Evaluación de la actividad de nanoencapsulados de Anfotericina B en aislamientos ambientales de Mucorales con impacto clínico

dc.contributor.advisorCeballos Garzón, Ándres
dc.contributor.authorGutiérrez Pardo, Yinneth Marcela
dc.contributor.researchgroupEnfermedades Infecciosas: Unidad de Investigación en Proteómica y Micosis Humana Pontificia Universidad Javeriana PUJ Macromoléculas, Departamento de Quìmicaspa
dc.date.accessioned2024-02-05T16:59:28Z
dc.date.available2024-02-05T16:59:28Z
dc.date.issued2023-07-26
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa mucormicosis es una infección fúngica causada por hongos del orden Mucorales, estos hongos se caracterizan por ser ubicuos. Sin embargo, algunas especies tienen factores de virulencia que les han permitido colonizar hospederos humanos, en su mayoría con un sistema inmune debilitado. Las tasas de mortalidad asociadas pueden alcanzar hasta el 90% en los casos de infección diseminada. Estas elevadas tasas de mortalidad se deben en gran medida a la resistencia innata a los fármacos antifúngicos, la dificultad para identificar el agente causal de esta micosis y la toxicidad que genera la anfotericina B (AMB), el cual es el antifúngico de mayor eficiencia contra estos hongos. Entre las nuevas estrategias terapéuticas, las nanopartículas parecen ser prometedoras, debido a que estas permiten aumentar el tiempo de vida media de los fármacos y mejoran la liberación de estos disminuyendo así la toxicidad. Este estudio tuvo como objetivo evaluar nanoencapsulados de AMB contra especies de Mucorales ambientales que tienen impacto clínico, con el fin de establecer su efectividad In vitro e In vivo. Para ello se utilizó la metodología de microdilución en caldo siguiendo los lineamientos del European Committee on Antimicrobial Susceptibility Testing (EUCAST), lo cual permitió obtener y comparar las concentraciones mínimas inhibitorias (CMIs) entre la formulación tradicional vs los encapsulados de AMB (Pol I, Pol II, Pol III, Pol IV y Pol V). Se evidencio que el nanoencapsulado AMB Pol III permitió reducir los valores de CMI en comparación con la AMB convencional para los aislamientos de Mucor circinelloides aquí evaluados. Además, en el modelo In vivo (Galleria mellonella), se observó una reducción en la mortalidad de las larvas infectadas con Mucor circinelloides en comparación con las larvas que no recibieron tratamiento y que fueron tratadas con AMB convencional. (Texto tomado de la fuente)spa
dc.description.abstractMucormycosis is a fungal infection caused by fungi of the order Mucorales, these fungi are characterized by being ubiquitous. However, some species have virulence factors that have allowed them to colonize human hosts, mostly with a weakened immune system. Associated mortality rates can reach up to 90% in cases of disseminated infection. These high mortality rates are largely due to the innate resistance to antifungal drugs, the difficulty in identifying the causal agent of this mycosis and the toxicity generated by amphotericin B (AMB), which is the most efficient antifungal drug against these fungi. Among the new therapeutic strategies, nanoparticles seem to be promising, since they increase the half-life of drugs and improve drug release, thus reducing toxicity. The objective of this study was to evaluate nanoencapsulated AMB against environmental Mucorales species with clinical impact, in order to establish their effectiveness In vitro and In vivo. For this purpose, the broth microdilution methodology was used following the guidelines of the European Committee on Antimicrobial Susceptibility Testing (EUCAST), which allowed obtaining and comparing the minimum inhibitory concentrations (MICs) between the traditional formulation vs. the AMB encapsulates (Pol I, Pol II, Pol III, Pol IV and Pol V). It was evidenced that the AMB Pol III nanoencapsulated allowed to reduce MIC values compared to conventional AMB for the Mucor circinelloides isolates evaluated here. Furthermore, in the In vivo model (Galleria mellonella), a reduction in the mortality of larvae infected with Mucor circinelloides was observed compared to untreated larvae treated with conventional AMB.eng
dc.description.degreelevelMaestríaspa
dc.format.extent72 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85611
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesHagan, A. (2018). Invasive Fungal Infections: A Creeping Public Health Threat. American Society for Microbiology.spa
dc.relation.referencesDe Pauw B. E. (2011). What are fungal infections?. Mediterranean journal of hematology and infectious diseases, 3(1), e2011001. https://doi.org/10.4084/MJHID.2011.001spa
dc.relation.referencesHoenigl, M., Seidel, D., Sprute, R., Cunha, C., Oliverio, M., Goldman, G., Ibrahim, A., Carvalho, A. (2022) . COVID-19-associated fungal infections. Nat Microbiol 7, 1127–1140. https://doi.org/10.1038/s41564-022-01172-2spa
dc.relation.referencesMartin Gomez, M.T., Salavert Lletib, M. (2021). Mucormycosis: Current and future management perspective. Revista Iberoamericana de Micología, 38 (2), 91-100. https://doi.org/10.1016/j.riam.2021.04.003spa
dc.relation.referencesZamudio, A; Vargas, MC; Camacho, F. (2021). Cutaneous Mucormycosis, life–threatening unsuspected mycosis, case report and review. Rev Asoc Colomb Dermatol. Vol 29(4):282-294spa
dc.relation.referencesPrakash, H., & Chakrabarti, A. (2019). Global Epidemiology of Mucormycosis. Journal of Fungi, 5(1), 26. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof5010026spa
dc.relation.referencesSkiada, A., Pavleas, I., & Drogari-Apiranthitou, M. (2020). Epidemiology and Diagnosis of Mucormycosis: An Update. Journal of Fungi, 6(4), 265. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof6040265spa
dc.relation.referencesGarg, D., Muthu, V., Sehgal, I. S., Ramachandran, R., Kaur, H., Bhalla, A., Puri, G. D., Chakrabarti, A., & Agarwal, R. (2021). Coronavirus Disease (Covid-19) Associated Mucormycosis (CAM): Case Report and Systematic Review of Literature. Mycopathologia, 186(2), 289–298. https://doi.org/10.1007/s11046-021-00528-2spa
dc.relation.referencesMacedo, D., Leonardelli, F., Dudiuk, C., Vitale, R. G., Del Valle, E., Giusiano, G., Gamarra, S., et al. (2019). In Vitro and In Vivo Evaluation of Voriconazole-Containing Antifungal Combinations against Mucorales Using a Galleria mellonella Model of Mucormycosis. Journal of Fungi, 5(1), 5. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof5010005spa
dc.relation.referencesSipsas, N. V., Gamaletsou, M. N., Anastasopoulou, A., & Kontoyiannis, D. P. (2018). Therapy of Mucormycosis. Journal of fungi (Basel, Switzerland), 4(3), 90. https://doi.org/10.3390/jof4030090spa
dc.relation.referencesCavassin, F.B., Baú-Carneiro, J.L., Vilas-Boas, R.R. Queiroz-Telles, F . (2021). Sixty years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections. Infect Dis Ther 10, 115–147 https://doi.org/10.1007/s40121-020-00382-7spa
dc.relation.referencesPalmis, B., Alanio, A., Lortholary, O., & Lanternier, F. (2018). Recent advances in the understanding and management of mucormycosis. F1000Research, 7, F1000 Faculty Rev-1429. https://doi.org/10.12688/f1000research.15081.1spa
dc.relation.referencesVillamil-Poveda, J.C. (2019). Evaluación de la eficacia de formulaciones de Anfotericina B encapsulada en micelas poliméricas como opción terapéutica en un modelo de Candidiasis en larvas de Galleria mellonella. Tesis de Maestría, Universidad Nacional de Colombia. https://repositorio.unal.edu.co/bitstream/handle/unal/75903/1019014737.2019.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesRichardson, M.D.; Rautemaa-Richardson, R. (2020). Biotic Environments Supporting the Persistence of Clinically Relevant Mucormycetes. J. Fungi, 6 (1), 4. https://doi.org/10.3390/jof6010004spa
dc.relation.referencesWalther, Wagner, & Kurzai. (2019). Updates on the Taxonomy of Mucorales with an Emphasis on Clinically Important Taxa. Journal of Fungi, 5(4), 106. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof5040106spa
dc.relation.referencesBorman, A. M., Fraser, M., Patterson, Z., Palmer, M. D., & Johnson, E. M. (2021). In Vitro Antifungal Drug Resistance Profiles of Clinically Relevant Members of the Mucorales (Mucoromycota) Especially with the Newer Triazoles. Journal of fungi (Basel, Switzerland), 7(4), 271. https://doi.org/10.3390/jof7040271spa
dc.relation.referencesGarre,V. (2022). Recent Advances and Future Directions in the Understanding of Mucormycosis. Frontiers in Cellular and Infection Microbiology vo.12 10.3389/fcimb.2022.850581, 2235-2988spa
dc.relation.referencesCastrejón-Pérez, A. D., Welsh, E. C., Miranda, I., Ocampo-Candiani, J., & Welsh, O. (2017). Cutaneous mucormycosis. Anais brasileiros de dermatologia, 92(3), 304–311. https://doi.org/10.1590/abd1806-4841.20176614spa
dc.relation.referencesCDC (2020). Mucormycosis Statistics. Centers for Disease Control and Prevention. https://www.cdc.gov/fungal/diseases/mucormycosis/statistics.htmlspa
dc.relation.referencesSerris, A., Danion, F., & Lanternier, F. (2019). Disease Entities in Mucormycosis. Journal of Fungi, 5(1), 23. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof5010023spa
dc.relation.referencesMorales-López, S., Ceballos-Garzón, A. & Parra-Giraldo, C.M. Zygomycete Fungi Infection in Colombia: Literature Review. Curr Fungal Infect Rep 12, 149–154 (2018). https://doi.org/10.1007/s12281-018-0326-9spa
dc.relation.referencesSpatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L., Bonito, G., Corradi, N., Grigoriev, I., Gryganskyi, A., James, T. Y., O'Donnell, K., Roberson, R. W., Taylor, T. N., Uehling, J., Vilgalys, R., White, M. M., & Stajich, J. E. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108(5), 1028–1046. https://doi.org/10.3852/16-042spa
dc.relation.referencesBadali, H. Cañete-Gibas, C. McCarthy, D. Patterson, H, Sanders, C. David, M. Mele, J. Fan, H. Wiederhold, N. (2021). Epidemiology and Antifungal Susceptibilities of Mucoralean Fungi in Clinical Samples from the United States. Journal of clinical Microbiology . Vol 59 (9). https://doi.org/10.1128/JCM.01230-21spa
dc.relation.referencesNucci,M. Engelhardt, M. Hamed, K.(2019). Mucormycosis in South America: A review of 143 reported cases. Mycoses vol. 62(9) . https://doi.org/10.1111/myc.12958spa
dc.relation.referencesGarcía-Carnero, L. C., & Mora-Montes, H. M. (2022). Mucormycosis and COVID-19-Associated Mucormycosis: Insights of a Deadly but Neglected Mycosis. Journal of fungi (Basel, Switzerland), 8(5), 445. https://doi.org/10.3390/jof8050445spa
dc.relation.referencesBrinder, U. Maurer, E. Lass-Flor. C. (2014). Mucormycosis–from the pathogens to the disease. Clin Microbiol Infect; 20(6): 60–66. https://doi.org/10.1111/1469-0691.12566spa
dc.relation.referencesKatragkou,A. Walsh, J. Roilides, E. (2014). Why is mucormycosis more difficult to cure than more common mycoses?. European Society of Clinical Infectious Diseases. https://doi.org/10.1111/1469-0691.12466spa
dc.relation.referencesPetrikkos, G. Tsioutis, C.(2018). Recent Advances in the Pathogenesis of Mucormycosis. Clinical Therapeutics. https://doi.org/10.1016/j.clinthera.2018.03.009.spa
dc.relation.referencesIbrahim,A.S. Spellberg, B. Walsh,T. Kontoyiannis, D. (2012). Pathogenesis of Mucormycosis, Clinical Infectious Diseases, Volume 54, Issue suppl_1, Pages S16–S22, https://doi.org/10.1093/cid/cir865spa
dc.relation.referencesGarcía-Vidal, C. Salavert, M. (2014). Inmunopatología de las micosis invasivas por hongos filamentosos.Revista Iberoamericana de Micología. Vol. 31. Núm. 4. páginas 219-228 10.1016/j.riam.2014.09.001spa
dc.relation.referencesÁlvarez,F. Fernández-Ruiz, M. Aguado, J. M. ( 2013). Hierro e infección fúngica invasiva. Revista Iberoamericana de Microbiología. 30 (4): 217-225. DOI: 10.1016/j.riam.2013.04.002spa
dc.relation.referencesTahiri, G., Lax, C., Cánovas-Márquez, J. T., Carrillo-Marín, P., Sanchis, M., Navarro, E., Garre, V., et al. (2023). Mucorales and Mucormycosis: Recent Insights and Future Prospects. Journal of Fungi, 9(3), 335. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof9030335spa
dc.relation.referencesLugito, N. P. H., & Cucunawangsih, C. (2021). How Does Mucorales Benefit from the Dysregulated Iron Homeostasis During SARS-CoV-2 Infection?. Mycopathologia, 186(6), 877–882. https://doi.org/10.1007/s11046-021-00594-6spa
dc.relation.referencesSingh, A. Ahmad, N. Varadarajan, Naval Vikram,A. Singh, T.P. Sharma, S. Sharma, P. (2021). Lactoferrin, a potential iron-chelator as an adjunct treatment for mucormycosis – A comprehensive review. International Journal of Biological Macromolecules. Volume 187,Pages 988-998, https://doi.org/10.1016/j.ijbiomac.2021.07.156.spa
dc.relation.referencesChalla, S. (2019). Mucormycosis: Pathogenesis and Pathology. Curr Fungal Infect Rep 13, 11–20. https://doi.org/10.1007/s12281-019-0337-1spa
dc.relation.referencesLui, M. Spellberg, B. Phan, Q. Fu,Y. Fu,Y. Lee, A.S. Edwards Jr, J.E. Filler,S.G. Ibrahim, A.S. (2010). The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. Clin Invest. 2010;120(6):1914–1924. https://doi.org/10.1172/JCI42164.spa
dc.relation.referencesAbdelwahab, M.I, Voigt,K. (2019). Pathogenicity patterns of mucormycosis: epidemiology, interaction with immune cells and virulence factors, Medical Mycology, Volume 57, Issue Supplement_2, Pages S245–S256, https://doi.org/10.1093/mmy/myz011spa
dc.relation.referencesLax, C., Pérez-Arques, C., Navarro-Mendoza, M., Cánovas-Márquez, J., Tahiri, G., Pérez-Ruiz, J., Osorio-Concepción, M., et al. (2020). Genes, Pathways, and Mechanisms Involved in the Virulence of Mucorales. Genes, 11(3), 317. MDPI AG. Retrieved from http://dx.doi.org/10.3390/genes11030317spa
dc.relation.referencesBiswas, D., Kotwal, A., Kakati, B., & Ahmad, S. (2015). Amphotericin B Resistant Apophysomyces elegans Causing Rhino-oculo-Cerebral Mucormycosis in an Immunocompetent Host. Journal of clinical and diagnostic research : JCDR, 9(8), DD01–DD2. https://doi.org/10.7860/JCDR/2015/13929.6272spa
dc.relation.referencesKumar, A. Gupta, V.(2022). Rhino-orbital Cerebral Mucormycosis.In: StatPearls [Internet] https://www.ncbi.nlm.nih.gov/books/NBK557429/spa
dc.relation.referencesPetrikkos, G.Skiada ,A. Lortholary ,O. Roilides , E. Walsh , T. Kontoyiannis, D. (2012). Epidemiology and Clinical Manifestations of Mucormycosis, Clinical Infectious Diseases, Volume 54, Issue suppl_1, Pages S23–S34, https://doi.org/10.1093/cid/cir866spa
dc.relation.referencesCornely, O. A., Alastruey-Izquierdo, A., Arenz, D., Chen, S., Dannaoui, E., Hochhegger, B., Hoenigl, M., Jensen, H. E., Lagrou, K., Lewis, R. E., Mellinghoff, S. C., Mer, M., Pana, Z. D., Seidel, D., Sheppard, D. C., Wahba, R., Akova, M., Alanio, A., Al-Hatmi, A., Arikan-Akdagli, S., … Mucormycosis ECMM MSG Global Guideline Writing Group (2019). Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. The Lancet. Infectious diseases, 19(12), e405–e421. https://doi.org/10.1016/S1473-3099(19)30312-3spa
dc.relation.referencesMohanty, A. Gupta, P. Varshney, S. Kabi, A. Angral, S. (2021). Breaking the mold: a brief review on the diagnostic and treatment approaches of mucormycosis. Int J Otorhinolaryngol Head Neck Surg.7(7)https://dx.doi.org/10.18203/issn.2454-5929.ijohns20212336spa
dc.relation.referencesSkiada, A. Lass-Floerl, C. Klimko,N. Ibrahim, A. Roilides, E. Petrikkos,G. (2018). Challenges in the diagnosis and treatment of mucormycosis, Medical Mycology, Volume 56, Issue suppl_1, Pages S93–S101, https://doi.org/10.1093/mmy/myx101spa
dc.relation.referencesHoffmann, K., Pawłowska, J., Walther, G., Wrzosek, M., de Hoog, G. S., Benny, G. L., Kirk, P. M., & Voigt, K. (2013). The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia, 30, 57–76. https://doi.org/10.3767/003158513X666259)spa
dc.relation.referencesCruz-Lachica, I. Marquez, I. García-Estrada, R.S. Carrillo-Fasio,J.A. León-Félix, J. Allende-Molar, R. (2017). Identificación de hongos mucorales causantes de la pudrición blanda en frutos de papaya (Carica papaya L.) en México. Rev. mex. fitopatol vol.35 no.3 Texcoco sep. https://doi.org/10.18781/r.mex.fit.1611-3spa
dc.relation.referencesMendoza L, Vilela R, Voelz K, Ibrahim AS, Voigt K, Lee SC. Human Fungal Pathogens of Mucorales and Entomophthorales. Cold Spring Harb Perspect Med. 2014 Nov 6;5(4):a019562. doi: 10.1101/cshperspect.a019562. PMID: 25377138; PMCID: PMC4382724.spa
dc.relation.referencesLackner, N., Posch, W., & Lass-Flörl, C. (2021). Microbiological and Molecular Diagnosis of Mucormycosis: From Old to New. Microorganisms, 9(7), 1518. MDPI AG. Retrieved from http://dx.doi.org/10.3390/microorganisms9071518spa
dc.relation.referencesDadwal, S. Kontoyiannis, D. (2018). Recent advances in the molecular diagnosis of mucormycosis. Expert Review of Molecular Diagnostics (18)10 https://doi.org/10.1080/14737159.2018.1522250spa
dc.relation.referencesBrunet, K. Rammaert, B. (2020).Mucormycosis treatment: Recommendations, latest advances, and perspectives, Journal de Mycologie Médicale (30) 3,https://doi.org/10.1016/j.mycmed.2020.101007.spa
dc.relation.referencesCroxatto, A. Prodhom,G. Greud, G. (2012). Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology, FEMS Microbiology Reviews, Volume 36, Issue 2, Pages 380–407, https://doi.org/10.1111/j.1574-6976.2011.00298.xspa
dc.relation.referencesRobert, M.-G., Cornet, M., Hennebique, A., Rasamoelina, T., Caspar, Y., Pondérand, L., Bidart, M., et al. (2021). MALDI-TOF MS in a Medical Mycology Laboratory: On Stage and Backstage. Microorganisms, 9(6), 1283. MDPI AG. Retrieved from http://dx.doi.org/10.3390/microorganisms9061283spa
dc.relation.referencesWagner, L., de Hoog, S., Alastruey-Izquierdo, A., Voigt, K., Kurzai, O., & Walther, G. (2019). A Revised Species Concept for Opportunistic Mucor Species Reveals Species-Specific Antifungal Susceptibility Profiles.spa
dc.relation.referencesDanion, F., Coste, A., Le Hyaric, C., Melenotte, C., Lamoth, F., Calandra, T., Garcia-Hermoso, D., et al. (2023). What Is New in Pulmonary Mucormycosis? Journal of Fungi, 9(3), 307. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof9030307spa
dc.relation.referencesMuthu, V., Rudramurthy, S.M., Chakrabarti, A. Agarwal, R. (2021). Epidemiology and Pathophysiology of COVID-19-Associated Mucormycosis: India Versus the Rest of the World. Mycopathologia 186, 739–754. https://doi.org/10.1007/s11046-021-00584-8spa
dc.relation.referencesMahalaxmi,I. Jayaramayya, K. Venkatesan, D. Subramaniam, M.D. Renu, K. Vijayakumar, P. Narayanasamy,A. Gopalakrishnan, A. Kumar, N. Sivaprakash, P. Sambasiva Rao, K. Vellingiri, B. (2021). Mucormycosis: An opportunistic pathogen during COVID-19. Environmental Research, Volume 201, 111643, ,https://doi.org/10.1016/j.envres.2021.111643.spa
dc.relation.referencesChandley, P., Subba, P., & Rohatgi, S. (2022). COVID-19-Associated Mucormycosis: A Matter of Concern Amid the SARS-CoV-2 Pandemic. Vaccines, 10(8), 1266. MDPI AG. Retrieved from http://dx.doi.org/10.3390/vaccines10081266spa
dc.relation.referencesSoare, A. Watkins, T. Bruno, V. (2020). Understanding Mucormycosis in the Age of “Omics”. Front. Genet., Sec. Evolutionary and Genomic Microbiology. Volume 11 - 2020 | https://doi.org/10.3389/fgene.2020.00699spa
dc.relation.referencesCarolus, H. Person, S. Lagrou, K. Van dick, P. (2020). Amphotericin B and Other Polyenes-Discovery, clinical use, mode of action and drug resistance. J.Fungi (6)4 https://doi.org/10.3390/jof6040321spa
dc.relation.referencesLiu, M. Chen, M. Yang,Z. (2017). Design of amphotericin B oral formulation for antifungal therapy, Drug Delivery, 24:1, 1-9, DOI: 10.1080/10717544.2016.1225852spa
dc.relation.referencesAzanza, J. (2021). Anfotericina B liposomal: farmacología clínica, farmacocinética y farmacodinámica. Forum Micológico, doi: 10.1016/j.riam.2021.02.004spa
dc.relation.referencesMesa-Arango, A. C., Scorzoni, L., & Zaragoza, O. (2012). It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Frontiers in microbiology, 3, 286. https://doi.org/10.3389/fmicb.2012.00286spa
dc.relation.referencesSangalli-Leite, F. Scorzoni,L. Mesa-Arango, A.C. Casas,C. Herrero,E. Soares Mendes Gianinni,M.J. Rodríguez-Tudela,J. Cuenca-Estrella,M. Zaragoza,O. (2011). Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst, Microbes and Infection, Volume 13, Issue 5,Pages 457-467,https://doi.org/10.1016/j.micinf.2011.01.015.spa
dc.relation.referencesHamill, R.J. Amphotericin B Formulations: A Comparative Review of Efficacy and Toxicity. Drugs 73, 919–934 (2013). https://doi.org/10.1007/s40265-013-0069-4spa
dc.relation.referencesNoor A, Preuss CV. (2023). Amphotericin B. In: Stat Pearls [Internet]. Treasure Island (FL): Obtenido de: https://www.ncbi.nlm.nih.gov/books/NBK482327/spa
dc.relation.referencesTonin, F. Steimbach,L. Borba,H. Sanches, A. Wiens,A. Pontarolo, R. Fernandez-Llimos, F. (2017). Efficacy and safety of amphotericin B formulations: a network meta-analysis and a multicriteria decision analysis, Journal of Pharmacy and Pharmacology, Volume 69, Issue 12, Pages 1672–1683, https://doi.org/10.1111/jphp.12802spa
dc.relation.referencesWang, X. Shair, I. Fan, L. Zhao, Z. Nurunnabi, M. Sallam, M. Wu, J. Chen,Z. Yin, L. He, W. (2021). Delivery strategies of amphotericin B for invasive fungal infections. Pharmaceutica Sinica B. Vol 11 (8) 2585-2604. https://doi.org/10.1016/j.apsb.2021.04.010spa
dc.relation.referencesCifani C, Costantino S, Massi M, Berrino L.(2012). Commercially available lipid formulations of amphotericin b: are they bioequivalent and therapeutically equivalent? Acta Biomed ;83(2):154–63.cspa
dc.relation.referencesCaramalho, R., Tyndall, J.D.A., Monk, B.C. et al. Intrinsic short-tailed azole resistance in mucormycetes is due to an evolutionary conserved amino acid substitution of the lanosterol 14α-demethylase. Sci Rep 7, 15898 (2017). https://doi.org/10.1038/s41598-017-16123-9spa
dc.relation.referencesGollapudy, R. Ajmani, S. Kulkarni, S.A. (2004). Modeling and interactions of Aspergillus fumigatus lanosterol 14-α demethylase `A' with azole antifungals, Bioorganic & Medicinal Chemistry, Volume 12, Issue 11, Pages 2937-2950, https://doi.org/10.1016/j.bmc.2004.03.034.spa
dc.relation.referencesGanesan, P., Ganapathy, D., Sekaran, S., Murthykumar, K., Sundramoorthy, A. K., Pitchiah, S., & Shanmugam, R. (2022). Molecular Mechanisms of Antifungal Resistance in Mucormycosis. BioMed research international, 2022, 6722245. https://doi.org/10.1155/2022/6722245spa
dc.relation.referencesChang Z, Billmyre RB, Lee SC, Heitman J (2019) Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides. PLoS Genet 15(2): e1007957. https://doi.org/10.1371/journal.pgen.1007957spa
dc.relation.referencesBegines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., & Alcudia, A. (2020). Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials, 10(7), 1403. MDPI AG. Retrieved from http://dx.doi.org/10.3390/nano10071403spa
dc.relation.referencesSur, S. Rathore, A. Dave, V. Raghava, K. Singh, R. Sadhu, V. (2019). Recent developments in functionalized polymer nanoparticles for efficient drug delivery systems. Nano-Structures & Nano-Objects. Vol (20). https://doi.org/10.1016/j.nanoso.2019.100397spa
dc.relation.referencesZhang, K. Yang, P.P. Zhang, J.P. Wang, L. Wang,H. (2017) Recent advances of transformable nanoparticles for theranostics. Chinese Chemical Letters. Vol 28 (9), 1808-1816. https://doi.org/10.1016/j.cclet.2017.07.001.spa
dc.relation.referencesArias-Patron, E. (2020). Caracterización de copolímeros en bloque conjugados como vehículos nanoestructurados para Anfotericina B. Universidad Nacional de Colombia.spa
dc.relation.referencesSingh, S. Kumar, V. Prakash, R. Agarwal, V. (2011). Nanoparticle based drug delivery system: Advantages and applications. Indian Journal of Science and Technology Vol. 4 (3). https://sciresol.s3.us-east-2.amazonaws.com/IJST/Articles/2011/Issue-3/Article6.pdfspa
dc.relation.referencesZielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., Silva, A. M., Santini, A., & Souto, E. B. (2020). Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules (Basel, Switzerland), 25(16), 3731. https://doi.org/10.3390/molecules25163731spa
dc.relation.referencesDíaz-Ariza,I.L. (2014). Evaluación de sistemas micelares catiónicos encapsulados con anfotericina B como alternativa para el tratamiento de biopelículas asociadas a enfermedades orales con presencia de Candida spp. Pontificia Universidad Javeriana.spa
dc.relation.referencesPereira, M.F. Rossi, C. da Silva,G. Nogueira-Rosa,J. Soares -Bazzolli,D.(2020) Galleria mellonella as an infection model: an in-depth look at why it works and practical considerations for successful application, Pathogens and Disease, Volume 78, Issue 8, ftaa056, https://doi.org/10.1093/femspd/ftaa056spa
dc.relation.referencesKavanagh, K., & Sheehan, G. (2018). The Use of Galleria mellonella Larvae to Identify Novel Antimicrobial Agents against Fungal Species of Medical Interest. Journal of fungi (Basel, Switzerland), 4(3), 113. https://doi.org/10.3390/jof4030113spa
dc.relation.referencesMaurer, E., Browne, N., Surlis, C., Jukic, E., Moser, P., Kavanagh, K., Lass-Flörl, C., & Binder, U. (2015). Galleria mellonella as a host model to study Aspergillus terreus virulence and amphotericin B resistance. Virulence, 6(6), 591–598. https://doi.org/10.1080/21505594.2015.1045183spa
dc.relation.referencesEUCAST, 2015.spa
dc.relation.referencesEvans, B. C., Nelson, C. E., Yu, S. S., Beavers, K. R., Kim, A. J., Li, H., Nelson, H. M., Giorgio, T. D., & Duvall, C. L. (2013). Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. Journal of visualized experiments : JoVE, (73), e50166. https://doi.org/10.3791/50166spa
dc.relation.referencesUsman F, Khalil R, Ul-Haq Z, Nakpheng T, Srichana T. Bioactivity, Safety, and Efficacy of Amphotericin B Nanomicellar Aerosols Using Sodium Deoxycholate Sulfate as the Lipid Carrier. AAPS PharmSciTech. 2018;19(5):2077–86.spa
dc.relation.referencesAmorim-Vaz, S., Delarze, E., Ischer, F., Sanglard, D., and Coste, A. T. (2015). Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models. Front. Microbiol. 6:367. doi: 10.3389/fmicb.2015.00367spa
dc.relation.referencesRincón, J.(2008), Efecto del quitosano sobre la membrana celular de Rhizopus stolonifer. Instituto Politécnico Nacional.spa
dc.relation.referencesFazili, A. B. A., Shah, A. M., Zan, X., Naz, T., Nosheen, S., Nazir, Y., Ullah, S., Zhang, H., & Song, Y. (2022). Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microbial cell factories, 21(1), 29. https://doi.org/10.1186/s12934-022-01758-9spa
dc.relation.referencesHoffmann,K. Discher, S. Voigt,K. (2007). Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological, phylogenetic, and morphological characters; thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam. nov. Mycological Research, Volume 111, Issue 10, Pages 1169-1183. https://doi.org/10.1016/j.mycres.2007.07.002.spa
dc.relation.referencesEspinel-Ingroff, A., Chakrabarti, A., Chowdhary, A., Cordoba, S., Dannaoui, E., Dufresne, P., Fothergill, A., Ghannoum, M., Gonzalez, G. M., Guarro, J., Kidd, S., Lass-Flörl, C., Meis, J. F., Pelaez, T., Tortorano, A. M., & Turnidge, J. (2015). Multicenter evaluation of MIC distributions for epidemiologic cutoff value definition to detect amphotericin B, posaconazole, and itraconazole resistance among the most clinically relevant species of Mucorales. Antimicrobial agents and chemotherapy, 59(3), 1745–1750. https://doi.org/10.1128/AAC.04435-14spa
dc.relation.referencesDrogari-Apiranthitou, M. Despina, F. Skiada, A. Kanioura, L. Grammatikou, M. Vrioni, G. Mitroussia, A. Tsakris, A. Petrikkos,G. (2012). In vitro antifungal susceptibility of filamentous fungi causing rare infections: synergy testing of amphotericin B, posaconazole and anidulafungin in pairs, Journal of Antimicrobial Chemotherapy, Volume 67, Issue 8, Pages 1937–1940, https://doi.org/10.1093/jac/dks137spa
dc.relation.referencesShao, J., Wan, Z., Li, R., & Yu, J. (2018). Species Identification and Delineation of Pathogenic Mucorales by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Journal of clinical microbiology, 56(4), e01886-17. https://doi.org/10.1128/JCM.01886-17spa
dc.relation.referencesNormand, A. C., Cassagne, C., Gautier, M., Becker, P., Ranque, S., Hendrickx, M., & Piarroux, R. (2017). Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases. BMC microbiology, 17(1), 25. https://doi.org/10.1186/s12866-017-0937-2spa
dc.relation.referencesHoma, M., Ibragimova, S., Szebenyi, C., Nagy, G., Zsindely, N., Bodai, L., Vágvölgyi, C., et al. (2022). Differential Gene Expression of Mucor lusitanicus under Aerobic and Anaerobic Conditions. Journal of Fungi, 8(4), 404. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof804040spa
dc.relation.referencesLeón-Buitimea, A., Garza-Cervantes, J. A., Gallegos-Alvarado, D. Y., Osorio-Concepción, M., & Morones-Ramírez, J. R. (2021). Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis. Pathogens, 10(10), 1303. MDPI AG. Retrieved from http://dx.doi.org/10.3390/pathogens10101303spa
dc.relation.referencesSaqib, M., Ali Bhatti, A. S., Ahmad, N. M., Ahmed, N., Shahnaz, G., Lebaz, N., & Elaissari, A. (2020). Amphotericin B Loaded Polymeric Nanoparticles for Treatment of Leishmania Infections. Nanomaterials (Basel, Switzerland), 10(6), 1152. https://doi.org/10.3390/nano10061152spa
dc.relation.referencesChowdhary, A., Singh, P. K., Kathuria, S., Hagen, F., & Meis, J. F. (2015). Comparison of the EUCAST and CLSI Broth Microdilution Methods for Testing Isavuconazole, Posaconazole, and Amphotericin B against Molecularly Identified Mucorales Species. Antimicrobial agents and chemotherapy, 59(12), 7882–7887. https://doi.org/10.1128/AAC.02107-15spa
dc.relation.referencesFernandez-Garcia, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, Volume 37, Issue 2, February 2012, Pages 281-339. https://doi.org/10.1016/j.progpolymsci.2011.08.005)spa
dc.relation.referencesHaktaniyan, M., Bradley,M. (2022). Polymers showing intrinsic antimicrobial activity. Chem. Soc. Rev., 2022, 51, 8584-8611. Doi: 10.1039/D2CS00558Aspa
dc.relation.referencesAzanza J.R (2021). Liposomal amphotericin B: Clinical pharmacology, pharmacokinetics and pharmacodynamics. Forum micológico, doi: 10.1016/j.riam.2021.02.004spa
dc.relation.referencesGreco, I., Molchanova, N., Holmedal, E. Jenssen, H., Hummel, B., Watts,J., Hakansson, J., Hansen, P. Svenson, J.(2020). Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 10, 13206 https://doi.org/10.1038/s41598-020-69995-9spa
dc.relation.referencesBrunet, K., Diop, C. A. B., Chauzy, A., Prébonnaud, N., Marchand, S., Rammaert, B., & Tewes, F. (2022). Improved In Vitro Anti-Mucorales Activity and Cytotoxicity of Amphotericin B with a Pegylated Surfactant. Journal of Fungi, 8(2), 121. MDPI AG. Retrieved from http://dx.doi.org/10.3390/jof8020121spa
dc.relation.referencesVandermeulen,G., Rouxhet,L.,Arien,A., Brewster,M.E., Préat,V. (2006). Encapsulation of amphotericin B in poly(ethylene glycol) -block-poly (ɛ-caprolactone-co-trimethylenecarbonate) polymeric micelles. Volume 309, Pages 234-240, https://doi.org/10.1016/j.ijpharm.2005.11.031.spa
dc.relation.referencesKlepser,M. (2011): The value of amphotericin B in the treatment of invasive fungal infections, Journal of Critical Care, Volume 26, Issue 2,Pages 225.e1-225.e10, https://doi.org/10.1016/j.jcrc.2010.08.005.)spa
dc.relation.referencesAbu Ammar, A., Nasereddin, A., Ereqat, S. Dan-Goor, M. Jaffe, C. Zussman, E. Abdeen, Z. (2019). Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv. and Transl. Res. 9, 76–84. https://doi.org/10.1007/s13346-018-00603-0spa
dc.relation.referencesHaley, R. M., Zuckerman, S. T., Gormley, C. A., Korley, J. N., & von Recum, H. A. (2019). Local delivery polymer provides sustained antifungal activity of amphotericin B with reduced cytotoxicity. Experimental biology and medicine (Maywood, N.J.), 244(6), 526–533. https://doi.org/10.1177/1535370219837905spa
dc.relation.referencesMénard, G., Rouillon, A., Cattoir, V., & Donnio, P. Y. (2021). Galleria mellonella as a Suitable Model of Bacterial Infection: Past, Present and Future. Frontiers in cellular and infection microbiology, 11, 782733. https://doi.org/10.3389/fcimb.2021.782733spa
dc.relation.referencesBastidas, R. Shertz, C. Chan Lee, S. Heitman, J. Cardenas, M. (2012).Rapamycin Exerts Antifungal Activity In Vitro and In Vivo against Mucor circinelloides via FKBP12-Dependent Inhibition of Tor. ASM Journals Eukaryotic Cell. Vol. 11, No. 3. doi: https://doi.org/10.1128/ec.05284-11spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.decsInfecciones Fúngicas Invasorasspa
dc.subject.decsInvasive Fungal Infectionseng
dc.subject.decsAntifúngicosspa
dc.subject.decsAntifungal Agentseng
dc.subject.decsAnticuerpos Antifúngicosspa
dc.subject.decsAntibodies, Fungaleng
dc.subject.proposalMucoralesspa
dc.subject.proposalAnfotericina Bspa
dc.subject.proposalNanoencapsulaciónspa
dc.subject.proposalSusceptibilidad antifúngicaspa
dc.subject.proposalGalleria mellonellaspa
dc.titleEvaluación de la actividad de nanoencapsulados de Anfotericina B en aislamientos ambientales de Mucorales con impacto clínicospa
dc.title.translatedEvaluation of the activity of amphotericin B nanoencapsulated on environmental isolates of Mucorales with clinical impacteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentOtherspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis -YMGP .docx (1).pdf
Tamaño:
2.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: