1000746.spa
dc.relation.references68. Knuepfer E, Suleyman O, Dluzewski AR, Straschil U, O'Keeffe AH, Ogun SA, et al. RON 12, a novel P lasmodium‐specific rhoptry neck protein important for parasite proliferation. 2014;16(5):657-72.spa
dc.relation.references69. Francia ME, Jordan CN, Patel JD, Sheiner L, Demerly JL, Fellows JD, et al. Cell division in Apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella. 2012;10(12):e1001444.spa
dc.relation.references70. Blackman MJ, Bannister LHJM, parasitology b. Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. 2001;117(1):11-25.spa
dc.relation.references71. Frevert U, Sinnis P, Cerami C, Shreffler W, Takacs B, Nussenzweig VJTJoem. Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. 1993;177(5):1287-98.spa
dc.relation.references72. Müller H, Scarselli E, Crisanti AJP. Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum in parasite-host cell interactions. 1993;35:69-72.spa
dc.relation.references73. Mota MM, Pradel G, Vanderberg JP, Hafalla JC, Frevert U, Nussenzweig RS, et al. Migration of Plasmodium sporozoites through cells before infection. 2001;291(5501):141-4.spa
dc.relation.references74. Risco-Castillo V, Topçu S, Marinach C, Manzoni G, Bigorgne AE, Briquet S, et al. Malaria sporozoites traverse host cells within transient vacuoles. 2015;18(5):593-603.spa
dc.relation.references75. Kumar KA, Garcia CR, Chandran VR, Van Rooijen N, Zhou Y, Winzeler E, et al. Exposure of Plasmodium sporozoites to the intracellular concentration of potassium enhances infectivity and reduces cell passage activity. 2007;156(1):32- 40.spa
dc.relation.references76. Carrolo M, Giordano S, Cabrita-Santos L, Corso S, Vigário AM, Silva S, et al. Hepatocyte growth factor and its receptor are required for malaria infection. 2003;9(11):1363-9.spa
dc.relation.references77. Coppi A, Tewari R, Bishop JR, Bennett BL, Lawrence R, Esko JD, et al. Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. 2007;2(5):316-27.spa
dc.relation.references78. Ishino T, Yano K, Chinzei Y, Yuda MJPB. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. 2004;2(1):e4.spa
dc.relation.references79. Ishino T, Chinzei Y, Yuda MJCm. A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. 2005;7(2):199-208.spa
dc.relation.references80. Kariu T, Ishino T, Yano K, Chinzei Y, Yuda MJMm. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. 2006;59(5):1369-79.spa
dc.relation.references81. Jimah JR, Salinas ND, Sala-Rabanal M, Jones NG, Sibley LD, Nichols CG, et al. Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore dependent disruption. 2016;5:e20621.spa
dc.relation.references82. Sinnis P, Coppi AJPi. A long and winding road: the Plasmodium sporozoite's journey in the mammalian host. 2007;56(3):171-8.spa
dc.relation.references83. Pinzon-Ortiz C, Friedman J, Esko J, Sinnis PJJoBC. The Binding of the Circumsporozoite Protein to Cell Surface Heparan Sulfate Proteoglycans Is Required for PlasmodiumSporozoite Attachment to Target Cells. 2001;276(29):26784-91.spa
dc.relation.references84. Matuschewski K, Nunes AC, Nussenzweig V, Ménard RJTEj. Plasmodium sporozoite invasion into insect and mammalian cells is directed by the same dual binding system. 2002;21(7):1597-606.spa
dc.relation.references85. Yang AS, Lopaticki S, O'Neill MT, Erickson SM, Douglas DN, Kneteman NM, et al. AMA1 and MAEBL are important for Plasmodium falciparum sporozoite infection of the liver. 2017;19(9):e12745spa
dc.relation.references86. Silvie O, Rubinstein E, Franetich J-F, Prenant M, Belnoue E, Rénia L, et al. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. 2003;9(1):93-6.spa
dc.relation.references87. Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJ, Richards JSJFmr. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. 2016;40(3):343-72.spa
dc.relation.references88. Lin CS, Uboldi AD, Epp C, Bujard H, Tsuboi T, Czabotar PE, et al. Multiple Plasmodium falciparum merozoite surface protein 1 complexes mediate merozoite binding to human erythrocytes. 2016;291(14):7703-15.spa
dc.relation.references89. Baldwin MR, Li X, Hanada T, Liu S-C, Chishti AHJB, The Journal of the American Society of Hematology. Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. 2015;125(17):2704-11.spa
dc.relation.references90. Kobayashi K, Takano R, Takemae H, Sugi T, Ishiwa A, Gong H, et al. Analyses of interactions between heparin and the apical surface proteins of Plasmodium falciparum. 2013;3(1):1-11.spa
dc.relation.references91. Rayner JC, Galinski MR, Ingravallo P, Barnwell JWJPotNAoS. Two Plasmodium falciparum genes express merozoite proteins that are related to Plasmodium vivax and Plasmodium yoelii adhesive proteins involved in host cell selection and invasion. 2000;97(17):9648-53.spa
dc.relation.references92. Lopaticki S, Maier AG, Thompson J, Wilson DW, Tham W-H, Triglia T, et al. Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. 2011;79(3):1107-17.spa
dc.relation.references93. Ashline DJ, Duk M, Lukasiewicz J, Reinhold VN, Lisowska E, Jaskiewicz EJG. The structures of glycophorin CN-glycans, a putative component of the GPC receptor site for Plasmodium falciparum EBA-140 ligand. 2015;25(5):570-81.spa
dc.relation.references94. Rydzak J, Kaczmarek R, Czerwinski M, Lukasiewicz J, Tyborowska J, Szewczyk B, et al. The baculovirus-expressed binding region of Plasmodium falciparum EBA-140 ligand and its glycophorin C binding specificity. 2015;10(1):e0115437.spa
dc.relation.references95. Vera-Bravo R, Valbuena JJ, Ocampo M, Garcia JE, Rodriguez LE, Puentes A, et al. Amino terminal peptides from the Plasmodium falciparum EBA 181/JESEBL protein bind specifically to erythrocytes and inhibit in vitro merozoite invasion. 2005;87(5):425-36.spa
dc.relation.references96. Mayer DG, Cofie J, Jiang L, Hartl DL, Tracy E, Kabat J, et al. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1. 2009;106(13):5348-52.spa
dc.relation.references97. Baum J, Chen L, Healer J, Lopaticki S, Boyle M, Triglia T, et al. Reticulocyte binding protein homologue 5–an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. 2009;39(3):371-80.spa
dc.relation.references98. Tham W-H, Wilson DW, Lopaticki S, Schmidt CQ, Tetteh-Quarcoo PB, Barlow PN, et al. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. 2010;107(40):17327-32.spa
dc.relation.references99. Reddy KS, Amlabu E, Pandey AK, Mitra P, Chauhan VS, Gaur DJPotNAoS. Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. 2015;112(4):1179-84.spa
dc.relation.references100. Chen L, Lopaticki S, Riglar DT, Dekiwadia C, Uboldi AD, Tham W-H, et al. An EGF-like protein forms a complex with PfRh5 and is required for invasion of human erythrocytes by Plasmodium falciparum. 2011;7(9):e1002199.spa
dc.relation.references101. Volz JC, Yap A, Sisquella X, Thompson JK, Lim NT, Whitehead LW, et al. Essential role of the PfRh5/PfRipr/CyRPA complex during Plasmodium falciparum invasion of erythrocytes. 2016;20(1):60-71.spa
dc.relation.references102. Wong W, Huang R, Menant S, Hong C, Sandow JJ, Birkinshaw RW, et al. Structure of Plasmodium falciparum Rh5–CyRPA–ripr invasion complex. 2019;565(7737):118-21.spa
dc.relation.references103. Galaway F, Drought LG, Fala M, Cross N, Kemp AC, Rayner JC, et al. P113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5. 2017;8(1):1-11.spa
dc.relation.references104. Vulliez-Le Normand B, Tonkin ML, Lamarque MH, Langer S, Hoos S, Roques M, et al. Structural and functional insights into the malaria parasite moving junction complex. 2012;8(6):e1002755.spa
dc.relation.references105. Healer J, Crawford S, Ralph S, McFadden G, Cowman AFJI, immunity. Independent translocation of two micronemal proteins in developing Plasmodium falciparum merozoites. 2002;70(10):5751-8.spa
dc.relation.references106. Hossain ME, Dhawan S, Mohmmed AJPr. The cysteine-rich regions of Plasmodium falciparum RON2 bind with host erythrocyte and AMA1 during merozoite invasion. 2012;110(5):1711-21.spa
dc.relation.references107. Koussis K, Withers‐Martinez C, Yeoh S, Child M, Hackett F, Knuepfer E, et al. A multifunctional serine protease primes the malaria parasite for red blood cell invasion. 2009;28(6):725-35.spa
dc.relation.references108. Straub KW, Cheng SJ, Sohn CS, Bradley PJJCm. Novel components of the Apicomplexan moving junction reveal conserved and coccidia‐restricted elements. 2009;11(4):590-603.spa
dc.relation.references109. Coelho CH, Doritchamou JYA, Zaidi I, Duffy PE. Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. Nature Publishing Group; 2017.spa
dc.relation.references110. Epstein J, Tewari K, Lyke K, Sim B, Billingsley P, Laurens M, et al. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. 2011;334(6055):475-80.spa
dc.relation.references111. Vaughan A, Wang R, Kappe SHJHv. Genetically engineered, attenuated whole-cell vaccine approaches for malaria. 2010;6(1):107-13.spa
dc.relation.references112. Ewer KJ, Sierra-Davidson K, Salman AM, Illingworth JJ, Draper SJ, Biswas S, et al. Progress with viral vectored malaria vaccines: A multi-stage approach involving “unnatural immunity”. 2015;33(52):7444-51.spa
dc.relation.references113. Nascimento I, Leite LJBjom, research b. Recombinant vaccines and the development of new vaccine strategies. 2012;45:1102-11.spa
dc.relation.references114. Stoute JA, Heppner DG, Mason CJ, Siangla J, Opollo MO, Kester KE, et al. Phase 1 safety and immunogenicity trial of malaria vaccine RTS, S/AS02A in adults in a hyperendemic region of western Kenya. 2006;75(1):166-70.spa
dc.relation.references115. Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVJSr. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. 2017;7(1):1-15.spa
dc.relation.references116. Molina-Franky J, Cuy-Chaparro L, Camargo A, Reyes C, Gómez M, Salamanca DR, et al. Plasmodium falciparum pre-erythrocytic stage vaccine development. 2020;19(1):1-18.spa
dc.relation.references117. Curtidor H, Patiño LC, Arévalo-Pinzón G, Vanegas M, Patarroyo ME, Patarroyo MAJP. Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. 2014;53:210-7.spa
dc.relation.references118. Bermúdez M, Arévalo‐Pinzón G, Rubio L, Chaloin O, Muller S, Curtidor H, et al. Receptor–ligand and parasite protein–protein interactions in Plasmodium vivax: analysing rhoptry neck proteins 2 and 4. 2018;20(7):e12835.spa
dc.relation.references119. Guerra ÁP, Calvo EP, Wasserman M, Chaparro-Olaya JJB. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli. 2016;36:97- 108spa
dc.relation.references120. Houghten RAJPotNAoS. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. 1985;82(15):5131-5.spa
dc.relation.references121. Merrifield RBJJotACS. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. 1963;85(14):2149-54.spa
dc.relation.references122. Ocampo M, Urquiza M, Guzman F, Rodriguez L, Suarez J, Curtidor H, et al. Two MSA 2 peptides that bind to human red blood cells are relevant to Plasmodium falciparum merozoite invasion. 2000;55(3):216-23.spa
dc.relation.references123. Valbuena JJ, Bravo RV, Ocampo M, Lopez R, Rodriguez LE, Curtidor H, et al. Identifying Plasmodium falciparum EBA-175 homologue sequences that specifically bind to human erythrocytes. 2004;321(4):835-44.spa
dc.relation.references124. Arévalo-Pinzón G, Curtidor H, Muñoz M, Suarez D, Patarroyo MA, Patarroyo MEJV. Rh1 high activity binding peptides inhibit high percentages of Plasmodium falciparum FVO strain invasion. 2013;31(14):1830-7.spa
dc.relation.references125. Lambros C, Vanderberg JPJTJop. Synchronization of Plasmodium falciparum erythrocytic stages in culture. 1979:418-20.spa
dc.relation.references126. Urquiza M, Suarez JE, Cardenas C, Lopez R, Puentes A, Chavez F, et al. Plasmodium falciparum AMA-1 erythrocyte binding peptides implicate AMA-1 as erythrocyte binding protein. 2000;19(4-5):508-13.spa
dc.relation.references127. Buitrago SP, Garzon-Ospina D, Patarroyo MA. Size polymorphism and low sequence diversity in the locus encoding the Plasmodium vivax rhoptry neck protein 4 (PvRON4) in Colombian isolates. Malar J. 2016;15(1):501.spa
dc.relation.references128. URQUIZA M, RODRIGUEZ LE, SUAREZ JE, GUZMÁN F, OCAMPO M, CURTIDOR H, et al. Identification of Plasmodium falciparum MSP‐1 peptides able to bind to human red blood cells. 1996;18(10):515-26.spa
dc.relation.references129. Hein P, Michel MC, Leineweber K, Wieland T, Wettschureck N, Offermanns S. Receptor and binding studies. Practical methods in cardiovascular research: Springer; 2005. p. 723-83.spa
dc.relation.references130. Maguire JJ, Kuc RE, Davenport AP. Radioligand binding assays and their analysis. Receptor binding techniques: Springer; 2012. p. 31-77.spa
dc.relation.references131. Gaur D, Mayer DG, Miller LHJIjfp. Parasite ligand–host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. 2004;34(13-14):1413- 29.spa
dc.relation.references132. Wasserman M, Alarcón C, Mendoza PMJTAjotm, hygiene. Effects of Ca++ depletion on the asexual cell cycle of Plasmodium falciparum. 1982;31(4):711-7.spa
dc.relation.references133. Aikawa M, Miller LH, Johnson J, Rabbege JJJoCB. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. 1978;77(1):72-82.spa
dc.relation.references134. Takemae H, Sugi T, Kobayashi K, Gong H, Ishiwa A, Recuenco FC, et al. Characterization of the interaction between Toxoplasma gondii rhoptry neck protein 4 and host cellular β-tubulin. 2013;3(1):1-9.spa
dc.relation.references135. Takemae H, Kobayashi K, Sugi T, Han Y, Gong H, Ishiwa A, et al. Toxoplasma gondii RON4 binds to heparan sulfate on the host cell surface. 2018;67(2):123-30.spa
dc.relation.references136. Malleret B, Li A, Zhang R, Tan KS, Suwanarusk R, Claser C, et al. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. 2015;125(8):1314-24.spa
dc.relation.references137. Arévalo-Pinzón G, Garzón-Ospina D, Pulido FA, Bermúdez M, Forero Rodríguez J, Rodríguez-Mesa XM, et al. Plasmodium vivax cell traversal protein for ookinetes and sporozoites (CelTOS) functionally restricted regions are involved in specific host-pathogen interactions. 2020:119.spa
dc.relation.references138. Williams AR, Douglas AD, Miura K, Illingworth JJ, Choudhary P, Murungi LM, et al. Enhancing blockade of Plasmodium falciparum erythrocyte invasion: assessing combinations of antibodies against PfRH5 and other merozoite antigens. 2012;8(11):e1002991.spa
dc.relation.references139. Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CAJPo. Targeting sialic acid dependent and independent pathways of invasion in Plasmodium falciparum. 2012;7(1):e30251.spa
dc.relation.references140. Hill AVJPTotRSBBS. Vaccines against malaria. 2011;366(1579):2806-14.spa
dc.relation.references141. Ouattara A, Mu J, Takala-Harrison S, Saye R, Sagara I, Dicko A, et al. Lack of allele-specific efficacy of a bivalent AMA1 malaria vaccine. 2010;9(1):1-13.spa
dc.relation.references142. Healer J, Wong W, Thompson JK, He W, Birkinshaw RW, Miura K, et al. Neutralising antibodies block the function of Rh5/Ripr/CyRPA complex during invasion of Plasmodium falciparum into human erythrocytes. 2019;21(7):e13030.spa
dc.relation.references143. Saul A, Fay MPJPo. Human immunity and the design of multi-component, single target vaccines. 2007;2(9):e850.spa
dc.relation.references144. Azasi Y, Gallagher SK, Diouf A, Dabbs RA, Jin J, Mian SY, et al. Bliss' and Loewe's additive and synergistic effects in Plasmodium falciparum growth inhibition by AMA1-RON2L, RH5, RIPR and CyRPA antibody combinations. 2020;10(1):1-12.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.lembVacunasspa
dc.subject.lembVaccineseng
dc.subject.lembParásitosspa
dc.subject.lembParasiteseng
dc.subject.proposalmalariaspa
dc.subject.proposalPlasmodium falciparum
dc.subject.proposalproteína del cuello de las roptrias 4spa
dc.subject.proposalpéptidos sintéticos.spa
dc.subject.proposalrhoptry neck protein 4eng
dc.subject.proposalsynthetic peptideseng
dc.titleDeterminación y caracterización de las regiones de unión de PfRON4 a eritrocitos y hepatocitos humanosspa
dc.title.translatedDetermination and characterization PfRON4's binding regions to human erythrocytes and hepatocyteseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026288216.2022.pdf
Tamaño:
3.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: