Efecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.

dc.contributor.advisorCórdoba Gaona, Óscar de Jesús
dc.contributor.authorRamírez Jiménez, Jamer Alexis
dc.date.accessioned2021-10-12T18:38:53Z
dc.date.available2021-10-12T18:38:53Z
dc.date.issued2020
dc.descriptionIlustracionesspa
dc.description.abstractLa injertación es un método eficaz para mejorar el rendimiento del fruto del tomate, la resistencia al estrés biótico y la tolerancia al estrés abiótico. Este trabajo tuvo como objetivo evaluar la respuesta fenológica, fisiológica y productiva de una copa comercial de tomate (cv. Libertador) injertada sobre dos portainjertos de tomate comerciales, en un diseño experimental de bloques completos al azar, donde se evaluaron cuatro combinaciones copa-portainjerto: portainjerto vigor (PV – “Olimpo”), portainjerto resistente (PRE – “Armada”), autoinjerto (AUTO) y plantas no injertadas (SEM). No hubo diferencias significativas para los grados día acumulados entre tratamientos, ya que el cultivo de tomate requirió 2.567 °Cd. La altura de la planta, el número y longitud de entrenudos, y el número de flores, no variaron significativamente entre tratamientos. Los valores más altos de A, gs, UEA y UER se registraron al inicio de la fase productiva (701), con una reducción al final del ciclo del cultivo (712); mientras tanto, E fue similar a lo largo del ciclo. PV presentó la menor A, sin embargo, fue superior en términos de IAF, materia seca en hojas y rendimiento de frutos. Los valores de Qy no indicaron estrés fotoquímico en ninguna de las combinaciones evaluadas. Se observó que, si bien el portainjerto de vigor induce la producción de menos fruta fresca en las primeras cosechas, a partir de la séptima cosecha, el tratamiento PV superó a los demás tratamientos en cuanto al rendimiento acumulado, al producir 37%, 22% y 22% más de frutos, y 60 %, 30% y 40% más cantidad de frutos de calidad extra, con relación al tratamiento PRE, AUTO y plantas no injertadas. El uso de un portainjerto vigoroso aumentó el rendimiento del cv. Libertador, mientras que el portainjerto con característica de resistencia no difirió de los controles, plantas auto injertadas y no injertadas. (texto tomado de la fuente)spa
dc.description.abstractGrafting is a practical approach to improve tomato fruit yield, resistance to biotic stress, and tolerance to abiotic stresses. This work aimed to evaluate the phenology, physiological and productive response of a commercial tomato scion grafted on different rootstocks in Colombia's high-Andean region. For this purpose, a tomato “Chonto” cultivar was grafted on two commercial (‘Olimpo’ and ‘Armada’) tomato rootstock in a randomized complete block experimental design. For this, four scion-rootstock combinations were evaluated: vigor rootstock (VR), resistant rootstock (RR), self-grafting (SELF) and non-grafted plants (NG). There were no significant differences for the accumulated degree days between treatments since tomato cultivation required 2,567 °Cd. The plant height, number, and internode lengths, and the number of flowers did not vary significantly between grafting and non-grafting treatments. The highest values of A, gs, WUE, and RUE were registered in the initial phase of the production stage (701), which tended to decrease towards the end of the tomato life cycle (712). E was similar throughout the growth cycle. VR presented the lowest A; however, it was superior in terms of LAI, leaves dry matter, and tomato fruit yield. Qy values did not indicate photochemical injuries in any of the scion-rootstock combinations. It was shown that, although vigor rootstocks produce less fresh fruit in the first harvests, from the seventh harvest onwards, the vigor rootstocks outperformed the other treatments in the accumulated yield by producing 37 %, 22 %, and 22 % more yield fruit, and 60 %, 30 % and 40 % more number of fruits of extra quality, regarding resistance rootstock, self-grafted, and non-grafted plants. The use of a vigor rootstock increased the yield of cv. Libertador, while the rootstock with resistance characteristic decreased the scion's yield, regarding the controls, self-grafted, and non-grafted plants.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaFisiología de la producción vegetalspa
dc.format.extentxviii, 94 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80519
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Agronómicasspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAgroglobal. (2021). Portainjertos para tomate. Disponible en: https://www.agroglobal.com.co/semillas-de-hortalizas/portainjertos/portainjerto-para-tomate, Consultado el 23 de febrero de 2021.spa
dc.relation.referencesAGRONET. (2021). Estadísticas Agrícola, Área, producción, rendimiento y participación. Disponible en: http://www.agronet.gov.co/estadistica/Paginas/default.aspx, Consultado el 23 de febrero de 2021.spa
dc.relation.referencesAlbacete, A., Martínez‐Andújar, C., Ghanem, M. E., Acosta, M., Sánchez‐Bravo, J., Asins, M. J., Cuartero, J., Lutts, S., Dodd, I. C., and Pérez‐Alfocea, F. (2009). Rootstock‐mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant, Cell & Environment, 32, 928-938. https://doi.org/10.1111/j.1365-3040.2009.01973.xspa
dc.relation.referencesAloni, B., R. Cohen, L. Karni, L. H. Aktas, and M. Edelstein. (2010). Hormonal signaling in rootstock–scion interactions. Scientia Horticulturae, 127, 119-126.spa
dc.relation.referencesArve, L. E., y Torre, S. (2015). Ethylene is involved in high air humidity promoted stomatal opening of tomato (Lycopersicon esculentum) leaves. Functional Plant Biology, 42(4), 376-386.spa
dc.relation.referencesBarrett, D. M. (2014). Future innovations in tomato processing. In XIII International Symposium on Processing Tomato 1081 (pp. 49-55).spa
dc.relation.referencesBhatt, R. M., K. K. Upreti, M. H. Divya, S. Bhat, C. B. Pavithra, and A. T. Sadashiva. (2015). Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 182, 8-17. Doi:10.1016/j.scienta.2014.10.043spa
dc.relation.referencesCalatayud, Á., San Bautista, A., Pascual, B., Maroto, J. V., and López-Galarza, S. (2013). Use of chlorophyll fluorescence imaging as diagnostic technique to predict compatibility in melon graft. Scientia Horticulturae, 149, 13-18. https://doi.org/10.1016/j.scienta.2012.04.019spa
dc.relation.referencesCamejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., and Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162, 281-289. https://doi.org/10.1016/j.jplph.2004.07.014spa
dc.relation.referencesChaudhari, S., K. M., D. W. Jennings, D. L. Monks, C. C. Jordan, S. J. Gunter, S. L. Mcgowen, and F. J. Louws. (2016). Critical period for weed control in grafted and nongrafted fresh market tomato. Weed Science, 64, 523–530. Doi: 10.1614/WS-D-15-00049.1spa
dc.relation.referencesChen X. (2017) Spatiotemporal Processes of Plant Phenology. SpringerBriefs in Geography. Firsth Edition. Springer, Berlin, Heidelberg. 97p.spa
dc.relation.referencesCosta, M. J., and E. Heuvelink. (2018). The global tomato industry. pp. 1-26. In: Heuvelink, E. (Ed.). Tomatoes. 2.ed. Boston, MA: CABI.spa
dc.relation.referencesCuong, D. C., and M. Tanaka. (2019). Effects of integrated environmental factors and modelling the growth and development of tomato in greenhouse cultivation. In IOP Conference Series: Earth and Environmental Science, 301, 012021. IOP Publishing. Doi:10.1088/1755-1315/301/1/012021spa
dc.relation.referencesDavis, A. R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S. R., y Zhang, X. (2008). Grafting effects on vegetable quality. HortScience, 43(6), 1670-1672.spa
dc.relation.referencesDavis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G., ... y Cohen, R. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50-74.spa
dc.relation.referencesDjidonou, D., A. H. Simonne, K. E. Koch, J. K. Brecht, and X. Zhao. (2016). Nutritional quality of field-grown tomato fruit as affected by grafting with interspecific hybrid rootstocks. HortScience, 51, 1618-1624.spa
dc.relation.referencesDorais, M. and Gosselin, A. (2002) Physiological response of greenhouse vegetable edepot.wur.nl/312846 (accedido el 16 de agosto de 2019).spa
dc.relation.referencesEstañ, M. T., Villalta, I., Bolarín, M. C., Carbonell, E. A., and Asins, M. J. (2009). Identification of fruit yield loci controlling the salt tolerance conferred by solanum rootstocks. Theoretical and Applied Genetics, 118, 305-312. https://doi.org/10.1007/s00122-008-0900-6spa
dc.relation.referencesEurofresh. (2016). Around the World: Tomatoes. Disponible en: https://www.eurofresh-distribution.com/news/around-world-tomatoes, consultado el 9 de julio de 2019spa
dc.relation.referencesFanourakis, D., Heuvelink, E., y Carvalho, S. M. (2013). A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. Journal of Plant Physiology, 170(10), 890-898.spa
dc.relation.referencesFAOSTAT. (2021). Crops. Disponible en: http://www.fao.org/faostat/en/#data/QC/visualize, Consultado el 23 de febrero de 2021.spa
dc.relation.referencesFatemi, M., and H. Dehghan. 2019. Growing degree days zonation of plants in Iran according to thermal characteristics. Theoretical and Applied Climatology, 138, 877-886. Doi:10.1007/s00704-019-02868-yspa
dc.relation.referencesFeller, C., H. Bleiholder, M. Hess, U. Meier, T. Van Den Boom, D. L. Peter, L. Buhr, H. Hack, R. Klose, R. Stauss, E. Weber, and M. Philipp. (1997). Compendium of growth stage identification keys for mono and dicotyledonous plants extended BBCH scale. 2.ed. Available at: <https://www.hortiadvice.dk/upl/website/bbch-skala/scaleBBCH.pdf>. Accessed on: March 20, 2020.spa
dc.relation.referencesFood and Agricultura Organiztion (FAO) y Ministerio de Salud y Protección Social. (2012). Perfil Nacional de Consumo de Frutas y Verduras. Primera edición. Bogotá D.C., Colombia. 264 p. disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/perfil-nacional-consumo-frutas-y-verduras-colombia-2013.pdf, consultado el 30 de julio de 2019spa
dc.relation.referencesFood and Agriculture Organization (FAO). (2002). El Cultivo Protegido en Clima Mediterráneo. Disponible en: http://www.fao.org/3/s8630s/s8630s00.htm#Contents, consultado el 30 de julio de 2019.spa
dc.relation.referencesFood and Agriculture Organization (FAO). (2020). FAOSTAT Online Database. Available at: <http://www.fao.org/faostat/es/#home>. Accessed on: March 20, 2020.spa
dc.relation.referencesFraisse, C. W., and S. V. Paula-Moraes. (2018). Degree-Days: Growing, heating, and cooling. Department of Agricultural and Biological Engineering, UF/IFAS Extension. Available at: <http://edis.ifas.ufl.edu>. Accessed on: March 20, 2020.spa
dc.relation.referencesFullana-Pericàs, M., Ponce, J., Conesa, M. À., Juan, A., Ribas-Carbó, M., and Galmés, J. (2018). Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Scientia Horticulturae, 233, 70-77. https://doi.org/10.1016/j.scienta.2018.01.045spa
dc.relation.referencesGadioli, J. L., Dourado-Neto, D., García y García, A., & Valle Basanta, M. D. (2000). Temperatura do ar, rendimento de grãos de milho e caracterização fenológica associada à soma calórica. Scientia Agricola, 57, 377-383.spa
dc.relation.referencesGaion, L. A., Braz, L. T., and Carvalho, R. F. (2018). Grafting in vegetable crops: A great technique for agriculture. International Journal of Vegetable Science, 24, 1-18. https://doi.org/10.1080/19315260.2017.1357062spa
dc.relation.referencesGarcía-Rojas, F., and E. Pire. (2008). Estudio fenológico de cinco cultivares de tomate (Lycopersicon esculentum Mill.) en Tarabana, Estado Lara, Venezuela. Proc. Interamer. Soc. Trop. Hort., 52, 61-64.spa
dc.relation.referencesGeboloğlu, N., E. Yilmaz, P. Cakm. M. Aydin, and Y. Kasap. (2011). Determining of the yield, quality and nutrient content of tomatoes grafted on different rootstocks in soilless culture. Scientific Research and Essays, 6, 2147-2153.spa
dc.relation.referencesGoto, R., de Miguel, A., Marsal, J. I., Gorbe, E., and Calatayud, A. (2013). Effect of different rootstocks on growth, chlorophyll a fluorescence and mineral composition of two grafted scions of tomato. Journal of Plant Nutrition, 36, 825-835. https://doi.org/10.1080/01904167.2012.757321spa
dc.relation.referencesGrange, R. I., y Hand, D. W. (1987). A review of the effects of atmospheric humidity on the growth of horticultural crops. Journal of Horticultural Science, 62(2), 125-134.spa
dc.relation.referencesGrieneisen, M. L., Aegerter, B. J., Stoddard, C. S., and Zhang, M. (2018). Yield and fruit quality of grafted tomatoes, and their potential for soil fumigant use reduction. A meta-analysis. Agronomy for Sustainable Development, 38, 1-19. https://doi.org/10.1007/s13593-018-0507-5spa
dc.relation.referencesGrimstad, S. O., Verheul, M. J., y Maessen, H. F. R. (2012, October). Optimizing a year-round cultivation system of tomato under artificial light. In VII International Symposium on Light in Horticultural Systems 956 (pp. 389-394).spa
dc.relation.referencesHaberal, M., Körpe, D. A., İşeri, Ö. D., y Sahin, F. I. (2016). Grafting tomato onto tobacco rootstocks is a practical and feasible application for higher growth and leafing in different tobacco–tomato unions. Biological Agriculture y Horticulture, 32(4), 248-257.spa
dc.relation.referencesHartmann, H.T., Kester, D.E., Davies, F.T., y Geneve, R.L. (2002). Plant Propagation. Principles and Practices, 7th edn. Prentice-Hall, Upper Saddle River, New Jersey.spa
dc.relation.referencesHe, Y., Zhu, Z., Yang, J., Ni, X., and Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66, 270-278. https://doi.org/10.1016/j.envexpbot.2009.02.007spa
dc.relation.referencesHelgilibrary. (2019). Tomato Consumption Per Capita. Disponible en: https://www.helgilibrary.com/indicators/tomato-consumption-per-capita/, consultado el 30 de julio de 2019.spa
dc.relation.referencesHemming, S., Mohammadkhani, V., y Van Ruijven, J. (2013). Material technology of diffuse greenhouse covering materials-influence on light transmission, light scattering and light spectrum. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037 (pp. 883-895).spa
dc.relation.referencesHeuvelink, E. (2018). Tomatoes, Crop production Science in Horticulture Serie. Second edition. Wageningen University y Research The Netherlands, Boston, MA: CABI. 378p.spa
dc.relation.referencesHeuvelink, E., T. Li, and M. Dorais. (2018). Crop growth and yield. Pp. 89-136. In: Heuvelink, E. (Ed.). Tomatoes. 2.ed. Boston, MA: CABI.spa
dc.relation.referencesHigashide, T. and Heuvelink, E. (2009) Physiological and morphological changes over the past 50 years in yield components in tomato. Journal of the American Society for Horticultural Science 134, 460–465. DOI: https://doi.org/10.21273/JASHS.134.4.460spa
dc.relation.referencesHORTOINFO. (2018). Tomate. Disponible en: http://www.hortoinfo.es/index.php/6238-prod-hort-frut-mund-041017, consultado el 02 de mayo de 2018.spa
dc.relation.referencesHossain, M. G., M. A. Ali, R. A. Ripa, S. Ayrin, and S. Mahmood. (2019). Influence of Rootstocks on Yield and Quality of Summer Tomato cv. ‘BARI Tomato-4’. Earth Systems and Environment, 3, 289-300.spa
dc.relation.referencesHuang, Y., Kong, Q. S., Chen, F., and Bie, Z. L. (2014). The history, current status and future prospects of vegetable grafting in China. Acta Horticulturae, 1086, 31-39. https://doi.org/10.17660/ActaHortic.2015.1086.2spa
dc.relation.referencesImpulsemillas. (2019). Semillas de hortalizas y frutales; Colón F1.Portainjerto. disponible en: http://www.impulsemillas.com/categoria/productos/semillas-de-hortalizas/hortalizas-hibridas/tomate/otros/, consultado el 31 de julio de 2019spa
dc.relation.referencesInstituto de Investigaciones Agropecuarias (INIA). (2017). Tomate al aire libre. Disponible en: http://www.inia.cl/wp-content/uploads/PautasdeChequeo/11.%20Pauta%20de%20chequeo%20Tomate%20Aire%20Libre.pdf, consultado el 10 de febrero de 2019.spa
dc.relation.referencesJaramillo-Noreña, J. E.; Sánchez-León, G.D.; Rodríguez, V.P., Aguilar-Aguilar, P.A., Gil-Vallejo; L.F., Hío, J.C., Pinzón-Perdomo, L.M., García-Muñoz, M.C., Quevedo-Garzón, D., Zapata-Cuartas, M.Á., Restrepo, J F., y Guzmán-Arroyave, M. (2012). Tecnología para el cultivo de tomate bajo condiciones protegidas. Primera Edición. CORPOICA, Bogotá, Colombia. 482 p.spa
dc.relation.referencesKaiser, E., Kromdijk, J., Harbinson, J., Heuvelink, E., y Marcelis, L. F. (2016). Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. Annals of botany, 119(1): 191-205.spa
dc.relation.referencesKhah, E. M., Kakava, E., Mavromatis, A., Chachalis, D., and Goulas, C. (2006). Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8, 3-7. DOI: 10.37855 / jah.2006.v08i01.01spa
dc.relation.referencesKhan, T. A., Yusuf, M., Ahmad, A., Bashir, Z., Saeed, T., Fariduddin, Q., Hans, S.H., Mock, H.P., and Wu, T. (2019). Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chemistry, 289, 500-511. https://doi.org/10.1016/j.foodchem.2019.03.029spa
dc.relation.referencesKing, S. R., Davis, A. R., Zhang, X., y Crosby, K. (2010). Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2): 106-111. DOI:https://doi.org/10.1016/j.scienta.2010.08.001spa
dc.relation.referencesKubota, C., McClure, M. A., Kokalis-Burelle, N., Bausher, M. G., and Rosskopf, E. N. (2008). Vegetable grafting: History, use, and current technology status in North America. HortScience, 43, 1664-1669. https://doi.org/10.21273/HORTSCI.43.6.1664spa
dc.relation.referencesKumar, B. A., and Sanket, K. (2017). Grafting of vegetable crops as a tool to improve yield and tolerance against diseases - A review. International Journal of Agriculture Sciences, 9, 4050-4056.spa
dc.relation.referencesKumar, P., Y. Rouphael, M. Cardarelli, and G. Colla. (2017). Vegetable grafting as a tool to improve drought resistance and water use efficiency. Frontiers in plant science, 8, 1130.spa
dc.relation.referencesKyriacou, M.C., Y. Rouphael, G. Colla, R. Zrenner, and D. Schwarz. (2017). Vegetable grafting: the implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science, 8(741).spa
dc.relation.referencesLee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L., and Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127, 93-105. https://doi.org/10.1016/j.scienta.2010.08.003spa
dc.relation.referencesLee, J.M. y Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. Hort. Rev. (Amer. Soc. Hort. Sci.) 28: 61-124spa
dc.relation.referencesLemoine, R., La Camera, S., Atanassova, R., Dedaldechamp, F., Allario, …, and Duran, M. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272. https://doi.org/10.3389/fpls.2013.00272spa
dc.relation.referencesLi, T., Heuvelink, E., Dueck, T. A., Janse, J., Gort, G., y Marcelis, L. F. M. (2014). Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors. Annals of botany, 114(1), 145-156.spa
dc.relation.referencesLucas, D.D.P., N. A. Streck, M. P. Bortoluzzi, R. Trentin, and I. C. Maldaner. (2012). Temperatura base para emissão de nós e plastocrono de plantas de melancia. Revista Ciência Agronômica, 43, 288-292. Doi: 10.1590/ S1806-66902012000200011.spa
dc.relation.referencesMarcelis, L. F. M., Broekhuijsen, A. G. M., Meinen, E., Nijs, E. M. F. M., y Raaphorst, M. G. M. (2006). Quantification of the growth response to light quantity of greenhouse grown crops. In V International Symposium on Artificial Lighting in Horticulture 711: 97-104.spa
dc.relation.referencesMartínez-Andújar, C., J. M. Ruiz-Lozano, I. C. Dodd, A. Albacete, and F. Pérez-Alfocea. (2017). Hormonal and nutritional features in contrasting rootstock-mediated tomato growth under low-phosphorus nutrition. Frontiers in Plant Science, 8, 13. Doi:10.3389/fpls.2017.00533spa
dc.relation.referencesMartínez-Ballesta, M. C., Alcaraz-López, C., Muries, B., Mota-Cadenas, C., y Carvajal, M. (2010). Physiological aspects of rootstock–scion interactions. Scientia Horticulturae, 127(2), 112-118. DOI: https://doi.org/10.1016/j.scienta.2010.08.002spa
dc.relation.referencesMeena, O. P., and V. Bahadur. (2015). Breeding potential of indeterminate tomato (Solanum lycopersicum L.) accessions using D2 analysis. Journal of Breeding and Genetics, 47, 49-59.spa
dc.relation.referencesMeier, U. (1997). Growth stages of mono and dicotyledoneous plants. Berlin: Blackwell Wissenschafts-Verlag Science. 622p.spa
dc.relation.referencesMilenković, L., J. Mastilović, Ž. Kevrešan, A. Bajić, A. Gledić, L. Stanojević, D. Cvetković, L. J. Šunić, and Z. S. Ilić. (2020). Effect of shading and grafting on yield and quality of tomato. Journal of the Science of Food and Agriculture, 100, 623-633.spa
dc.relation.referencesMiskovic, A., O. Ilic, J. Bacanovic, V. Vujasinovic, and B. Kukic. (2016). Effect of eggplant rootstock on yield and quality parameters of grafted tomato. Acta Sci. Polon. Hortic. Cul., 15, 149-159.spa
dc.relation.referencesMoreno, M. M., A. Cirujeda, J. Aibar, and C. Moreno. (2016). Soil thermal and productive responses of biodegradable mulch materials in a processing tomato (Lycopersicon esculentum Mill.) crop. Soil Research, 54, 207–215. Doi:10.1071/SR15065spa
dc.relation.referencesMulderij R. (2018). Overview global tomato market-Freshplaza, disponile en: https://www.freshplaza.com/article/2187792/overview-global-tomato-market/, consultado el 2 de julio de 2019spa
dc.relation.referencesMuneer, S., H. Ch. Ko, H. Wei1, Y. Chen, and B. R. Jeong. (2016). Physiological and proteomic investigations to study the response of tomato graft unions under temperature stress. PLoS ONE, 11, 23. Doi:10.1371/journal.pone.0157439spa
dc.relation.referencesMutke, S., J. Gordo, J. Climent, and L. Gil. (2003). Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Annals of Forest Science, 6, 527-537.spa
dc.relation.referencesNaika S., Jeude J.L., Goffau M., Hilmi M. y Dam B. (2005). Cultivation of tomato -production, processing and marketing. Fourth Edition. Agromisa Foundation and CTA, Wageningen, Netherlands.spa
dc.relation.referencesNicola, S., G. Tibaldi, and E. Fontana. (2009). Tomato production systems and their application to the tropics. Proc. IS on tomato in the tropics. Acta Horticulturae, 821, 27-33.spa
dc.relation.referencesNilsen, E. T., Freeman, J., Grene, R., and Tokuhisa, J. (2014). A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters. PLoS One, 9, e115380. https://doi.org/10.1371/journal.pone.0115380spa
dc.relation.referencesNtatsi, G., D. Savvas, H. P. Kläring, and D. Schwarz. (2014). Growth, yield, and metabolic responses of temperature-stressed tomato to grafting onto rootstocks differing in cold tolerance. Journal of the American Society for Horticultural Science, 139, 230-243.spa
dc.relation.referencesOgweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., and Nogues, S., 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, 49-57. https://doi.org/10.1007/s00344-007-9030-7spa
dc.relation.referencesPina, A., Cookson, S. J., Calatayud, Á., Trinchera, A., y Errea, P. (2017). Physiological and molecular mechanisms underlying graft compatibility. Vegetable grafting: Principles and practices., 132-154.spa
dc.relation.referencesPogonyi, A., Z. Pék, L. Helyes, and A. Lugasi. (2005). Effect of grafting on the tomato's yield, quality and main fruit components in spring forcing. Acta Alimentaria, 34, 453-462.spa
dc.relation.referencesQaryouti, M. M., W. Qawasmi, H. Hamdan, and M. Edwan. (2007). Tomato fruit yield and quality as affected by grafting and growing system. Acta Horticulturae, 741, 199-206.spa
dc.relation.referencesR Core Team. (2017). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at: <https://cran.r-project.org/>. Accessed on: March 20, 2020.spa
dc.relation.referencesRahmatian, A., M. Delshad, and R. Salehi. (2014). Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Horticulture, Environment, and Biotechnology, 55, 115-119.spa
dc.relation.referencesReddy, P. P. (2016). Grafted Vegetables for Management of Soilborne Pathogens. In Sustainable Crop Protection under Protected Cultivation (pp. 83-97). Springer, Singapore. DOI: 10.1007 / 978-981-287-952-3_7spa
dc.relation.referencesRiaño, N. M., G. Tangarife, O. I. Osorio, J. F. Giraldo, C. M. Ospina, D. Obando, L. F. Gómez, and L. F. Jaramillo. (2005). Modelo de crecimiento y captura de carbono para especies forestales en el trópico. Manizales: Ministerio de Agricultura y Desarrollo Rural, Federación Nacional de Cafeteros, Cenicafé, CONIF. 51p. https://www.ricclisa.org/images/manualcreft.pdfspa
dc.relation.referencesRiga, P. (2015). Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions. Horticulture, Environment, and Biotechnology, 56, 626-638.spa
dc.relation.referencesRivard, C.L. y Louws F.J. (2006) Grafting for disease resistance in heirloom tomatoes. North Carolina Coop Ext Serv Bul Ag-8 p.spa
dc.relation.referencesRosskopf, E.N., Pisani, C. y Di Gioia, F. (2017). Crop specific grafting methods, rootstocks and scheduling: Tomato, Disponible en: http://www.vegetablegrafting.org/resources/grafting-manual/, consultado el 28 de 08 de 2019.spa
dc.relation.referencesSakata, Y., Ohara, T., y Sugiyama, M. (2005). The history and present state of the grafting of cucurbitaceous vegetables in Japan. In III International Symposium on Cucurbits 731 (pp. 159-170).spa
dc.relation.referencesSakata. (2019). Woodstock, la mejor opción para protección de las raíces. Disponible en: https://www.sakata.com.br/es/hortalizas/solanaceas/tomate/porta-injerto/woodstock, consultado el 31 de julio de 2019spa
dc.relation.referencesSavvas, D., G. B. Öztekin, M. Tepecik, A. M. Ropokis, Y. Tüzel, G. Ntatsi, and D. Schwarz. (2017). Impact of grafting and rootstock on nutrient-to-water uptake ratios during the first month after planting of hydroponically grown tomato. The Journal of Horticultural Science and Biotechnology, 92, 294-302. Doi:10.1080/14620316.2016.1265903spa
dc.relation.referencesSen, A., R. Chatterjee, P. Bhaisare, and S. Subba. (2018). Grafting as an alternate tool for biotic and abiotic tolerance with improved growth and production of solanaceous vegetables: Challenges and scopes in India. Int. J. Curr. Microbiol. App. Sci., 7, 121-135. Doi:10.20546/ijcmas.2018.701.014spa
dc.relation.referencesShivanna K.R., Tandon R. (2014) Reproductive Ecology of Flowering Plants: A Manual. Firth Editión. Springer, New Delhi. 169p.spa
dc.relation.referencesSingh, H., Kumar, P., Chaudhari, S. and Edelstein, M. (2017). Tomato Grafting: A Global Perspective. HortScience, 52 (10), 1328-1336. DOI: 10.21273/HORTSCI11996-17spa
dc.relation.referencesSingh, H., P. Kumar, A. Kumar, M. C. Kyriacou, G. Colla, and Y. Rouphael. (2020). Grafting tomato as a tool to improve salt tolerance. Agronomy, 10, 21. Doi:10.3390/agronomy10020263spa
dc.relation.referencesSoare, R., M. Dinu, and C. Babeanu. (2018). The effect of using grafted seedlings on the yield and quality of tomatoes grown in greenhouses. Hort. Science, 45, 76–82. Doi:10.17221/214/2016-HORTSCIspa
dc.relation.referencesSoe, D. W., Z. Z, Win, A. A. THE, and K. T. MYINT. (2018). Effects of different rootstocks on plant growth, development and yield of grafted tomato (Lycopersicon esculentum Mill.). Journal of Agricultural Research, 5, 30-38.spa
dc.relation.referencesSora, D., D. Mădălina, E. M. Drăghici, and M. I. Bogoescu. (2019). Effect of grafting on tomato fruit quality. Not Bot Horti Agrobo, 47, 1246-1251. Doi:10.15835/nbha47411719spa
dc.relation.referencesSridhar, V., P. V. R. Reddy. (2013). Use of degree days and plant phenology: A reliable tool for predicting insect pest activity under climate change conditions. pp. 287-294. In: Singh, H.C.P., N.K.S. Rao, and K. S. Shivashankara. (Eds.). Climate-Resilient Horticulture: Adaptation and Mitigation Strategies. New Delhi, India: Springer. Doi:10.1007/978-81-322-0974-4spa
dc.relation.referencesThwea, A. A., P. Kasemsapb, G. Vercambrec, F. Gayd, J. Phattaralerphonge, and H. Gautierc. (2020). Impact of red and blue nets on physiological and morphological traits, fruit yield and quality of tomato (Solanum lycopersicum Mill.). Scientia Horticulturae, 264(109185). Doi:10.1016/j.scienta.2020.109185spa
dc.relation.referencesTomatoNews, (2019). The global tomato processing industry. Dipsonible en: http://www.tomatonews.com/en/background_47.html, consultado el 9 de julio de 2019spa
dc.relation.referencesTorres P. A. (2017). Tomate al aire libre. Santiago, Chile: Instituto de Investigaciones Agropecuarias. Boletín INIA / N° 376.spa
dc.relation.referencesTRIDGE. (2021). Tomatoes, fresh or chilled. Disponible en: https://www.tridge.com/hs-codes/070200/country, consultado el consultado el 22 de Febrero de 2021.spa
dc.relation.referencesTurhan, A., Ozmen, N., Serbeci, M. S., and Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Horticultural Science, 38, 142-149. DOI: https://doi.org/10.17221/51/2011-HORTSCIspa
dc.relation.referencesVélez-Ramírez, A. I., van Ieperen, W., Vreugdenhil, D., y Millenaar, F. F. (2015). Continuous-light tolerance in tomato is graft-transferable. Planta, 241(1), 285-290.spa
dc.relation.referencesVélez-Ramírez, A.I. (2014) Continuous light on tomato: from gene to yield. PhD thesis, Wageningen University, Wageningen, The Netherlands. Disponible en: http://edepot.wur.nl/312846spa
dc.relation.referencesXu, Q., Guo, S. R., Li, H., Du, N. S., Shu, S., y Sun, J. (2015). Physiological aspects of compatibility and incompatibility in grafted cucumber seedlings. Journal of the American Society for Horticultural Science,140(4), 299-307. DOI: https://doi.org/10.21273/JASHS.140.4.299spa
dc.relation.referencesZalom, F. G., L. T. Wilson. (1999). Predicting phenological events of California processing tomatoes. Acta Hot., 487, 41-47.spa
dc.relation.referencesZeist, A. R., J. T. V. D. Resende, M. V. Faria, A. Gabriel, I. F. L. D. Silva, and R. B. D. Lima Filho. (2018). Base temperature for node emission and plastochron determination in tomato species and their hybrids. Pesquisa Agropecuária Brasileira, 53, 307-315. Doi: 10.1590/s0100-204x2018000300005spa
dc.relation.referencesZeist, A. R.; J. T. Resende, I. F. Silva, J. R. Oliveira, C. M. Faria, and C. L. Giacobbo. (2017). Agronomic characteristics of tomato plant cultivar Santa Cruz Kada grafted on species of the genus Solanum. Horticultura Brasileira, 35, 419-424. DOI:10.1590/s0102-053620170317.spa
dc.relation.referencesZhang, G., and Guo, H. (2019). Effects of tomato and potato heterografting on photosynthesis, quality and yield of grafted parents. Horticulture, Environment, and Biotechnology, 60, 9-18. https://doi.org/10.1007/s13580-018-0096-xspa
dc.relation.referencesZhou, G., Q. A. Wang. (2018). A new nonlinear method for calculating growing degree days. Scientific Reports, 8 (10149). Doi:10.1038/s41598-018-28392-zspa
dc.relation.referencesZhou, R., Wu, Z., Wang, X., Rosenqvist, E., Wang, Y., Zhao, T., and Ottosen, C. O. (2018). Evaluation of temperature stress tolerance in cultivated and wild tomatoes using photosynthesis and chlorophyll fluorescence. Horticulture, Environment, and Biotechnology, 59, 499-509. https://doi.org/10.1007/s13580-018-0050-yspa
dc.relation.referencesZhou, R., Yu, X., Kjær, K. H., Rosenqvist, E., Ottosen, C. O., y Wu, Z. (2015). Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental and Experimental Botany, 118, 1-11.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembFisiología vegetalspa
dc.subject.lembPlant physiologyeng
dc.subject.lembInjertos (Agricultura)spa
dc.subject.lembGraftingeng
dc.subject.proposalEscala BBCHspa
dc.subject.proposalInjertación patrón-copaspa
dc.subject.proposalBBCH scaleeng
dc.subject.proposalInjertaciónspa
dc.subject.proposalFotosíntesisspa
dc.subject.proposalRendimiento cuánticospa
dc.subject.proposalProducción de frutosspa
dc.subject.proposalGraftingeng
dc.subject.proposalScion-rootstock interactioneng
dc.subject.proposalDegree dayseng
dc.subject.proposalPhotosynthesiseng
dc.subject.proposalQuantum yieldeng
dc.subject.proposalFruit yieldeng
dc.subject.proposalTomate de mesa (Solanum lycopersicum L.)spa
dc.titleEfecto de diferentes portainjertos en la fenología, la fisiología y los componentes de rendimiento de una copa comercial de tomate de mesa (Solanum lycopersicum L.) cultivado bajo cubierta en la región alto Andina de Colombia.spa
dc.title.translatedEffect of different rootstocks on the phenology, physiology, and yield components of tomato (Solanum lycopersicum L.) cultivated undercover in the high Andean region in Colombia.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1045021421.2021.pdf
Tamaño:
4.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: