Datos digitales en los score de crédito: herramienta para la inclusión financiera del crédito en Colombia

dc.contributor.advisorDíaz Pinzón, Beatriz Helenaspa
dc.contributor.authorGarcía Simbaqueva, Yeimy Lorenaspa
dc.contributor.researchgroupGISTICspa
dc.date.accessioned2021-02-01T17:38:05Zspa
dc.date.available2021-02-01T17:38:05Zspa
dc.date.issued2020-08-12spa
dc.description.abstractThis final master's thesis analyzes how digital data sources have allowed the creation of alternative credit scores that enable the financial inclusion of credit in Colombia. A theoretical framework provided an understanding of key concepts for the research and guided the detailed exploration of 6 documents that were analyzed and serves like an input for final tables about the use of various alternative variables in credit scores. In addition to this, some success stories and new players in the market were explored. These conceptual inputs allowed the construction of 4 summary tables i) Causes of financial exclusion ii) Alternative variables used in credit scores iii) Benefits of using alternative data and iv) Challenges of using alternative data, which were validated with experts at through the Delphi method, with whom a consensus was sought on these issues and an opinion of the Colombian context, some final conclusions were finally issued.spa
dc.description.abstractEl presente trabajo final de maestría analiza cómo las fuentes de datos digitales han permitido la creación de score de crédito alternativo que habilita la inclusión financiera del crédito en Colombia. Se construyó un marco teórico que brindó un entendimiento de conceptos claves para la investigación y guiaron la exploración detallada de 6 documentos que fueron analizados y dan cuenta del uso de diversas variables alternativas en los score de crédito, a la vez se exploraron algunos casos de éxito y nuevos jugadores en el mercado. Estos insumos conceptuales permitieron la construcción de 4 tablas de resumen i) Causas de exclusión financiera ii) Variables alternativas usadas en score de crédito iii) Beneficios del uso de datos alternativos y iv) Desafíos del uso de datos alternativos, que fueron validadas con expertos a través del método Delphi, con quienes se buscó un consenso en estos temas y una opinión del contexto colombiano, finalmente se emitieron algunas conclusiones finales.spa
dc.description.degreelevelMaestríaspa
dc.format.extent79spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationGarcía Simbaqueva, Y. L. (2020).Datos digitales en los score de crédito: herramienta para la inclusión financiera del crédito en Colombia [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79013
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de Administración y Contaduría Públicaspa
dc.publisher.programBogotá - Ciencias Económicas - Maestría en Contabilidad y Finanzasspa
dc.relation.referencesBerg, T., Burg, V., Gombovi, A., & Puri, M. (2018). ON THE RISE OF FINTECHS – CREDIT SCORING USING DIGITAL FOOTPRINTS. NATIONAL BUREAU OF ECONOMIC RESEARCH.spa
dc.relation.referencesFair, Isaac and Company-FICO. (2015). Can alternative data expand credit access.spa
dc.relation.referencesJagtiani, J., & Lemieux , C. (2017). Fintech Lending: Financial Inclusion, Risk Pricing, and Alternative Information.spa
dc.relation.referencesJagtiani, J., & Lemieux, C. (2018). Do Fintech Lenders Penetrate Areas That Are Underserved by Traditional Banks.spa
dc.relation.referencesMastercard Foundation y International Finance Corporation-IFC. (2017). Data analytics and digital financial services.spa
dc.relation.referencesSuperintendencia financiera de Colombia. (s.f.). Circular externa 035 del año 2009. Artículo 1.1, 2009.spa
dc.relation.referencesAhelegbey, D., Giudici, P., & Hadji-Misheva, B. (2019). Latent factor models for credit scoring in P2P systems. SSRN Electronic Journal .spa
dc.relation.referencesAitken, R. (2018). All data is credit data’: Constituting the unbanked. ALberta Canada: University of Alberta.spa
dc.relation.referencesAllen, F., Leora, K., Martinez, S., & Franklin , A. (2012). The Foundations of Financial Inclusion. Washington: The World Bank.spa
dc.relation.referencesAlliance for Financial Inclusion - AFI. (2010). La medición de la inclusión financiera para entes reguladores: Diseño e implementación de encuestas.spa
dc.relation.referencesAsobancaria . (2018). Open banking más allá de los datos .spa
dc.relation.referencesBaer, Tobias; Goland , Tony; Schiff, Robert;. (2013). New credit- risk models for the unbanked. New York: McKinsey&COmpany.spa
dc.relation.referencesBanca de las Oportunidades. (2018). Reporte anual de inclusión financiera.spa
dc.relation.referencesBanca de las oportunidades. (2019). Reporte trimestral de Inclusión financiera. Bogotá.spa
dc.relation.referencesBanco Mundial. (2011). General Principles for Credit Reportingspa
dc.relation.referencesBanco Mundial. (2014). Global Findex. Obtenido de http://www.worldbank.org/en/topic/financialinclusion/overviewspa
dc.relation.referencesBanerjee, A., & Duflo, E. (2010). Giving credit where is it due. Journal of economic perspectives.spa
dc.relation.referencesBanerjee, A., & Duflo, E. (2010). Giving credit where it is due.spa
dc.relation.referencesBarci, G., Andreeva, G., & Bouyon, S. (2019). Data sharing in credit markets: Does comprehensiveness matter?spa
dc.relation.referencesBerg, T., Burg, V., Gombovi , A., & Puri, M. (2018). ON THE RISE OF FINTECHS – CREDIT SCORING USING DIGITAL FOOTPRINTS. NATIONAL BUREAU OF ECONOMIC RESEARCH.spa
dc.relation.referencesBrevoort, K., Grimm, P., & Kambara, M. (2016). Credit invisibles and the unscored. Cityscape vol 18 n° 2.spa
dc.relation.referencesCaire, D., Camiciotti, L., Heitmann, S., Lonie, S., Racca, C., Ramji, M., & Xu, Q. (2017). Data analytics and digital financial services. The Mastercard foundation and International finance Corporation.spa
dc.relation.referencesCarroll, P., & Rehmani, S. (2017). Alternative data and the unbanked. Oliver Wyman.spa
dc.relation.referencesClaessens, S., Frost, J., Turne, G., & Zhu, F. (2018). Mercados de financiación fintech en todo el mundo: tamaño, determinantes y cuestiones de política.spa
dc.relation.referencesClifton, C., Doan, A., Elmagarmid, A., Kantarcıoglu, M., Schadow, G., Suciu, D., & Vaidya, J. (s.f.). Privacy-Preserving Data Integration and Sharing.spa
dc.relation.referencesCnudde , S., Julie, M., Stankova , M., Tobback , E., Vinayak, J., & Martens, D. (2019). What does your Facebook profile reveal about your creditworthiness? Using alternative data for microfinance. Journal of the Operational Research Society .spa
dc.relation.referencesColombia Fintech. (s.f.). Colombiafintech. Obtenido de https://www.colombiafintech.co/novedades/cinco-fintech-que-le-prestan-desde-110-000-hasta-2-000-000-en-menos-de-30-minutosspa
dc.relation.referencesCommittee on Financial Inclusion, CFI. (2008). Report of the committee on financial Inclusion.spa
dc.relation.referencesConsultative group to assist the poor- CGAP. (2016). An introduction to digital credit: resources to plan a deployment. Washington D.C.spa
dc.relation.referencesConsultative group to assist the poor- CGAP. (2003). Scoring: the next breakthrough in microcredit?spa
dc.relation.referencesCosta, A., Deb, A., & Kubzansky, M. (2015). Big data, small credit: The digital revolution and tis impact on emerging market consumers. San Francisco: Omidyar Network.spa
dc.relation.referencesCreditvidya. (s.f.). Creditvidya. Obtenido de https://www.linkedin.com/company/creditvidyaspa
dc.relation.referencesDasgupta, R. (2009). Two Approaches to Financial Inclusion. Economic and Political Weekly, Vol. 44, , 26/27.spa
dc.relation.referencesDemirgüç-Kunt, A. (2018). The Little data book of financial inclusion. Washington: International Bank for Reconstruction and Development / The World Bank.spa
dc.relation.referencesDemirguc-Kunt, A., Klapper, L., & Singer, D. (2017). Financial Inclusion and Inclusive Growth. Washington: Development Research Group- world bank.spa
dc.relation.referencesDemirguc-Kunt, A., & Klapper, L. (2013). Measuring Financial Inclusion: Explaining Variation in Use of Financial Services across and within Countries. Washington: Brookings Institution Pressspa
dc.relation.referencesDev, S. M. ( 2006). Financial Inclusion: Issues and Challenges. Economic and Political Weekly, Vol. 41., 4310-4313.spa
dc.relation.referencesErgungor, O. E. (2010). Bank branch presence and access to credit in low to moderate income neighborhoods. Journal of money, credit and banking vol 42 n° 7.spa
dc.relation.referencesEslava Zapata, R., Cuadrado Ebrero, A., & García Jara, E. (2010). Evaluación de la satisfacción de las necesidades de información de los usuarios contables con el análisis DELPHi. Visión gerencial .spa
dc.relation.referencesEspín García , O., & Rodriguez caballero, C. (2012). METODOLOGÍA PARA UN SCORING DE CLIENTES SIN REFERENCIAS CREDITICIAS. Cuadernos de Economía, 32(59),.spa
dc.relation.referencesFernandez Vidal, M. F., & Barbon, F. (2019). Credit scoring in financial inclusion . Washington DC: Consultative Group to Assist the Poor.spa
dc.relation.referencesFirst access. (s.f.). First Access. Obtenido de https://www.firstaccess.co/spa
dc.relation.referencesFlorentin, L. (s.f.). Lenddo: driver of financial inclusion using digital data. Obtenido de https://www.ifc.org/wps/wcm/connect/2e1c27bd-2fdd-45be-a82f-7ca00bc3ce78/session_4_florentin_lenoir_lenddo_heure_14h00.pdf?MOD=AJPERES&CVID=lNSUUcuspa
dc.relation.referencesGambacorta, L., Huang, Y., Qiu, H., & Wang, J. (s.f.). How do machine learning and non traditional data affect credit scoring? New evidence from a chinese fintech firm. Bank of international settlements.spa
dc.relation.referencesGambacorta, L., Yiping, H., Han, Q., & Wang, J. (2019). How do machine learning and non-traditional data affect credit scoring? New evidence from a Chinese fintech firm.spa
dc.relation.referencesGandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management.spa
dc.relation.referencesGil-Gómez de Liaño, B., & Pascual-Ezama, D. (2012). La metodología Delphi como técnica de estudio de la validez de contenido. anales de psicologí.spa
dc.relation.referencesGlobal Partnership for Financial Inclusion (GPFI). (2018). Use of alternative data to enhance credit: reporting to enable access to digital financial.spa
dc.relation.referencesHernandez García , E. A., & Oviedo Gómez, A. (2016). Mercado del crédito informal en Colombia: una aproximación empírica.spa
dc.relation.referencesHurley, M., & Adebayo, J. (2017). Credit scoring in the era of big data. Yale journal of law and technology .spa
dc.relation.referencesICCR. (2017). Policy Crief: Credit reporting systems contribution to financial inclusion. Banco Mundial.spa
dc.relation.referencesInformation Policy Institute. (2005). Giving underserved consumers better access to the credit system: the promise of non traditional data.spa
dc.relation.referencesInstitute, McKinsey Global. (2011). Big data: The next frontier for innovation, competition, and productivity.spa
dc.relation.referencesInteramerican development Bank-IADB. (2019). Big data sin misterios.spa
dc.relation.referencesJagtiani, J., & Lemieux, C. (2019). The roles of alternative data and machine learning in fintech lending: Evidence from the Lendingclub consumer platform. Federal Reserve Bank of Philadelphia.spa
dc.relation.referencesJosefa E. , B., Lopéz, A., & Mengual, S. (s.f.). VALIDACIÓN MEDIANTE MÉTODO DELPHI DE UN CUESTIONARIO PARA CONOCER LAS EXPERIENCIAS E INTERÉS HACIA LAS ACTIVIDADES ACUÁTICAS CON ESPECIAL ATENCIÓN AL WINDSURF.spa
dc.relation.referencesKreditech . (2018). Kreditech. Obtenido de https://www.kreditech.com/company#our-growthspa
dc.relation.referencesLauer, K., & Lyman , T. (2015). Inclusión financiera digital:Implicancias para clientes,reguladores, supervisores y organismos normativos. CGAP, grupo consultivo de ayuda a los pobres-.spa
dc.relation.referencesLendingclub. (s.f.). LendingClub. Obtenido de https://www.lendingclub.com/info/statistics.actionspa
dc.relation.referencesLendup. (s.f.). Obtenido de https://www.lendup.com/impactspa
dc.relation.referencesLoufield, E., Ferenzy, D., & Johnson, T. (2018). Accelerating Financial Inclusion with New Data.spa
dc.relation.referencesM., M., Zarazua, N., & Copestake, J. (2008). FINANCIAL INCLUSION, VULNERABILITY AND MENTAL MODELS: FROM PHYSICAL ACCESSTO EFFECTIVE USE OF FINANCIAL SERVICES IN A LOW-INCOME AREA OF MEXICO CITY. Savings and Development, Vol. 32,, 353-379.spa
dc.relation.referencesManyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung, A. (2017). Big Data: The Next Frontier for Innovation, Competition, and productivity. McKinsey Global Institute.spa
dc.relation.referencesMichael, T., Schnare, A., & Stewart Lee, A. (2006). Give credit where is due: Incresing access to affordable, mainstream credit using alternative data. Washington DC: Political and economic research council/ Brookings institution.spa
dc.relation.referencesMorales , L., & Yárez, Á. (2006). La bancarización en Chile.spa
dc.relation.referencesNeogrowth. (s.f.). Neogrowth. Obtenido de https://www.neogrowth.in/social-impact/spa
dc.relation.referencesOpher, A., Chou, A., Onda, A., & Sounderrajan, K. (2016). The Rise of the Data economy: driving value trough internet of things data monetization. IBM Corporate.spa
dc.relation.referencesOrganisation for Economic Co-operation and Development-OECD. (2018). Financial Markets, Insurance and Private Pensions: Digitalisation and Finance.spa
dc.relation.referencesÓskarsdóttir , M., Vanthienen , J., Bravo, C., Sarraute, C., & Baesens, B. (2018). The value of big data for credit scoring: Enhancing financial inclusion using mobile phone data and social network analytics.spa
dc.relation.referencesPagano, M., & Jappelli, T. (s.f.). Information Sharing, Lending and Defaults: Cross-Country Evidence.spa
dc.relation.referencesPeña Palacio, A., Lochmuller, C., Murillo, J., Pérez , M., & Vélez, C. (2011). Modelo Cualitativo para la asignación de créditos de consumo y ordinario- el caso de una cooperativo de crédito. Medellín.spa
dc.relation.referencesPulido , S., Gradón , E., & Diaz, B. (s.f.). Factores que influyen en la adopción de Machine Learning: Implementación del Método Delphí.spa
dc.relation.referencesRao, K. G. ( 2007). Financial Inclusion: An Introspection. Economic and Political Weekly, Vol. 42, No. 5 (, 355-360.spa
dc.relation.referencesReguant-Álvarez , M., & Torrado-Fonseca , M. (2016). El método Delphspa
dc.relation.referencesSaunders, A., & Allen , L. (2010). Credit Risk Measurement in and out of the Financial Crisis.spa
dc.relation.referencesSchwab, K. (2017). The Fourth Industrial Revolution.spa
dc.relation.referencesTorrado Fonseca , M., & Reguant-Álvarez , M. (2016). El método Delphi. Revista d innovació i Recerca en Educació- Universidad de Barcelona.spa
dc.relation.referencesTriodos. (s.f.). Triodos. Obtenido de https://www.triodos-im.com/articles/2019/case-study-capital-float-revolutionising-the-loan-market-in-indiaspa
dc.relation.referencesUnited States Departament of treasury. (2016). Oppotunities and Challenges in Online Marketplace Lending.spa
dc.relation.referencesVargas , A., & Mostajo, S. (2014). MEDICIÓN DEL RIESGO CREDITICIO MEDIANTE LA APLICACIÓN DE MÉTODOS BASADOS EN CALIFICACIONES INTERNAS.spa
dc.relation.referencesWei , W., Indulskab, M., & Sadiqa, S. (2019). Factors influencing effective use of big data: A research framework. Elsevier.spa
dc.relation.referencesWorld bank . (2018.). Little data book on financial inclusion .spa
dc.relation.referencesWorld Bank. (2019). Disruptive Technologies in the Credit Information Sharing Industry: Developments and Implications.spa
dc.relation.referencesYaworsky , K., Goswami , D., & Shrivasta, P. (2017). Unlocking the Promise of (Big) Data to Promote Financial Inclusion .spa
dc.relation.referencesYu, R., & Foundation, F. (2014). Knowing the Score:New Data, Underwriting, and Marketing in the Consumer Credit Marketplace.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc332 - Economía financieraspa
dc.subject.proposalFinancial inclusioneng
dc.subject.proposalInclusión financiera del créditospa
dc.subject.proposalScore de créditospa
dc.subject.proposalCredit scoringeng
dc.subject.proposalAlternative dataeng
dc.subject.proposalDatos alternativosspa
dc.titleDatos digitales en los score de crédito: herramienta para la inclusión financiera del crédito en Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
DATOS DIGITALES EN LOS SCORE DE CRÉDITO HERRAMIENTA PARA LA INCLUSIÓN FINANCIERA DEL CRÉDITO EN COLOMBIA....pdf
Tamaño:
1.9 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: