Evaluación de la actividad de nanoencapsulados de Anfotericina B en aislamientos ambientales de Mucorales con impacto clínico
dc.contributor.advisor | Ceballos Garzón, Ándres | |
dc.contributor.author | Gutiérrez Pardo, Yinneth Marcela | |
dc.contributor.researchgroup | Enfermedades Infecciosas: Unidad de Investigación en Proteómica y Micosis Humana Pontificia Universidad Javeriana PUJ Macromoléculas, Departamento de Quìmica | spa |
dc.date.accessioned | 2024-02-05T16:59:28Z | |
dc.date.available | 2024-02-05T16:59:28Z | |
dc.date.issued | 2023-07-26 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | La mucormicosis es una infección fúngica causada por hongos del orden Mucorales, estos hongos se caracterizan por ser ubicuos. Sin embargo, algunas especies tienen factores de virulencia que les han permitido colonizar hospederos humanos, en su mayoría con un sistema inmune debilitado. Las tasas de mortalidad asociadas pueden alcanzar hasta el 90% en los casos de infección diseminada. Estas elevadas tasas de mortalidad se deben en gran medida a la resistencia innata a los fármacos antifúngicos, la dificultad para identificar el agente causal de esta micosis y la toxicidad que genera la anfotericina B (AMB), el cual es el antifúngico de mayor eficiencia contra estos hongos. Entre las nuevas estrategias terapéuticas, las nanopartículas parecen ser prometedoras, debido a que estas permiten aumentar el tiempo de vida media de los fármacos y mejoran la liberación de estos disminuyendo así la toxicidad. Este estudio tuvo como objetivo evaluar nanoencapsulados de AMB contra especies de Mucorales ambientales que tienen impacto clínico, con el fin de establecer su efectividad In vitro e In vivo. Para ello se utilizó la metodología de microdilución en caldo siguiendo los lineamientos del European Committee on Antimicrobial Susceptibility Testing (EUCAST), lo cual permitió obtener y comparar las concentraciones mínimas inhibitorias (CMIs) entre la formulación tradicional vs los encapsulados de AMB (Pol I, Pol II, Pol III, Pol IV y Pol V). Se evidencio que el nanoencapsulado AMB Pol III permitió reducir los valores de CMI en comparación con la AMB convencional para los aislamientos de Mucor circinelloides aquí evaluados. Además, en el modelo In vivo (Galleria mellonella), se observó una reducción en la mortalidad de las larvas infectadas con Mucor circinelloides en comparación con las larvas que no recibieron tratamiento y que fueron tratadas con AMB convencional. (Texto tomado de la fuente) | spa |
dc.description.abstract | Mucormycosis is a fungal infection caused by fungi of the order Mucorales, these fungi are characterized by being ubiquitous. However, some species have virulence factors that have allowed them to colonize human hosts, mostly with a weakened immune system. Associated mortality rates can reach up to 90% in cases of disseminated infection. These high mortality rates are largely due to the innate resistance to antifungal drugs, the difficulty in identifying the causal agent of this mycosis and the toxicity generated by amphotericin B (AMB), which is the most efficient antifungal drug against these fungi. Among the new therapeutic strategies, nanoparticles seem to be promising, since they increase the half-life of drugs and improve drug release, thus reducing toxicity. The objective of this study was to evaluate nanoencapsulated AMB against environmental Mucorales species with clinical impact, in order to establish their effectiveness In vitro and In vivo. For this purpose, the broth microdilution methodology was used following the guidelines of the European Committee on Antimicrobial Susceptibility Testing (EUCAST), which allowed obtaining and comparing the minimum inhibitory concentrations (MICs) between the traditional formulation vs. the AMB encapsulates (Pol I, Pol II, Pol III, Pol IV and Pol V). It was evidenced that the AMB Pol III nanoencapsulated allowed to reduce MIC values compared to conventional AMB for the Mucor circinelloides isolates evaluated here. Furthermore, in the In vivo model (Galleria mellonella), a reduction in the mortality of larvae infected with Mucor circinelloides was observed compared to untreated larvae treated with conventional AMB. | eng |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 72 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85611 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | spa |
dc.relation.references | Hagan, A. (2018). Invasive Fungal Infections: A Creeping Public Health Threat. American Society for Microbiology. | spa |
dc.relation.references | De Pauw B. E. (2011). What are fungal infections?. Mediterranean journal of hematology and infectious diseases, 3(1), e2011001. https://doi.org/10.4084/MJHID.2011.001 | spa |
dc.relation.references | Hoenigl, M., Seidel, D., Sprute, R., Cunha, C., Oliverio, M., Goldman, G., Ibrahim, A., Carvalho, A. (2022) . COVID-19-associated fungal infections. Nat Microbiol 7, 1127–1140. https://doi.org/10.1038/s41564-022-01172-2 | spa |
dc.relation.references | Martin Gomez, M.T., Salavert Lletib, M. (2021). Mucormycosis: Current and future management perspective. Revista Iberoamericana de Micología, 38 (2), 91-100. https://doi.org/10.1016/j.riam.2021.04.003 | spa |
dc.relation.references | Zamudio, A; Vargas, MC; Camacho, F. (2021). Cutaneous Mucormycosis, life–threatening unsuspected mycosis, case report and review. Rev Asoc Colomb Dermatol. Vol 29(4):282-294 | spa |
dc.relation.references | Prakash, H., & Chakrabarti, A. (2019). Global Epidemiology of Mucormycosis. Journal of Fungi, 5(1), 26. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof5010026 | spa |
dc.relation.references | Skiada, A., Pavleas, I., & Drogari-Apiranthitou, M. (2020). Epidemiology and Diagnosis of Mucormycosis: An Update. Journal of Fungi, 6(4), 265. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof6040265 | spa |
dc.relation.references | Garg, D., Muthu, V., Sehgal, I. S., Ramachandran, R., Kaur, H., Bhalla, A., Puri, G. D., Chakrabarti, A., & Agarwal, R. (2021). Coronavirus Disease (Covid-19) Associated Mucormycosis (CAM): Case Report and Systematic Review of Literature. Mycopathologia, 186(2), 289–298. https://doi.org/10.1007/s11046-021-00528-2 | spa |
dc.relation.references | Macedo, D., Leonardelli, F., Dudiuk, C., Vitale, R. G., Del Valle, E., Giusiano, G., Gamarra, S., et al. (2019). In Vitro and In Vivo Evaluation of Voriconazole-Containing Antifungal Combinations against Mucorales Using a Galleria mellonella Model of Mucormycosis. Journal of Fungi, 5(1), 5. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof5010005 | spa |
dc.relation.references | Sipsas, N. V., Gamaletsou, M. N., Anastasopoulou, A., & Kontoyiannis, D. P. (2018). Therapy of Mucormycosis. Journal of fungi (Basel, Switzerland), 4(3), 90. https://doi.org/10.3390/jof4030090 | spa |
dc.relation.references | Cavassin, F.B., Baú-Carneiro, J.L., Vilas-Boas, R.R. Queiroz-Telles, F . (2021). Sixty years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections. Infect Dis Ther 10, 115–147 https://doi.org/10.1007/s40121-020-00382-7 | spa |
dc.relation.references | Palmis, B., Alanio, A., Lortholary, O., & Lanternier, F. (2018). Recent advances in the understanding and management of mucormycosis. F1000Research, 7, F1000 Faculty Rev-1429. https://doi.org/10.12688/f1000research.15081.1 | spa |
dc.relation.references | Villamil-Poveda, J.C. (2019). Evaluación de la eficacia de formulaciones de Anfotericina B encapsulada en micelas poliméricas como opción terapéutica en un modelo de Candidiasis en larvas de Galleria mellonella. Tesis de Maestría, Universidad Nacional de Colombia. https://repositorio.unal.edu.co/bitstream/handle/unal/75903/1019014737.2019.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Richardson, M.D.; Rautemaa-Richardson, R. (2020). Biotic Environments Supporting the Persistence of Clinically Relevant Mucormycetes. J. Fungi, 6 (1), 4. https://doi.org/10.3390/jof6010004 | spa |
dc.relation.references | Walther, Wagner, & Kurzai. (2019). Updates on the Taxonomy of Mucorales with an Emphasis on Clinically Important Taxa. Journal of Fungi, 5(4), 106. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof5040106 | spa |
dc.relation.references | Borman, A. M., Fraser, M., Patterson, Z., Palmer, M. D., & Johnson, E. M. (2021). In Vitro Antifungal Drug Resistance Profiles of Clinically Relevant Members of the Mucorales (Mucoromycota) Especially with the Newer Triazoles. Journal of fungi (Basel, Switzerland), 7(4), 271. https://doi.org/10.3390/jof7040271 | spa |
dc.relation.references | Garre,V. (2022). Recent Advances and Future Directions in the Understanding of Mucormycosis. Frontiers in Cellular and Infection Microbiology vo.12 10.3389/fcimb.2022.850581, 2235-2988 | spa |
dc.relation.references | Castrejón-Pérez, A. D., Welsh, E. C., Miranda, I., Ocampo-Candiani, J., & Welsh, O. (2017). Cutaneous mucormycosis. Anais brasileiros de dermatologia, 92(3), 304–311. https://doi.org/10.1590/abd1806-4841.20176614 | spa |
dc.relation.references | CDC (2020). Mucormycosis Statistics. Centers for Disease Control and Prevention. https://www.cdc.gov/fungal/diseases/mucormycosis/statistics.html | spa |
dc.relation.references | Serris, A., Danion, F., & Lanternier, F. (2019). Disease Entities in Mucormycosis. Journal of Fungi, 5(1), 23. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof5010023 | spa |
dc.relation.references | Morales-López, S., Ceballos-Garzón, A. & Parra-Giraldo, C.M. Zygomycete Fungi Infection in Colombia: Literature Review. Curr Fungal Infect Rep 12, 149–154 (2018). https://doi.org/10.1007/s12281-018-0326-9 | spa |
dc.relation.references | Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L., Bonito, G., Corradi, N., Grigoriev, I., Gryganskyi, A., James, T. Y., O'Donnell, K., Roberson, R. W., Taylor, T. N., Uehling, J., Vilgalys, R., White, M. M., & Stajich, J. E. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108(5), 1028–1046. https://doi.org/10.3852/16-042 | spa |
dc.relation.references | Badali, H. Cañete-Gibas, C. McCarthy, D. Patterson, H, Sanders, C. David, M. Mele, J. Fan, H. Wiederhold, N. (2021). Epidemiology and Antifungal Susceptibilities of Mucoralean Fungi in Clinical Samples from the United States. Journal of clinical Microbiology . Vol 59 (9). https://doi.org/10.1128/JCM.01230-21 | spa |
dc.relation.references | Nucci,M. Engelhardt, M. Hamed, K.(2019). Mucormycosis in South America: A review of 143 reported cases. Mycoses vol. 62(9) . https://doi.org/10.1111/myc.12958 | spa |
dc.relation.references | García-Carnero, L. C., & Mora-Montes, H. M. (2022). Mucormycosis and COVID-19-Associated Mucormycosis: Insights of a Deadly but Neglected Mycosis. Journal of fungi (Basel, Switzerland), 8(5), 445. https://doi.org/10.3390/jof8050445 | spa |
dc.relation.references | Brinder, U. Maurer, E. Lass-Flor. C. (2014). Mucormycosis–from the pathogens to the disease. Clin Microbiol Infect; 20(6): 60–66. https://doi.org/10.1111/1469-0691.12566 | spa |
dc.relation.references | Katragkou,A. Walsh, J. Roilides, E. (2014). Why is mucormycosis more difficult to cure than more common mycoses?. European Society of Clinical Infectious Diseases. https://doi.org/10.1111/1469-0691.12466 | spa |
dc.relation.references | Petrikkos, G. Tsioutis, C.(2018). Recent Advances in the Pathogenesis of Mucormycosis. Clinical Therapeutics. https://doi.org/10.1016/j.clinthera.2018.03.009. | spa |
dc.relation.references | Ibrahim,A.S. Spellberg, B. Walsh,T. Kontoyiannis, D. (2012). Pathogenesis of Mucormycosis, Clinical Infectious Diseases, Volume 54, Issue suppl_1, Pages S16–S22, https://doi.org/10.1093/cid/cir865 | spa |
dc.relation.references | García-Vidal, C. Salavert, M. (2014). Inmunopatología de las micosis invasivas por hongos filamentosos.Revista Iberoamericana de Micología. Vol. 31. Núm. 4. páginas 219-228 10.1016/j.riam.2014.09.001 | spa |
dc.relation.references | Álvarez,F. Fernández-Ruiz, M. Aguado, J. M. ( 2013). Hierro e infección fúngica invasiva. Revista Iberoamericana de Microbiología. 30 (4): 217-225. DOI: 10.1016/j.riam.2013.04.002 | spa |
dc.relation.references | Tahiri, G., Lax, C., Cánovas-Márquez, J. T., Carrillo-Marín, P., Sanchis, M., Navarro, E., Garre, V., et al. (2023). Mucorales and Mucormycosis: Recent Insights and Future Prospects. Journal of Fungi, 9(3), 335. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof9030335 | spa |
dc.relation.references | Lugito, N. P. H., & Cucunawangsih, C. (2021). How Does Mucorales Benefit from the Dysregulated Iron Homeostasis During SARS-CoV-2 Infection?. Mycopathologia, 186(6), 877–882. https://doi.org/10.1007/s11046-021-00594-6 | spa |
dc.relation.references | Singh, A. Ahmad, N. Varadarajan, Naval Vikram,A. Singh, T.P. Sharma, S. Sharma, P. (2021). Lactoferrin, a potential iron-chelator as an adjunct treatment for mucormycosis – A comprehensive review. International Journal of Biological Macromolecules. Volume 187,Pages 988-998, https://doi.org/10.1016/j.ijbiomac.2021.07.156. | spa |
dc.relation.references | Challa, S. (2019). Mucormycosis: Pathogenesis and Pathology. Curr Fungal Infect Rep 13, 11–20. https://doi.org/10.1007/s12281-019-0337-1 | spa |
dc.relation.references | Lui, M. Spellberg, B. Phan, Q. Fu,Y. Fu,Y. Lee, A.S. Edwards Jr, J.E. Filler,S.G. Ibrahim, A.S. (2010). The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. Clin Invest. 2010;120(6):1914–1924. https://doi.org/10.1172/JCI42164. | spa |
dc.relation.references | Abdelwahab, M.I, Voigt,K. (2019). Pathogenicity patterns of mucormycosis: epidemiology, interaction with immune cells and virulence factors, Medical Mycology, Volume 57, Issue Supplement_2, Pages S245–S256, https://doi.org/10.1093/mmy/myz011 | spa |
dc.relation.references | Lax, C., Pérez-Arques, C., Navarro-Mendoza, M., Cánovas-Márquez, J., Tahiri, G., Pérez-Ruiz, J., Osorio-Concepción, M., et al. (2020). Genes, Pathways, and Mechanisms Involved in the Virulence of Mucorales. Genes, 11(3), 317. MDPI AG. Retrieved from http://dx.doi.org/10.3390/genes11030317 | spa |
dc.relation.references | Biswas, D., Kotwal, A., Kakati, B., & Ahmad, S. (2015). Amphotericin B Resistant Apophysomyces elegans Causing Rhino-oculo-Cerebral Mucormycosis in an Immunocompetent Host. Journal of clinical and diagnostic research : JCDR, 9(8), DD01–DD2. https://doi.org/10.7860/JCDR/2015/13929.6272 | spa |
dc.relation.references | Kumar, A. Gupta, V.(2022). Rhino-orbital Cerebral Mucormycosis.In: StatPearls [Internet] https://www.ncbi.nlm.nih.gov/books/NBK557429/ | spa |
dc.relation.references | Petrikkos, G.Skiada ,A. Lortholary ,O. Roilides , E. Walsh , T. Kontoyiannis, D. (2012). Epidemiology and Clinical Manifestations of Mucormycosis, Clinical Infectious Diseases, Volume 54, Issue suppl_1, Pages S23–S34, https://doi.org/10.1093/cid/cir866 | spa |
dc.relation.references | Cornely, O. A., Alastruey-Izquierdo, A., Arenz, D., Chen, S., Dannaoui, E., Hochhegger, B., Hoenigl, M., Jensen, H. E., Lagrou, K., Lewis, R. E., Mellinghoff, S. C., Mer, M., Pana, Z. D., Seidel, D., Sheppard, D. C., Wahba, R., Akova, M., Alanio, A., Al-Hatmi, A., Arikan-Akdagli, S., … Mucormycosis ECMM MSG Global Guideline Writing Group (2019). Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. The Lancet. Infectious diseases, 19(12), e405–e421. https://doi.org/10.1016/S1473-3099(19)30312-3 | spa |
dc.relation.references | Mohanty, A. Gupta, P. Varshney, S. Kabi, A. Angral, S. (2021). Breaking the mold: a brief review on the diagnostic and treatment approaches of mucormycosis. Int J Otorhinolaryngol Head Neck Surg.7(7)https://dx.doi.org/10.18203/issn.2454-5929.ijohns20212336 | spa |
dc.relation.references | Skiada, A. Lass-Floerl, C. Klimko,N. Ibrahim, A. Roilides, E. Petrikkos,G. (2018). Challenges in the diagnosis and treatment of mucormycosis, Medical Mycology, Volume 56, Issue suppl_1, Pages S93–S101, https://doi.org/10.1093/mmy/myx101 | spa |
dc.relation.references | Hoffmann, K., Pawłowska, J., Walther, G., Wrzosek, M., de Hoog, G. S., Benny, G. L., Kirk, P. M., & Voigt, K. (2013). The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia, 30, 57–76. https://doi.org/10.3767/003158513X666259) | spa |
dc.relation.references | Cruz-Lachica, I. Marquez, I. García-Estrada, R.S. Carrillo-Fasio,J.A. León-Félix, J. Allende-Molar, R. (2017). Identificación de hongos mucorales causantes de la pudrición blanda en frutos de papaya (Carica papaya L.) en México. Rev. mex. fitopatol vol.35 no.3 Texcoco sep. https://doi.org/10.18781/r.mex.fit.1611-3 | spa |
dc.relation.references | Mendoza L, Vilela R, Voelz K, Ibrahim AS, Voigt K, Lee SC. Human Fungal Pathogens of Mucorales and Entomophthorales. Cold Spring Harb Perspect Med. 2014 Nov 6;5(4):a019562. doi: 10.1101/cshperspect.a019562. PMID: 25377138; PMCID: PMC4382724. | spa |
dc.relation.references | Lackner, N., Posch, W., & Lass-Flörl, C. (2021). Microbiological and Molecular Diagnosis of Mucormycosis: From Old to New. Microorganisms, 9(7), 1518. MDPI AG. Retrieved from http://dx.doi.org/10.3390/microorganisms9071518 | spa |
dc.relation.references | Dadwal, S. Kontoyiannis, D. (2018). Recent advances in the molecular diagnosis of mucormycosis. Expert Review of Molecular Diagnostics (18)10 https://doi.org/10.1080/14737159.2018.1522250 | spa |
dc.relation.references | Brunet, K. Rammaert, B. (2020).Mucormycosis treatment: Recommendations, latest advances, and perspectives, Journal de Mycologie Médicale (30) 3,https://doi.org/10.1016/j.mycmed.2020.101007. | spa |
dc.relation.references | Croxatto, A. Prodhom,G. Greud, G. (2012). Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology, FEMS Microbiology Reviews, Volume 36, Issue 2, Pages 380–407, https://doi.org/10.1111/j.1574-6976.2011.00298.x | spa |
dc.relation.references | Robert, M.-G., Cornet, M., Hennebique, A., Rasamoelina, T., Caspar, Y., Pondérand, L., Bidart, M., et al. (2021). MALDI-TOF MS in a Medical Mycology Laboratory: On Stage and Backstage. Microorganisms, 9(6), 1283. MDPI AG. Retrieved from http://dx.doi.org/10.3390/microorganisms9061283 | spa |
dc.relation.references | Wagner, L., de Hoog, S., Alastruey-Izquierdo, A., Voigt, K., Kurzai, O., & Walther, G. (2019). A Revised Species Concept for Opportunistic Mucor Species Reveals Species-Specific Antifungal Susceptibility Profiles. | spa |
dc.relation.references | Danion, F., Coste, A., Le Hyaric, C., Melenotte, C., Lamoth, F., Calandra, T., Garcia-Hermoso, D., et al. (2023). What Is New in Pulmonary Mucormycosis? Journal of Fungi, 9(3), 307. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof9030307 | spa |
dc.relation.references | Muthu, V., Rudramurthy, S.M., Chakrabarti, A. Agarwal, R. (2021). Epidemiology and Pathophysiology of COVID-19-Associated Mucormycosis: India Versus the Rest of the World. Mycopathologia 186, 739–754. https://doi.org/10.1007/s11046-021-00584-8 | spa |
dc.relation.references | Mahalaxmi,I. Jayaramayya, K. Venkatesan, D. Subramaniam, M.D. Renu, K. Vijayakumar, P. Narayanasamy,A. Gopalakrishnan, A. Kumar, N. Sivaprakash, P. Sambasiva Rao, K. Vellingiri, B. (2021). Mucormycosis: An opportunistic pathogen during COVID-19. Environmental Research, Volume 201, 111643, ,https://doi.org/10.1016/j.envres.2021.111643. | spa |
dc.relation.references | Chandley, P., Subba, P., & Rohatgi, S. (2022). COVID-19-Associated Mucormycosis: A Matter of Concern Amid the SARS-CoV-2 Pandemic. Vaccines, 10(8), 1266. MDPI AG. Retrieved from http://dx.doi.org/10.3390/vaccines10081266 | spa |
dc.relation.references | Soare, A. Watkins, T. Bruno, V. (2020). Understanding Mucormycosis in the Age of “Omics”. Front. Genet., Sec. Evolutionary and Genomic Microbiology. Volume 11 - 2020 | https://doi.org/10.3389/fgene.2020.00699 | spa |
dc.relation.references | Carolus, H. Person, S. Lagrou, K. Van dick, P. (2020). Amphotericin B and Other Polyenes-Discovery, clinical use, mode of action and drug resistance. J.Fungi (6)4 https://doi.org/10.3390/jof6040321 | spa |
dc.relation.references | Liu, M. Chen, M. Yang,Z. (2017). Design of amphotericin B oral formulation for antifungal therapy, Drug Delivery, 24:1, 1-9, DOI: 10.1080/10717544.2016.1225852 | spa |
dc.relation.references | Azanza, J. (2021). Anfotericina B liposomal: farmacología clínica, farmacocinética y farmacodinámica. Forum Micológico, doi: 10.1016/j.riam.2021.02.004 | spa |
dc.relation.references | Mesa-Arango, A. C., Scorzoni, L., & Zaragoza, O. (2012). It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Frontiers in microbiology, 3, 286. https://doi.org/10.3389/fmicb.2012.00286 | spa |
dc.relation.references | Sangalli-Leite, F. Scorzoni,L. Mesa-Arango, A.C. Casas,C. Herrero,E. Soares Mendes Gianinni,M.J. Rodríguez-Tudela,J. Cuenca-Estrella,M. Zaragoza,O. (2011). Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst, Microbes and Infection, Volume 13, Issue 5,Pages 457-467,https://doi.org/10.1016/j.micinf.2011.01.015. | spa |
dc.relation.references | Hamill, R.J. Amphotericin B Formulations: A Comparative Review of Efficacy and Toxicity. Drugs 73, 919–934 (2013). https://doi.org/10.1007/s40265-013-0069-4 | spa |
dc.relation.references | Noor A, Preuss CV. (2023). Amphotericin B. In: Stat Pearls [Internet]. Treasure Island (FL): Obtenido de: https://www.ncbi.nlm.nih.gov/books/NBK482327/ | spa |
dc.relation.references | Tonin, F. Steimbach,L. Borba,H. Sanches, A. Wiens,A. Pontarolo, R. Fernandez-Llimos, F. (2017). Efficacy and safety of amphotericin B formulations: a network meta-analysis and a multicriteria decision analysis, Journal of Pharmacy and Pharmacology, Volume 69, Issue 12, Pages 1672–1683, https://doi.org/10.1111/jphp.12802 | spa |
dc.relation.references | Wang, X. Shair, I. Fan, L. Zhao, Z. Nurunnabi, M. Sallam, M. Wu, J. Chen,Z. Yin, L. He, W. (2021). Delivery strategies of amphotericin B for invasive fungal infections. Pharmaceutica Sinica B. Vol 11 (8) 2585-2604. https://doi.org/10.1016/j.apsb.2021.04.010 | spa |
dc.relation.references | Cifani C, Costantino S, Massi M, Berrino L.(2012). Commercially available lipid formulations of amphotericin b: are they bioequivalent and therapeutically equivalent? Acta Biomed ;83(2):154–63.c | spa |
dc.relation.references | Caramalho, R., Tyndall, J.D.A., Monk, B.C. et al. Intrinsic short-tailed azole resistance in mucormycetes is due to an evolutionary conserved amino acid substitution of the lanosterol 14α-demethylase. Sci Rep 7, 15898 (2017). https://doi.org/10.1038/s41598-017-16123-9 | spa |
dc.relation.references | Gollapudy, R. Ajmani, S. Kulkarni, S.A. (2004). Modeling and interactions of Aspergillus fumigatus lanosterol 14-α demethylase `A' with azole antifungals, Bioorganic & Medicinal Chemistry, Volume 12, Issue 11, Pages 2937-2950, https://doi.org/10.1016/j.bmc.2004.03.034. | spa |
dc.relation.references | Ganesan, P., Ganapathy, D., Sekaran, S., Murthykumar, K., Sundramoorthy, A. K., Pitchiah, S., & Shanmugam, R. (2022). Molecular Mechanisms of Antifungal Resistance in Mucormycosis. BioMed research international, 2022, 6722245. https://doi.org/10.1155/2022/6722245 | spa |
dc.relation.references | Chang Z, Billmyre RB, Lee SC, Heitman J (2019) Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides. PLoS Genet 15(2): e1007957. https://doi.org/10.1371/journal.pgen.1007957 | spa |
dc.relation.references | Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., & Alcudia, A. (2020). Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials, 10(7), 1403. MDPI AG. Retrieved from http://dx.doi.org/10.3390/nano10071403 | spa |
dc.relation.references | Sur, S. Rathore, A. Dave, V. Raghava, K. Singh, R. Sadhu, V. (2019). Recent developments in functionalized polymer nanoparticles for efficient drug delivery systems. Nano-Structures & Nano-Objects. Vol (20). https://doi.org/10.1016/j.nanoso.2019.100397 | spa |
dc.relation.references | Zhang, K. Yang, P.P. Zhang, J.P. Wang, L. Wang,H. (2017) Recent advances of transformable nanoparticles for theranostics. Chinese Chemical Letters. Vol 28 (9), 1808-1816. https://doi.org/10.1016/j.cclet.2017.07.001. | spa |
dc.relation.references | Arias-Patron, E. (2020). Caracterización de copolímeros en bloque conjugados como vehículos nanoestructurados para Anfotericina B. Universidad Nacional de Colombia. | spa |
dc.relation.references | Singh, S. Kumar, V. Prakash, R. Agarwal, V. (2011). Nanoparticle based drug delivery system: Advantages and applications. Indian Journal of Science and Technology Vol. 4 (3). https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2011/Issue-3/Article6.pdf | spa |
dc.relation.references | Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., Silva, A. M., Santini, A., & Souto, E. B. (2020). Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules (Basel, Switzerland), 25(16), 3731. https://doi.org/10.3390/molecules25163731 | spa |
dc.relation.references | Díaz-Ariza,I.L. (2014). Evaluación de sistemas micelares catiónicos encapsulados con anfotericina B como alternativa para el tratamiento de biopelículas asociadas a enfermedades orales con presencia de Candida spp. Pontificia Universidad Javeriana. | spa |
dc.relation.references | Pereira, M.F. Rossi, C. da Silva,G. Nogueira-Rosa,J. Soares -Bazzolli,D.(2020) Galleria mellonella as an infection model: an in-depth look at why it works and practical considerations for successful application, Pathogens and Disease, Volume 78, Issue 8, ftaa056, https://doi.org/10.1093/femspd/ftaa056 | spa |
dc.relation.references | Kavanagh, K., & Sheehan, G. (2018). The Use of Galleria mellonella Larvae to Identify Novel Antimicrobial Agents against Fungal Species of Medical Interest. Journal of fungi (Basel, Switzerland), 4(3), 113. https://doi.org/10.3390/jof4030113 | spa |
dc.relation.references | Maurer, E., Browne, N., Surlis, C., Jukic, E., Moser, P., Kavanagh, K., Lass-Flörl, C., & Binder, U. (2015). Galleria mellonella as a host model to study Aspergillus terreus virulence and amphotericin B resistance. Virulence, 6(6), 591–598. https://doi.org/10.1080/21505594.2015.1045183 | spa |
dc.relation.references | EUCAST, 2015. | spa |
dc.relation.references | Evans, B. C., Nelson, C. E., Yu, S. S., Beavers, K. R., Kim, A. J., Li, H., Nelson, H. M., Giorgio, T. D., & Duvall, C. L. (2013). Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. Journal of visualized experiments : JoVE, (73), e50166. https://doi.org/10.3791/50166 | spa |
dc.relation.references | Usman F, Khalil R, Ul-Haq Z, Nakpheng T, Srichana T. Bioactivity, Safety, and Efficacy of Amphotericin B Nanomicellar Aerosols Using Sodium Deoxycholate Sulfate as the Lipid Carrier. AAPS PharmSciTech. 2018;19(5):2077–86. | spa |
dc.relation.references | Amorim-Vaz, S., Delarze, E., Ischer, F., Sanglard, D., and Coste, A. T. (2015). Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models. Front. Microbiol. 6:367. doi: 10.3389/fmicb.2015.00367 | spa |
dc.relation.references | Rincón, J.(2008), Efecto del quitosano sobre la membrana celular de Rhizopus stolonifer. Instituto Politécnico Nacional. | spa |
dc.relation.references | Fazili, A. B. A., Shah, A. M., Zan, X., Naz, T., Nosheen, S., Nazir, Y., Ullah, S., Zhang, H., & Song, Y. (2022). Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microbial cell factories, 21(1), 29. https://doi.org/10.1186/s12934-022-01758-9 | spa |
dc.relation.references | Hoffmann,K. Discher, S. Voigt,K. (2007). Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological, phylogenetic, and morphological characters; thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam. nov. Mycological Research, Volume 111, Issue 10, Pages 1169-1183. https://doi.org/10.1016/j.mycres.2007.07.002. | spa |
dc.relation.references | Espinel-Ingroff, A., Chakrabarti, A., Chowdhary, A., Cordoba, S., Dannaoui, E., Dufresne, P., Fothergill, A., Ghannoum, M., Gonzalez, G. M., Guarro, J., Kidd, S., Lass-Flörl, C., Meis, J. F., Pelaez, T., Tortorano, A. M., & Turnidge, J. (2015). Multicenter evaluation of MIC distributions for epidemiologic cutoff value definition to detect amphotericin B, posaconazole, and itraconazole resistance among the most clinically relevant species of Mucorales. Antimicrobial agents and chemotherapy, 59(3), 1745–1750. https://doi.org/10.1128/AAC.04435-14 | spa |
dc.relation.references | Drogari-Apiranthitou, M. Despina, F. Skiada, A. Kanioura, L. Grammatikou, M. Vrioni, G. Mitroussia, A. Tsakris, A. Petrikkos,G. (2012). In vitro antifungal susceptibility of filamentous fungi causing rare infections: synergy testing of amphotericin B, posaconazole and anidulafungin in pairs, Journal of Antimicrobial Chemotherapy, Volume 67, Issue 8, Pages 1937–1940, https://doi.org/10.1093/jac/dks137 | spa |
dc.relation.references | Shao, J., Wan, Z., Li, R., & Yu, J. (2018). Species Identification and Delineation of Pathogenic Mucorales by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Journal of clinical microbiology, 56(4), e01886-17. https://doi.org/10.1128/JCM.01886-17 | spa |
dc.relation.references | Normand, A. C., Cassagne, C., Gautier, M., Becker, P., Ranque, S., Hendrickx, M., & Piarroux, R. (2017). Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases. BMC microbiology, 17(1), 25. https://doi.org/10.1186/s12866-017-0937-2 | spa |
dc.relation.references | Homa, M., Ibragimova, S., Szebenyi, C., Nagy, G., Zsindely, N., Bodai, L., Vágvölgyi, C., et al. (2022). Differential Gene Expression of Mucor lusitanicus under Aerobic and Anaerobic Conditions. Journal of Fungi, 8(4), 404. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof804040 | spa |
dc.relation.references | León-Buitimea, A., Garza-Cervantes, J. A., Gallegos-Alvarado, D. Y., Osorio-Concepción, M., & Morones-Ramírez, J. R. (2021). Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis. Pathogens, 10(10), 1303. MDPI AG. Retrieved from http://dx.doi.org/10.3390/pathogens10101303 | spa |
dc.relation.references | Saqib, M., Ali Bhatti, A. S., Ahmad, N. M., Ahmed, N., Shahnaz, G., Lebaz, N., & Elaissari, A. (2020). Amphotericin B Loaded Polymeric Nanoparticles for Treatment of Leishmania Infections. Nanomaterials (Basel, Switzerland), 10(6), 1152. https://doi.org/10.3390/nano10061152 | spa |
dc.relation.references | Chowdhary, A., Singh, P. K., Kathuria, S., Hagen, F., & Meis, J. F. (2015). Comparison of the EUCAST and CLSI Broth Microdilution Methods for Testing Isavuconazole, Posaconazole, and Amphotericin B against Molecularly Identified Mucorales Species. Antimicrobial agents and chemotherapy, 59(12), 7882–7887. https://doi.org/10.1128/AAC.02107-15 | spa |
dc.relation.references | Fernandez-Garcia, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, Volume 37, Issue 2, February 2012, Pages 281-339. https://doi.org/10.1016/j.progpolymsci.2011.08.005) | spa |
dc.relation.references | Haktaniyan, M., Bradley,M. (2022). Polymers showing intrinsic antimicrobial activity. Chem. Soc. Rev., 2022, 51, 8584-8611. Doi: 10.1039/D2CS00558A | spa |
dc.relation.references | Azanza J.R (2021). Liposomal amphotericin B: Clinical pharmacology, pharmacokinetics and pharmacodynamics. Forum micológico, doi: 10.1016/j.riam.2021.02.004 | spa |
dc.relation.references | Greco, I., Molchanova, N., Holmedal, E. Jenssen, H., Hummel, B., Watts,J., Hakansson, J., Hansen, P. Svenson, J.(2020). Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 10, 13206 https://doi.org/10.1038/s41598-020-69995-9 | spa |
dc.relation.references | Brunet, K., Diop, C. A. B., Chauzy, A., Prébonnaud, N., Marchand, S., Rammaert, B., & Tewes, F. (2022). Improved In Vitro Anti-Mucorales Activity and Cytotoxicity of Amphotericin B with a Pegylated Surfactant. Journal of Fungi, 8(2), 121. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof8020121 | spa |
dc.relation.references | Vandermeulen,G., Rouxhet,L.,Arien,A., Brewster,M.E., Préat,V. (2006). Encapsulation of amphotericin B in poly(ethylene glycol) -block-poly (ɛ-caprolactone-co-trimethylenecarbonate) polymeric micelles. Volume 309, Pages 234-240, https://doi.org/10.1016/j.ijpharm.2005.11.031. | spa |
dc.relation.references | Klepser,M. (2011): The value of amphotericin B in the treatment of invasive fungal infections, Journal of Critical Care, Volume 26, Issue 2,Pages 225.e1-225.e10, https://doi.org/10.1016/j.jcrc.2010.08.005.) | spa |
dc.relation.references | Abu Ammar, A., Nasereddin, A., Ereqat, S. Dan-Goor, M. Jaffe, C. Zussman, E. Abdeen, Z. (2019). Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv. and Transl. Res. 9, 76–84. https://doi.org/10.1007/s13346-018-00603-0 | spa |
dc.relation.references | Haley, R. M., Zuckerman, S. T., Gormley, C. A., Korley, J. N., & von Recum, H. A. (2019). Local delivery polymer provides sustained antifungal activity of amphotericin B with reduced cytotoxicity. Experimental biology and medicine (Maywood, N.J.), 244(6), 526–533. https://doi.org/10.1177/1535370219837905 | spa |
dc.relation.references | Ménard, G., Rouillon, A., Cattoir, V., & Donnio, P. Y. (2021). Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future. Frontiers in cellular and infection microbiology, 11, 782733. https://doi.org/10.3389/fcimb.2021.782733 | spa |
dc.relation.references | Bastidas, R. Shertz, C. Chan Lee, S. Heitman, J. Cardenas, M. (2012).Rapamycin Exerts Antifungal Activity In Vitro and In Vivo against Mucor circinelloides via FKBP12-Dependent Inhibition of Tor. ASM Journals Eukaryotic Cell. Vol. 11, No. 3. doi: https://doi.org/10.1128/ec.05284-11 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.decs | Infecciones Fúngicas Invasoras | spa |
dc.subject.decs | Invasive Fungal Infections | eng |
dc.subject.decs | Antifúngicos | spa |
dc.subject.decs | Antifungal Agents | eng |
dc.subject.decs | Anticuerpos Antifúngicos | spa |
dc.subject.decs | Antibodies, Fungal | eng |
dc.subject.proposal | Mucorales | spa |
dc.subject.proposal | Anfotericina B | spa |
dc.subject.proposal | Nanoencapsulación | spa |
dc.subject.proposal | Susceptibilidad antifúngica | spa |
dc.subject.proposal | Galleria mellonella | spa |
dc.title | Evaluación de la actividad de nanoencapsulados de Anfotericina B en aislamientos ambientales de Mucorales con impacto clínico | spa |
dc.title.translated | Evaluation of the activity of amphotericin B nanoencapsulated on environmental isolates of Mucorales with clinical impact | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Other | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis -YMGP .docx (1).pdf
- Tamaño:
- 2.76 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: