Búsqueda y diseño de péptidos antimicrobianos in silico mediante el análisis de proteomas de virus, bacterias y hongos

dc.contributor.advisorOrduz Peralta, Sergio
dc.contributor.authorMorillo Garces, Jairo Alexander
dc.contributor.orcidMorillo Garces, Jairo Alexander [0000000253151123]spa
dc.contributor.researchgroupBiología Funcionalspa
dc.date.accessioned2024-06-25T19:48:56Z
dc.date.available2024-06-25T19:48:56Z
dc.date.issued2024-06-24
dc.descriptionIlustraciones, ilustraciones, mapas, tablasspa
dc.description.abstractDebido a la creciente resistencia que presentan algunos organismos patógenos a diferentes antimicrobianos se ha aumentado la necesidad de encontrar nuevos compuestos antimicrobianos como opciones de tratamiento. En respuesta, se han adoptado nuevos enfoques alternativos, entre los cuales se encuentran el uso de péptidos antimicrobianos (AMPs). Los AMPs son una parte natural del sistema inmunológico de todos los organismos, diversos estudios han demostrado que los AMPs presentan gran ventaja en comparación con los antibióticos habituales basados en su actividad de amplio espectro, mecanismos de acción, selectividad de las células huésped y menor probabilidad de generar resistencia. Por estas razones, esta investigación se enfocó en la identificación, selección, modificación y evaluación de AMPs in silico encontrados en el proteoma de virus, bacterias y hongos mediante el uso de herramientas bioinformáticas y de inteligencia artificial específicas que valoraron parámetros como estructura, capacidad hemolítica, toxicidad, capacidad de unión a membranas, su potencial como antimicrobianos y su posible efecto anticancerígeno y de penetración celular. Por consiguiente, se espera que los nuevos péptidos encontrados en este estudio sean candidatos a futuros ensayos in vitro e in vivo como una alternativa efectiva a los antibióticos tradicionales. (texto tomado de la fuente)spa
dc.description.abstractDue to the increasing resistance of pathogenic organisms have developed to various antimicrobials, the need to find new antimicrobial compounds as treatment options has increased. In response, new alternative approaches have been adopted, among which are the use of antimicrobial peptides (AMPs). AMPs are a natural part of the immune system of all organisms, several studies have shown that AMPs have a great advantage compared to usual antibiotics based on their broad-spectrum activity, mechanisms of action, host cell selectivity, and are less likely to generate resistance. For these reasons, this research aimed to the identification, selection, modification, and evaluation about in silico AMPs found in the proteome of viruses, bacteria, and fungi through the use of specific bioinformatics and artificial intelligence tools that assessed parameters such as structure, hemolytic capacity, toxicity, membrane-binding capability, their potential as antimicrobials, and their possible anticancer and cell-penetration effects. Therefore, the novel peptides found in this research are expected to be candidates for future in vitro and in vivo trials as an effective alternative to traditional antibiotics.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaSustancias bioactivas para el control de patógenosspa
dc.format.extent136 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86299
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAgrawal, P., Bhagat, D., Mahalwal, M., Sharma, N., & Raghava, G. P. (2021). AntiCP 2.0: an updated model for predicting anticancer peptides. Briefings in Bioinformatics, 22(3), bbaa153. https://doi.org/10.1093/bib/bbaa153spa
dc.relation.referencesAgrawal, P., Bhalla, S., Chaudhary, K., Kumar, R., Sharma, M., & Raghava, G. P. S. (2018). In silico approach for prediction of antifungal peptides. Frontiers in Microbiology, 9, 323. https://doi.org/10.3389/fmicb.2018.00323spa
dc.relation.referencesAl-Khdhairawi, A., Sanuri, D., Akbar, R., Lam, S. D., Sugumar, S., Ibrahim, N., Chieng, S., & Sairi, F. (2023). Machine learning and molecular simulation ascertain antimicrobial peptide against Klebsiella pneumoniae from public database. Computational Biology and Chemistry, 102, 107800. https://doi.org/10.1016/j.compbiolchemspa
dc.relation.referencesArora, R., Kumar, A., Singh, I. K., & Singh, A. (2020). Pathogenesis related proteins: A defensin for plants but an allergen for humans. International Journal of Biological Macromolecules, 157, 659–672. https://doi.org/10.1016/j.ijbiomac.2019.11.223spa
dc.relation.referencesBelloso, W. H. (2009). Historia de los antibióticos. Revista Hospital Italiano. Buenos Aires, 29(2), 102-11.spa
dc.relation.referencesBenfield, A. H., & Henriques, S. T. (2020). Mode-of-action of antimicrobial peptides: Membrane disruption vs. intracellular mechanisms. Frontiers in Medical Technology, 2, 610997. https://doi.org/10.3389/fmedt.2020.610997spa
dc.relation.referencesBhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E., Johnston, M., Barton, H., & Wright, G. (2012). Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One, 7(4), e34953. https://doi.org/10.1371/journal.pone.0034953spa
dc.relation.referencesBignone, P. A., Krupa, R. A., West, M. D., & Larocca, D. (2016). Selection of phage display peptides targeting human pluripotent stem cell-derived progenitor cell lines. Induced Pluripotent Stem (iPS) Cells: Methods and Protocols, 269-283. https://doi.org/10.1007/7651_2014_144spa
dc.relation.referencesBisso, A. (2018). Resistencia a los antimicrobianos. Revista de la Sociedad Peruana de Medicina Interna. 31(2), 50-59. https://doi.org/10.36393/spmi.v31i2.32spa
dc.relation.referencesBoman, H. G. (2003). Antibacterial peptides: basic facts and emerging concepts. Journal of internal medicine, 254(3), 197-215. https://doi. org/ 10. 1046/j. 1365- 2796. 2003. 01228.xspa
dc.relation.referencesBranch JW, Orduz S, Ceballos AM, Mera CA, Orrego A. PepMultiFinder 2.0. 2022. Un algoritmo para buscar péptidos bioactivos en proteomas o listas de secuencias de proteínas. Dirección Nacional de Derechos de Autor. Ministerio del Interior. Registro 13-91-434. Septiembre 12, 2022.spa
dc.relation.referencesBrogden, K. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?. Nature Reviews Microbiology, 3(3), 238–250. https://doi.org/10.1038/nrmicro1098spa
dc.relation.referencesCabello, E., Núñez, M., & Torres, V. (2016). Actividad biológica de proteínas y péptidos. En Rivas., C. Oranday., M. & Verde. M. (Eds.), Investigación en Plantas de Importancia Médica. (pp. 313-350). OmniaScience.spa
dc.relation.referencesCardillo, A., Martínez, M., Romero, S., Cascone, O., Camperi, S., & Giudicessi, S. (2018). Péptidos antimicrobianos de plantas. Revista Farmacéutica, 160(1), 28-46. https://www.researchgate.net/publication/324596881_Peptidos_antimicrobianos_de_plantasspa
dc.relation.referencesChaudhary, K., Kumar, R., Singh, S., Tuknait, A., Gautam, A., Mathur, D., Anand, P., Varshney, G., & Raghava, G. (2016). A web server and mobile app for computing hemolytic potency of peptides. Scientific Reports, 6, (1), 22843. https://doi.org/10.1038/srep22843spa
dc.relation.referencesChávez, V. (2020). La batalla contra las superbacterias: No más antimicrobianos, no hay ESKAPE. TIP Revista Especializada En Ciencias Químico-Biológicas, 23, 1-11. https://doi.org/10.22201/fesz.23958723e.2020.0.202spa
dc.relation.referencesChu-Kung, A., Nguyen, R., Bozzelli, K., & Tirrell, M. (2010). Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. Journal of Colloid and Interface Science, 345(2), 160–167. https://doi.org/10.1016/j.jcis.2009.11.057spa
dc.relation.referencesCiumac, D., Gong, H., Hu, X., & Lu, J. R. (2019). Membrane targeting cationic antimicrobial peptides. Journal of Colloid and Interface Science, 537, 163–185. https://doi.org/10.1016/j.jcis.2018.10.103spa
dc.relation.referencesContreras, G., Shirdel, I., Braun, M. S., & Wink, M. (2020). Defensins: Transcriptional regulation and function beyond antimicrobial activity. Developmental and Comparative Immunology, 104, 103556. https://doi.org/10.1016/j.dci.2019.103556spa
dc.relation.referencesContreras, R., Escorcia, A. & Velarde, J. (2021). Prevalencia e impacto de resistencias a antimicrobianos en infecciones gastrointestinales: una revisión. Revista de Gastroenterología de México, 86(3), 265-275. https://doi.org/10.1016/j.rgmx.2021.02.003spa
dc.relation.referencesCuperus, T., Dijk, A., Matthijs, M., Veldhuizen, E., & Haagsman, H. (2016). Protective effect of in ovo treatment with the chicken cathelicidin analog D-CATH-2 against avian pathogenic E. coli. Scientific Reports, 6(1), 26622. https://doi.org/10.1038/srep26622spa
dc.relation.referencesD’Costa, V., King, C., Kalan, L., Morar, M., Sung, W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G., Poinar, H., & Wright, G. (2011) Antibiotic resistance is ancient. Nature. 477(7365), 457-461. https://doi.org/10.1038/nature10388spa
dc.relation.referencesDa Cunha, N. B., Cobacho, N. B., Viana, J. F. C., Lima, L. A., Sampaio, K. B. O., Dohms, S. S. M., Ferreira, A. C. R., de la Fuente-Núñez, C., Costa, F. F., Franco, O. L., & Dias, S. C. (2017). The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discovery Today, 22(2), 234-248. https://doi.org/10.1016/j.drudis.2016.10.017spa
dc.relation.referencesDa Silva Jr, J. B., Espinal, M., & Ramón-Pardo, P. (2020). Resistencia a los antimicrobianos: tiempo para la acción. Revista Panamericana de Salud Pública, 44, 1-2. https://doi.org/10.26633/rpsp.2020.122spa
dc.relation.referencesDimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2 - A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5spa
dc.relation.referencesDuque, G., Mendez, E., Ceballos-, A., & Orduz, S. (2020). Design of antimicrobial and cytolytic peptides by computational analysis of bacterial, algal, and invertebrate proteomes. Amino Acids, 52(10), 1403-1412. https://doi.org/10.1007/s00726-020-02900-wspa
dc.relation.referencesDuquesne, S., Destoumieux-Garzón, D., Peduzzi, J., & Rebuffat, S. (2007). Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural product reports, 24(4), 708-734. https://doi.org/10.1002/chin.200745258spa
dc.relation.referencesDutta, P., Sahu, R. K., Dey, T., Lahkar, M. D., Manna, P., and Kalita, J. (2019). Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer. Chem. Biol. Interact. 313:108824. https://doi.org/10.1016/j.cbi.2019.108824spa
dc.relation.referencesEbrahimi, F., Dehghani, M., & Makkizadeh, F. (2023). Analysis of Persian bioinformatics research with topic modeling. BioMed Research International, 2023, 3728131. https://doi.org/10.1155/2023/3728131spa
dc.relation.referencesEspinosa, I., Báez, M., Hernández, R., López, Y., Lobo, E., & Corona, B. (2019). Resistencia antimicrobiana en bacterias de origen animal: desafíos para su contención desde el laboratorio. Revista de Salud Animal,41(3), 1-20spa
dc.relation.referencesGasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein Analysis Tools on the ExPASy Server 571 571 From: The Proteomics Protocols Handbook Protein Identification and Analysis Tools on the ExPASy Server. http://www.expasy.org/tools/.spa
dc.relation.referencesGautam, A., Chaudhary, K., Kumar, R., Sharma, A., Kapoor, P., Tyagi, A., & Raghava, G. (2013). In silico approaches for designing highly effective cell penetrating peptides. Journal of Translational Medicine, 11(1), 1-12. https://doi.org/10.1186/1479-5876-11-74spa
dc.relation.referencesGautier, R., Douguet, D., Antonny, B., & Drin, G. (2008). HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics, 24(18), 2101-2102. https://doi.org/10.1093/bioinformatics/btn392spa
dc.relation.referencesGreco, I., Molchanova, N., Holmedal, E., Jenssen, H., Hummel, B. D., Watts, J. L., Håkansson, J., Hansen, P. R., & Svenson, J. (2020). Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Scientific Reports, 10(1), 13206. https://doi.org/10.1038/s41598-020-69995-9spa
dc.relation.referencesGuevara, F., Muñoz, L., Navarrete, J., Salazar, L., & Pinilla, G. (2020). Innovaciones en la terapia antimicrobiana. NOVA,18(34), 9-25. https://doi.org/10.22490/24629448.3921spa
dc.relation.referencesGupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS ONE, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957spa
dc.relation.referencesGuryanova, S. v., & Ovchinnikova, T. v. (2022). Immunomodulatory and allergenic properties of antimicrobial peptides. International Journal of Molecular Sciences, 23(5), 2499. https://doi.org/10.3390/ijms23052499spa
dc.relation.referencesHan, Y., Zhang, M., Lai, R., & Zhang, Z. (2021). Chemical modifications to increase the therapeutic potential of antimicrobial peptides. Peptides, 146, 170666. https://doi.org/10.1016/j.peptides.2021.170666spa
dc.relation.referencesHancock, R., & Diamond, G. (2000). The role of cationic antimicrobial peptides in innate host defenses. Trends in Microbiology, 8(9), 402–410. https://doi.org/10.1016/s0966-842x(00)01823-0spa
dc.relation.referencesHawkey, P. M. (2015). Multidrug-resistant Gram-negative bacteria: A product of globalization. Journal of Hospital Infection, 89(4), 241–247. https://doi.org/10.1016/j.jhin.2015.01.008spa
dc.relation.referencesHuan Y, Kong Q, Mou H and Yi H (2020) Antimicrobial Peptides: classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 582779. https://doi.org/10.3389/fmicbspa
dc.relation.referencesInforme Sector Farmacéutico. (2024, febrero). Biblioteca Digital Cámara de Comercio de Bogotá. https://bibliotecadigital.ccb.org.co/items/4af024fd-7871-4c3e-90ff-8c4c95bcf0f5/spa
dc.relation.referencesJi, S., An, F., Zhang, T., Lou, M., Guo, J., Liu, K., ... & Wu, R. (2023). Antimicrobial peptides: An alternative to traditional antibiotics. European Journal of Medicinal Chemistry, 265, 116072. https://doi.org/10.1016/j.ejmech.2023.116072spa
dc.relation.referencesKhabbaz, H., Karimi-Jafari, M. H., Saboury, A. A., & BabaAli, B. (2021). Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques. BMC Bioinformatics, 22(1), 1-11. https://doi.org/10.1186/s12859-021-04468-yspa
dc.relation.referencesKim, H., Jang, J. H., Kim, S. C., & Cho, J. H. (2020). Development of a novel hybrid antimicrobial peptide for targeted killing of Pseudomonas aeruginosa. European Journal of Medicinal Chemistry, 185, 111814. https://doi.org/10.1016/j.ejmechspa
dc.relation.referencesKumar, P., Kizhakkedathu, J., & Straus, S. (2018). Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 8(1), 4. https://doi.org/10.3390/biom8010004spa
dc.relation.referencesLei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D., & He, Q. (2019). The antimicrobial peptides and their potential clinical applications. American Journal of Traslational Research, 11(7), 3919-3931.spa
dc.relation.referencesLetourneau, A. R., & Calderwood, S. B. (2019). Beta-lactam antibiotics: mechanisms of action and resistance and adverse effects. UptoDate. Waltham (MA): UptoDate, 1-12.spa
dc.relation.referencesLi, J., Koh, J.-J., Liu, S., Lakshminarayanan, R., Verma, C. S., and Beuerman, R. W. (2017). Membrane active antimicrobial peptides: translating mechanistic insights to design. Frontiers in Neurosciences. 11, 73. https://doi.org/10.3389/fnins.2017.00073spa
dc.relation.referencesLima, P., Oliveira, J., Amaral, J., Freitas, C., & Souza, P. (2021). Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance. Life Sciences, 278, 119647. https://doi.org/10.1016/j.lfs.2021.119647spa
dc.relation.referencesLin, T.-T., Yang, L.-Y., Lu, I.-H., Cheng, W.-C., Hsu, Z.-R., Chen, S.-H., & Lin, C.-Y. (2021). AI4AMP: an antimicrobial peptide predictor using physicochemical property-based encoding method and deep learning. mSystems, 6(6), e00299-21. https://doi.org/10.1128/msystems.00299-21spa
dc.relation.referencesLópez, D., Torres, M., & Prada. C. (2016). Genes de resistencia en bacilos Gram negativos: Impacto en la salud pública en Colombia. Universidad y Salud, 18(1), 190-202. https://doi.org/10.22267/rus.161801.30spa
dc.relation.referencesLópez, Y., Gamboa, Y., Rodríguez, Y., & Artega, Y. (2022). Resistencia microbiana a los antibióticos: Un problema de salud creciente. Revista Científica Hallazgos 21, 7(1), 103-114.spa
dc.relation.referencesLuong, H., Thanh, T., & Tran, T. (2020). Antimicrobial peptides – Advances in development of therapeutic applications. Life Sciences, 260, 118407. https://doi.org/10.1016/j.lfs.2020.118407spa
dc.relation.referencesMadrazo, A. L., & Campos, M. R. S. (2022). In silico prediction of peptide variants from chia (S. hispanica L.) with antimicrobial, antibiofilm, and antioxidant potential. Computational Biology and Chemistry, 98, 107695. https://doi.org/10.1016/j.compbiolchem.2022.107695spa
dc.relation.referencesMagana, M., Pushpanathan, M., Santos, A., Leanse, L., Fernandez, M., Ioannidis, A., Giulianotti, M., Apidianakis, Y., Bradfute, S., Ferguson, A., Cherkasov, A., Seleem, M., Pinilla, C., de la Fuente, C., Lazaridis, T., Dai, T., Houghten, R., Hancock, R., & Tegos, G. (2020). The value of antimicrobial peptides in the age of resistance. The Lancet Infectious Diseases, 20(9), e216–e230. https://doi.org/10.1016/S1473-3099(20)30327-3spa
dc.relation.referencesMakhlynets, O., & Caputo, G. (2021). Characteristics and therapeutic applications of antimicrobial peptides. Biophysics Reviews, 2(1), 011301. https://doi.org/10.1063/5.0035731spa
dc.relation.referencesMalik, E., Dennison, S. R., Harris, F., & Phoenix, D. A. (2016). pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals, 9(4), 67. https://doi.org/10.3390/ph9040067spa
dc.relation.referencesManavalan, B., & Patra, M. C. (2022). MLCPP 2.0: an updated cell-penetrating peptides and their uptake efficiency predictor. Journal of Molecular Biology, 434(11), 167604. https://doi.org/10.1016/j.jmb.2022.167604spa
dc.relation.referencesMartínez, M. (2020). Nuevos péptidos antimicrobianos como estrategia frente al problema de la resistencia a los antibióticos, evaluación in vitro e in vivo. Análisis de un mecanismo de protección mediado por NDM-1 en Galleria mellonella. [Tesis doctoral, Universidad Nacional de Quilmes]. Repositorio Institucional Digital de Acceso Abierto de la Universidad Nacional de Quilmes http://ridaa.unq.edu.ar/handle/20.500.11807/2583spa
dc.relation.referencesMaturana, P., Gonçalves, S., Martinez, M., Espeche, J. C., Santos, N. C., Semorile, L., Maffia, P. C., & Hollmann, A. (2020). Interactions of “de novo” designed peptides with bacterial membranes: Implications in the antimicrobial activity. Biochimica et Biophysica Acta – Biomembranes, 1862(11), 183443. https://doi.org/10.1016/j.bbamemspa
dc.relation.referencesMedina, P., & Fernández, F. (2014). Observaciones sobre los mecanismos de defensa de los insectos. Acta Zoológica Lilloana, 58(1), 17-43.spa
dc.relation.referencesMejía, E., Benítez, J., & Ortiz, M. (2020). Péptidos antimicrobianos, una alternativa para el combate de la resistencia bacteriana. Acta Biológica Colombiana, 2(2), 294–302. https://doi.org/10.15446/abc.v25n2.77407spa
dc.relation.referencesMinisterio de Salud y Protección Social. (2018). Plan Nacional de Respuesta a la Resistencia a los Antimicrobianos.https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/plan-respuesta-resistencia-antimicrobianos.pdf.spa
dc.relation.referencesMirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/s41592-022-01488-1spa
dc.relation.referencesMishra, B., & Wang, G. (2012). The importance of amino acid composition in natural AMPs: an evolutional, structural, and functional perspective. Frontiers in Immunology, 3, 221. https://doi.org/10.3389/fimmu.2012.00221spa
dc.relation.referencesMookherjee, N., Anderson, M. A., Haagsman, H. P., & Davidson, D. J. (2020). Antimicrobial host defence peptides: functions and clinical potential. Nature Reviews Drug Discovery, 19(5), 311-332. doi.org/10.1038/s41573-019-0058-8spa
dc.relation.referencesMonsalve, D., Mesa, A., Mira, L. M., Mera, C., Orduz, S., & Branch-Bedoya, J. W. (2024). Antimicrobial peptides designed by computational analysis of proteomes. Antonie van Leeuwenhoek, 117(1), 55. https://doi.org/10.1007/s10482-024-01946-0spa
dc.relation.referencesMulani, M., Kamble, E., Kumkar, S., Tawre, M., & Pardesi, K. (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Frontiers in Microbiology, 10, 539. https://doi.org/10.3389/fmicbspa
dc.relation.referencesMuñoz, G., Sánchez, L., & Estrada-Tapia, G. (2020). Péptidos de defensa: una alternativa natural para el control de patógenos de plantas y humanos. Cicy, 93, 88–93.spa
dc.relation.referencesNastro, M. (2019). What can we do to prevent multidrug-resistance? Revista Argentina de Microbiologia, 51(1), 1–2. https://doi.org/10.1016/j.ram.2019.02.001spa
dc.relation.referencesNegash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020, 4374891. https://doi.org/10.1155/2020/4374891spa
dc.relation.referencesOpal, S. M., & Pop-Vicas, A. (2015). Molecular mechanisms of antibiotic resistance in bacteria. In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases (pp. 235-251). WB Saunders. https://doi.org/10.1016/b978-0-443-06839-3.00019-9spa
dc.relation.referencesOrganización Panamericana de la Salud. (2019). Tratamiento de las enfermedades infecciosas 2020-2022. (8° ed). Autoedición. https://doi.org/10.37774/9789275321003spa
dc.relation.referencesOrganización Panamericana de la Salud. (2021). La resistencia antimicrobiana pone en riesgo la salud mundial. Recuperado de: https://www.paho.org/es/noticias/3-3-2021-resistencia-antimicrobiana-pone-riesgo-salud-mundialspa
dc.relation.referencesOrozco, S., & Arango, J. (2016) Aplicación de la inteligencia artificial en la bioinformática, avances, definiciones y herramientas. UGCiencia, 22(1), 159-171. https://doi.org/10.18634/ugcj.22v.1i.494spa
dc.relation.referencesOrtiz, C. (2019). Diseño, síntesis, caracterización y evaluación in vitro de la actividad de los péptidos antimicrobianos contra bacterias patógenas resistentes a antibióticos. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(169), 614-627. https://doi.org/10.18257/raccefyn.864spa
dc.relation.referencesPasupuleti, M., Schmidtchen, A., & Malmsten, M. (2012). Antimicrobial peptides: key components of the innate immune system. Critical Reviews in Biotechnology, 32(2), 143-171. https://doi.org/10.3109/07388551.2011.594423spa
dc.relation.referencesPatel, H., Bhatt, D., Shakhreliya, S., Lam, N. L., Maurya, R., & Singh, V. (2021). An Introduction and Applications of Bioinformatics. Advances in Bioinformatics, 1-14.spa
dc.relation.referencesPenesyan, A., Gillings, M., & Paulsen, I. T. (2015). Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules, 20(4), 5286-5298. https://doi.org/10.3390/molecules20045286spa
dc.relation.referencesPerron, G., Whyte, L., Turnbaugh, P., Goordial, J., Hanage, W., Dantas, G., & Michael, D. (2015). Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One, 10(3), e0069533. https://doi.org/10.1371/journal.pone.0069533spa
dc.relation.referencesPfalzgraff, A., Brandenburg, K., & Weind, G. (2018). Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Frontiers in Pharmacology, 9, 281. https://doi.org/10.3389/fphar.2018.00281spa
dc.relation.referencesPhuong, P. T., Oliver, S., He, J., Wong, E. H., Mathers, R. T., & Boyer, C. (2020). Effect of hydrophobic groups on antimicrobial and hemolytic activity: Developing a predictive tool for ternary antimicrobial polymers. Biomacromolecules, 21(12), 5241-5255. https://doi.org/10.1021/acs.biomac.0c01320spa
dc.relation.referencesPirtskhalava, M., Amstrong, A. A., Grigolava, M., Chubinidze, M., Alimbarashvili, E., Vishnepolsky, B., Gabrielian, A., Rosenthal, A., Hurt, D. E., & Tartakovsky, M. (2021). DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Research, 49(D1), D288–D297. https://doi.org/10.1093/nar/gkaa991spa
dc.relation.referencesQuiñones, D. (2017). Resistencia antimicrobiana: evolución y perspectivas actuales ante el enfoque" Una salud". Revista Cubana de Medicina Tropical, 69(3), 1-17.spa
dc.relation.referencesQuintero, V. (2021). La próxima pandemia: Bacterias multirresistentes a antibióticos. Alianzas y Tendencias BUAP, 6(21), 1–7.spa
dc.relation.referencesRadusky, L. (2017). Herramientas bioinformáticas para el análisis estructural de proteínas a escala genómica. [Tesis Doctoral, Universidad de Buenos Aires].spa
dc.relation.referencesRivas-Santiago, B., Sada, E., Hernández-Pando, R., & Tsutsumi, V. (2006). Péptidos antimicrobianos en la inmunidad innata de enfermedades infecciosas. Salud Pública de México, 48, 62-71. https://doi.org/10.1590/s0036-36342006000100010spa
dc.relation.referencesRodríguez, E., & Méndez, D. (2021). Aspectos generales relacionados con los antibióticos y plaguicidas. En E. Rodríguez, D. Méndez, Marrugo, A y Márquez, J. (Eds.), Perspectiva analítica y proteómica de residuos de antimicrobianos y plaguicidas en alimentos de origen animal (19-58). Editorial Universitaria.spa
dc.relation.referencesRončević, T., Puizina, J., & Tossi, A. (2019). Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era?. International Journal of Molecular Sciences, 20(22), 5713. https://doi.org/10.3390/ijms20225713spa
dc.relation.referencesSalem, M., Keshavarzi Arshadi, A., & Yuan, J. S. (2022). AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning. BMC Bioinformatics, 23(1), 1-17. https://doi.org/10.21203/rs.3.rs-1615895/v1spa
dc.relation.referencesSapay N, Guermeur Y, & Deléage G (2006). Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinformatics, 7(1), 1-11. https://doi.org/10.1186/1471-2105-7-255spa
dc.relation.referencesSchmidt, C. (2017). Living in a microbial world. Nature Biotechnology, 35, 401-403. https://doi.org/10.1038/nbt.3868spa
dc.relation.referencesScocchi, M., Mardirossian, M., Runti, G., & Benincasa, M. (2017). Non-membranolytic mechanisms of action of antimicrobial peptides–novel therapeutic opportunities. Antimicrobial Peptides: Discovery, Design, and Novel Therapeutic Strategies. CABI, Oxfordshire, 149-160. https://doi.org/10.1079/9781786390394.0149spa
dc.relation.referencesSegev-Zarko, L. A., Mangoni, M. L., & Shai, Y. (2017). Antimicrobial peptides: multiple mechanisms against a variety of targets. Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies. UK: CAB Inhternational, 119-127. https://doi.org/10.1079/9781786390394.0119spa
dc.relation.referencesSemreen, M., Gamal, M., Abdin, S., Alkhazraji, H., Kamal, L., Hammad, S., Awady, F., Waleed, D., & Kourbaj, L. (2018). Recent updates of marine antimicrobial peptides. Saudi Pharmaceutical Journal, 26(3), 396-409. https://doi.org/10.1016/j.jsps.2018.01.001spa
dc.relation.referencesSerra, M. (2017). La resistencia microbiana en el contexto actual y la importancia del conocimiento y aplicación en la política antimicrobiana. Revista Habanera de Ciencias Médicas, 16(3), 402-419.spa
dc.relation.referencesShelomi, M., Jacobs, C., Vilcinskas, A., and Vogel, H. (2020). The unique antimicrobial peptide repertoire of stick insects. Developmental and Comparative Immunology, 103, 103471. https://doi.org/10.1016/j.dci.2019.103471spa
dc.relation.referencesStarr, C. G., & Wimley, W. C. (2017). Discovery of novel antimicrobial peptides using combinatorial chemistry and high-throughput screening. Antimicrobial peptides: Discovery, design and novel therapeutic strategies, (Ed. 2), 86-100. https://doi.org/10.1079/9781786390394.0086spa
dc.relation.referencesTamayo S, Castañeda CA, Orduz S. (2018). Type-Peptide 1.0. Herramientas computacionales pedagógicas para el estudio, diseño y optimización de péptidos antimicrobianas basada en sus propiedades fisicoquímicas. Dirección Nacional de Derechos de Autor. Ministerio del Interior. Registro 13-70-274. Diciembre 5, 2018.spa
dc.relation.referencesTéllez, G. y Castaño, J. (2010). Péptidos antimicrobianos. Infectio, 14(1), 55-67. https://doi.org/10.1016/s0123-9392(10)70093-xspa
dc.relation.referencesThakur, N., Qureshi, A., & Kumar, M. (2012). AVPpred: Collection and prediction of highly effective antiviral peptides. Nucleic Acids Research, 40(W1), W199-W204. https://doi.org/10.1093/nar/gks450spa
dc.relation.referencesTimmons, P., & Hewage, C. (2020). HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks. Scientific Reports, 10(1), 1–18. https://doi.org/10.1038/s41598-020-67701-3spa
dc.relation.referencesTonarelli, G., & Simonetta, A. (2013). Péptidos antimicrobianos de organismos procariotas y eucariotas como agentes terapéuticos y conservantes de alimentos. Revista FABICIB, 17, 137-177. https://doi.org/10.14409/fabicib.v17i0.4316spa
dc.relation.referencesTornesello, A., Borrelli, A., Buonaguro, L., Buonaguro, F., & Tornesello, M. (2020). Antimicrobial peptides as anticancer agents: Functional properties and biological activities. Molecules, 25(12), 1–25. https://doi.org/10.3390/molecules25122850spa
dc.relation.referencesTorres, MDT, Sothiselvam, S., Lu, TK y de la Fuente-Nunez, C. (2019). Principios de diseño de péptidos para aplicaciones antimicrobianas. Journal of Molecular Biology. 431, 3547–3567. doi: 10.1016/j.jmb.2018.12.015spa
dc.relation.referencesUniProt [Internet]. Available from: https://www.uniprot.org/spa
dc.relation.referencesVázquez, A., Perdomo-Morales, R., & Montero-Alejo, V. (2018). Natural antimicrobial peptides. Biotecnologia. Aplicada, 35, 4101-4107.spa
dc.relation.referencesVeltri, D., Kamath, U., & Shehu, A. (2018). Deep learning improves antimicrobial peptide recognition. Bioinformatics, 34(16), 2740–2747. https://doi.org/10.1093/bioinformatics/bty179spa
dc.relation.referencesVishnepolsky, B., Grigolava, M., Managadze, G., Gabrielian, A., Rosenthal, A., Hurt, D. E., Tartakovsky, M., & Pirtskhalava, M. (2022). Comparative analysis of machine learning algorithms on the microbial strain-specific AMP prediction. Briefings in Bioinformatics, 23(4), bbac233. https://doi.org/10.1093/bib/bbac233spa
dc.relation.referencesWaghu, F. H., & Idicula-Thomas, S. (2020). Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Science, 29(1), 36–42. https://doi.org/10.1002/pro.3714spa
dc.relation.referencesWang GuangShun. (2017). Structural insight into the mechanisms of action of antimicrobial peptides and structure-based design. In Antimicrobial peptides: discovery, design and novel therapeutic strategies (pp. 169-187). Wallingford UK: Cabi. https://doi.org/10.1079/9781786390394.0169spa
dc.relation.referencesWang, G. (2017). Discovery, classification and functional diversity of antimicrobia peptides. Antimicrobial peptides: Discovery, Design and Novel Therapeutic Strategies. CABI Publishing, 1-19. https://doi.org/10.1079/9781786390394.0001spa
dc.relation.referencesWang, G. S. (2010). Structural studies of antimicrobial peptides provide insight into their mechanisms of action. Antimicrobial peptides: discovery, design and novel therapeutic strategies, 141-168. https://doi.org/10.1079/9781845936570.0141spa
dc.relation.referencesWang, G. S., Li, X., & Zasloff, M. (2010). A database view of naturally occurring antimicrobial peptides: nomenclature, classification and amino acid sequence analysis. In Antimicrobial peptides: discovery, design and novel therapeutic strategies (pp. 1-21). Wallingford UK: Cabi. https://doi.org/10.1079/9781845936570.0001spa
dc.relation.referencesWang, G., Hanke, M.L., Mishra, B., Lushnikova, T., Heim, C.E., et al. (2014) Transformation of human cathelicidin LL-37 into selective, stable, and potent antimicrobial compounds. ACS Chemical Biology 9(9), 1997–2002. https://doi.org/10.1021/cb500475yspa
dc.relation.referencesWang, G., Li, X., & Wang, Z. (2016). APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 44(D1), D1087–D1093. https://doi.org/10.1093/nar/gkv1278spa
dc.relation.referencesWang, Y., Wang, Q., Wu, A., Hao, Z., & Liu, X. (2017). Isolation of a peptide from Ph.D.-C7C phage display library for detection of Cry1Ab. Analytical Biochemistry, 539, 29–32. https://doi.org/10.1016/j.ab.2017.03.004spa
dc.relation.referencesWeeks, R., Algburi, A., & Chikindas, M. (2021). Antimicrobial peptides and peptidomimetics for the control of antimicrobial resistance. Sustainable Agriculture Reviews 49: Mitigation of Antimicrobial Resistance Vol 2. Natural and Synthetic Approaches, 205-249. https://doi.org/10.1007/978-3-030-58259-3_7spa
dc.relation.referencesWuerth, K. C., & Hancock, R. E. (2017). Immunomodulatory activities of cationic host defence peptides and novel therapeutic strategies. Antimicrobial peptides: discovery, design and novel therapeutic strategies, (Ed. 2), 238-259. https://doi.org/10.1079/9781786390394.0238spa
dc.relation.referencesXiao, H., Shao, F., Wu, M., Ren, W., Xiong, X., Tan, B., & Yin, Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. Journal of Animal Science and Biotechnology, 6(1), 1–6. https://doi.org/10.1186/s40104-015-0018-zspa
dc.relation.referencesZahedifard, F., Lee, H., No, J. H., Salimi, M., Seyed, N., Asoodeh, A., et al. (2020). Comparative study of different forms of jellein antimicrobial peptide on leishmania parasite. Experimental Parasitology. 209:107823. https://doi.org/10.1016/j.exppara.2019.107823spa
dc.relation.referencesZhou, C., Kang, J., Wang, X., Wei, W., & Jiang, W. (2015). Phage display screening identifies a novel peptide to suppress ovarian cancer cells in vitro and in vivo in mouse models. BMC Cancer, 15(1). https://doi.org/10.1186/s12885-015-1891-8spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.lembAntibióticos
dc.subject.proposalPéptidos antimicrobianosspa
dc.subject.proposalResistencia antimicrobianaspa
dc.subject.proposalProteomasspa
dc.subject.proposalVirusspa
dc.subject.proposalBacteriasspa
dc.subject.proposalHongosspa
dc.subject.proposalBioinformáticaspa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalAntimicrobial peptideseng
dc.subject.proposalAntimicrobial resistanceeng
dc.subject.proposalProteomesspa
dc.subject.proposalViruseseng
dc.subject.proposalBacteriaeng
dc.subject.proposalFungieng
dc.subject.proposalBioinformaticseng
dc.subject.proposalArtificial inteligenceeng
dc.subject.wikidataPéptido antimicrobiano
dc.titleBúsqueda y diseño de péptidos antimicrobianos in silico mediante el análisis de proteomas de virus, bacterias y hongosspa
dc.title.translatedSearching and design of antimicrobial peptides in silico through the analysis of proteomes of viruses, bacteria and fungieng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085272703.2024.pdf
Tamaño:
2.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: