Caracterización del metagenoma de la comunidad microbiana edáfica asociada a un cultivo de arroz (oryza sativa) bajo un esquema agronómico de manejo de agricultura por ambientes

dc.contributor.advisorGonzalez Sayer, Sandra Milena
dc.contributor.advisorAristizabal Gutierrez, Fabio Ancizar
dc.contributor.authorSaavedra Correa, Juan David
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000074382spa
dc.contributor.orcidSaavedra, Juan David [0000-0003-1527-0428]spa
dc.contributor.researchgroupBioprocesos y Bioprospecciónspa
dc.date.accessioned2023-08-29T14:56:13Z
dc.date.available2023-08-29T14:56:13Z
dc.date.issued2023-06-05
dc.descriptionilustraciones, diagramas, fotografías a colorspa
dc.description.abstractDada la importancia del cultivo del arroz en Colombia, se han utilizado muchas estrategias para incrementar el rendimiento por hectárea, las cuales buscan incentivar directa e indirectamente la promoción de servicios ecosistémicos como el ciclaje de nutrientes, siendo el microbioma del suelo un factor clave en la modulación de muchos nutrientes presentes en el suelo, con un efecto en la productividad de las plantas. Se propuso como objetivo de este trabajo de investigación, estudiar los microbiomas edáficos de un campo comercial de arroz y su relación con las propiedades físico-químicas del suelo. Para ello, se tomaron muestras de suelo de soporte y rizosférico en un lote de arroz de 33 hectáreas, previamente caracterizadas según el historial de datos de rendimiento, en tres zonas de manejo (rendimiento alto, rendimiento medio y rendimiento bajo). Las muestras de suelo se tomaron antes de la siembra del cultivo y después de la última fertilización química; Además, se realizaron análisis fisicoquímicos del suelo y extracción de ADN. Inicialmente se planteó una estrategia para el estudio de microbiomas a través de 16s rRNA y amplicones ITS, sin embargo, los resultados obtenidos con esta metodología no fueron lo suficientemente confiables, por lo que se tomó la decisión de realizar el análisis desde la perspectiva de la metagenómica, para su posterior secuenciación por “shotgun” y análisis de metagenoma. Las comunidades microbianas del campo de arroz reportaron una baja diversidad en general, se encontró que las muestras estaban dominadas por los filos Proteobacteria, Acidobacteria y Actinobacteria. Aunque hubo variaciones en la composición y estructura de los microbiomas del suelo de soportea lo largo del tiempo y entre los microbiomas asociados con las tres zonas de manejo, no se encontraron diferencias significativas. Se encontró que la diversidad, la composición y la función predicha de los microbiomas de la rizosfera eran significativamente diferentes de los microbiomas del suelo de soporte. Además, se identificó que estos suelos tenían un pH particularmente ácido, y también se pudo detectar que la materia orgánica incidía en la diversidad de los microbiomas, asi como las prácticas de manejo. (Texto tomado de la fuente)spa
dc.description.abstractGiven the importance of rice cultivation in Colombia, many strategies have been used to increase yield per hectare, which seek to directly and indirectly encourage the promotion of ecosystem services such as nutrient cycling, with the soil microbiome being a key factor in the modulation of many nutrients present in the soil and having an effect on plant productivity, it was proposed as the objective of this research, to study the edaphic microbiomes of a commercial field of rice and its relationship with the physico-chemical properties of the soil. For this, bulk and rhizosphere soil samples were taken in a 33-hectare rice plot, previously characterized according to the yield data history, in three management zones (high, medium, and low yield). The soil samples were taken before planting the crop and seventy days after plants germination; moreover, physicochemical analyzes of the soil and DNA extraction were performed. Initially, a strategy for the study of microbiomes through 16s rRNA and ITS amplicons was proposed, however, the results obtained with this methodology were not reliable enough, for which the decision was made to carry out the analysis from the perspective of metagenomics, for subsequent shotgun sequencing and metagenome analysis. The microbial communities from the rice field reported a low diversity in general, the samples were found to be dominated by the phyla Proteobacteria, Acidobacteria, and Actinobacteria. Even though, there were variations in the composition and structure of the bulk soil microbiomes across time and between the microbiomes associated with the three management zones, no significant differences were discovered. The diversity, composition, and predicted function of rhizosphere microbiomes were found to be significantly different from the bulk soil microbiomes. Moreover, it was identified that these soils had a particularly acid pH, and it was also possible to detect that organic matter, as well as management practices had an impact on the diversity of the microbiomes.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.sponsorshipFEDEARROZ - FNAspa
dc.format.extent130 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84610
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAndrew, J., & Edwards, A. (2011). Structure, Variation, and Dynamics of the RootAssociated Microbiota of the Crop Plant Rice.spa
dc.relation.referencesBaldrian, P. (2019). The known and the unknown in soil microbial ecology. In FEMS Microbiology Ecology (Vol. 95). Oxford University Press. https://doi.org/10.1093/femsec/fiz005spa
dc.relation.referencesBerg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Corral, G. H., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., … Schloter, M. (2020). Microbiome definition re-visited: Old concepts and new challenges. In Microbiome (Vol. 8). BioMed Central Ltd. https://doi.org/10.1186/s40168-020- 00875-0spa
dc.relation.referencesBolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., CaraballoRodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9spa
dc.relation.referencesBreunig, F. M., Galvão, L. S., Dalagnol, R., Dauve, C. E., Parraga, A., Santi, A. L., Della Flora, D. P., & Chen, S. (2020). Delineation of management zones in agricultural fields using cover–crop biomass estimates from PlanetScope data. International Journal of Applied Earth Observation and Geoinformation, 85, 102004.spa
dc.relation.referencesCarreño, J. del P. (2019). Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo. Universidad Nacional de Colombia.spa
dc.relation.referencesChandra, R. (2021). Soil Biodiversity and Community Composition for Ecosystem Services. In A. Rakshit, S. K. Singh, P. C. Abhilash, & A. Biswas (Eds.), Soil Science: Fundamentals to Recent Advances (pp. 69–84). Springer. https://doi.org/10.1007/978-981-16-0917-6_5spa
dc.relation.referencesChang, H. X., Haudenshield, J. S., Bowen, C. R., & Hartman, G. L. (2017). Metagenomewide association study and machine learning prediction of bulk soil microbiome and crop productivity. Frontiers in Microbiology, 8(APR). https://doi.org/10.3389/fmicb.2017.00519spa
dc.relation.referencesChauhan, B. S., Jabran, K., & Mahajan, G. (Eds.). (2017). Rice Production Worldwide (1st ed. 2017). Springer International Publishing : Imprint: Springer. https://doi.org/10.1007/978-3-319-47516-5spa
dc.relation.referencesChen, S., Du, T., Wang, S., Parsons, D., Wu, D., Guo, X., & Li, D. (2021). Quantifying the effects of spatial-temporal variability of soil properties on crop growth in management zones within an irrigated maize field in Northwest China. Agricultural Water Management, 244, 106535. https://doi.org/10.1016/j.agwat.2020.106535spa
dc.relation.referencesDANE. (2014). Censo Nacional Agropecuario 2014. In Departamento Administrativo Nacional de Estadística (DANE). https://www.dane.gov.co/files/images/foros/forode-entrega-de-resultados-y-cierre-3-censo-nacional-agropecuario/CNATomo2- Resultados.pdfspa
dc.relation.referencesDANE. (2021). Encuesta Nacional de Arroz Mecanizado (ENAM) Primer semestre de 2021. https://fedearroz.s3.amazonaws.com/media/documents/comunicado_ENAM_Isem 21_2_XnnAwff.pdfspa
dc.relation.referencesDe Gannes, V., Eudoxie, G., Bekele, I., & Hickey, W. J. (2015). Relations of microbiome characteristics to edaphic properties of tropical soils from Trinidad. Frontiers in Microbiology, 6(SEP), 1045. https://doi.org/10.3389/fmicb.2015.01045spa
dc.relation.referencesDing, L.-J., Cui, H., Nie, S., Long, X., Duan, G., & Zhu, Y.-G. (2019). Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology. https://doi.org/10.1093/femsec/fiz040spa
dc.relation.referencesDoerge, T. (2005). Management Zone Concepts. South Dakota State University, 1. http://www.ipni.net/publication/ssmg.nsf/0/C0D052F04A53E0BF852579E500761A E3/$FILE/SSMG-02.pdfspa
dc.relation.referencesDoni, F., Suhaimi, N. S. M., Mispan, M. S., Fathurrahman, F., Marzuki, B. M., Kusmoro, J., & Uphoff, N. (2022). Microbial Contributions for Rice Production: From Conventional Crop Management to the Use of ‘Omics’ Technologies. International Journal of Molecular Sciences, 23(2), 737. https://doi.org/10.3390/ijms23020737spa
dc.relation.referencesFahad, S., Adnan, M., Noor, M., Arif, M., Alam, M., Khan, I. A., Ullah, H., Wahid, F., Mian, I. A., Jamal, Y., Basir, A., Hassan, S., Saud, S., Amanullah, Riaz, M., Wu, C., Khan, M. A., & Wang, D. (2018). Major constraints for global rice production. In Advances in Rice Research for Abiotic Stress Tolerance (pp. 1–22). Elsevier. https://doi.org/10.1016/B978-0-12-814332-2.00001-0spa
dc.relation.referencesFahad, S., Adnan, M., Noor, M., Arif, M., Alam, M., Khan, I. A., Ullah, H., Wahid, F., Mian, I. A., Jamal, Y., Basir, A., Hassan, S., Saud, S., Amanullah, Riaz, M., Wu, C., Khan, M. A., & Wang, D. (2018). Major constraints for global rice production. In Advances in Rice Research for Abiotic Stress Tolerance (pp. 1–22). Elsevier. https://doi.org/10.1016/B978-0-12-814332-2.00001-0spa
dc.relation.referencesFEDEARROZ. (2018). Adopción Masiva De Tecnologia AMTEC AMTEC FEDEARROZ. Revista Arroz, 22–34.spa
dc.relation.referencesFEDEARROZ. (2020). Federación Nacional de Arroceros, Estadísticas Arroceras en Colombia. In Area, Producción y Rendimientos. http://www.fedearroz.com.co/new/apr_public.phpspa
dc.relation.referencesGarcés-Varón, G., & Medina-Rubio, J. (2018). LA FISIOLOGIA DEL CULTIVO DEL ARROZ EN EL PROGRAMA AMTEC. Fedearroz, 1(2).spa
dc.relation.referencesGarrido-Cardenas, J. A., & Manzano-Agugliaro, F. (2017). The metagenomics worldwide research. In Current Genetics (Vol. 63). Springer Verlag. https://doi.org/10.1007/s00294-017-0693-8spa
dc.relation.referencesGebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. In Science (Vol. 327). https://doi.org/10.1126/science.1183899spa
dc.relation.referencesHarwood, C. & Buckley, M. (2008). A golden age for microbial ecology. In Nature Reviews Microbiology (Vol. 6). Nature Publishing Group. https://doi.org/10.1038/nrmicro1957spa
dc.relation.referencesIllumina. (2015). Technology Spotlight: Illumina ® Sequencing. IRRI. (1993). Rice Researcn in a time of change. International Rice Research Institute, 1(1).spa
dc.relation.referencesJansson, J. (2013). Encyclopedia of Metagenomics: Soil Metagenomics. In Encyclopedia of Metagenomics (Vol. 2). Springer New York. https://doi.org/10.1007/978-1-4614- 6418-1spa
dc.relation.referencesJing, J., Cong, W.-F., & Bezemer, T. M. (2022). Legacies at work: Plant–soil–microbiome interactions underpinning agricultural sustainability. Trends in Plant Science, 27(8), 781–792. https://doi.org/10.1016/j.tplants.2022.05.007spa
dc.relation.referencesJusto, C., & Scianca, ; Carlos. (2011). Agricultura Por Ambientes. Estrategias De Manejo De Maiz En Suelos Con Diferentes Aptitud Productiva. EEA INTA GENERAL VILLEGAS, 1.spa
dc.relation.referencesKim, H., & Lee, Y.-H. (2020). The Rice Microbiome: A Model Platform for Crop Holobiome. Phytobiomes Journal • 2020 •, 4, 5–18. https://doi.org/10.1094/PBIOMES-07-19-0035-RVWspa
dc.relation.referencesKutílek, M., & Nielsen, D. R. (2017). Soil The Skin of the Planet Earth (1st ed.). Springer Books.spa
dc.relation.referencesLopes, R. (2013). Towards a sustainable rice culture: The role of microbiota [PhD Thesis]. Universidade do Portospa
dc.relation.referencesLukac, M., Grenni, P., & Gamboni, M. (2017). Soil Biological Communities and Ecosystem Resilience. In Soil Biological Communities and Ecosystem Resilience (Vol. 1). Springer International Publishing. https://doi.org/10.1007/978-3-319-63336-7spa
dc.relation.referencesMarchesi, J. R., & Ravel, J. (2015). The vocabulary of microbiome research: A proposal. Microbiome, 3(1), 1–3. https://doi.org/10.1186/s40168-015-0094-5spa
dc.relation.referencesMoharana, P. C., Jena, R. K., Pradhan, U. K., Nogiya, M., Tailor, B. L., Singh, R. S., & Singh, S. K. (2020). Geostatistical and fuzzy clustering approach for delineation of site-specific management zones and yield-limiting factors in irrigated hot arid environment of India. Precision Agriculture, 21(2), 426–448. https://doi.org/10.1007/s11119-019-09671-9spa
dc.relation.referencesNannipieri, P., Ascher, J., Ceccherini, M. T., Petramellara, G., Giancarlo, R., & Schloter, M. (2020). Beyond microbial diversity for predicting soil functions: A mini review. Pedosphere, 30(1), 5–17. https://doi.org/10.1016/S1002-0160(19)60824-6spa
dc.relation.referencesAlteio, L. V., Séneca, J., Canarini, A., Angel, R., Jansa, J., Guseva, K., Kaiser, C., Richter, A., & Schmidt, H. (2021). A critical perspective on interpreting amplicon sequencing data in soil ecological research. Soil Biology and Biochemistry, 160, 108357. https://doi.org/10.1016/j.soilbio.2021.108357spa
dc.relation.referencesAuer, L., Mariadassou, M., O’Donohue, M., Klopp, C., & Hernandez-Raquet, G. (2017). Analysis of large 16S rRNA Illumina data sets: Impact of singleton read filtering on microbial community description. Molecular Ecology Resources, 17(6), e122– e132. https://doi.org/10.1111/1755-0998.12700spa
dc.relation.referencesBanerjee, S., & van der Heijden, M. G. A. (2022). Soil microbiomes and one health. Nature Reviews Microbiology, 1–15. https://doi.org/10.1038/s41579-022-00779-wspa
dc.relation.referencesBokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., & Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6(1), 90. https://doi.org/10.1186/s40168-018-0470-zspa
dc.relation.referencesBrooks, J. P., Edwards, D. J., Harwich, M. D., Rivera, M. C., Fettweis, J. M., Serrano, M. G., Reris, R. A., Sheth, N. U., Huang, B., Girerd, P., Strauss, J. F., Jefferson, K. K., Buck, G. A., & Vaginal Microbiome Consortium (additional members). (2015). The truth about metagenomics: Quantifying and counteracting bias in 16S rRNA studies. BMC Microbiology, 15(1), 66. https://doi.org/10.1186/s12866-015- 0351-6spa
dc.relation.referencesBruno, F., Marinella, M., & Santamaria, M. (2015). e-DNA Meta-Barcoding: From NGS Raw Data to Taxonomic Profiling. In E. Picardi (Ed.), RNA Bioinformatics (pp. 257– 278). Springer. https://doi.org/10.1007/978-1-4939-2291-8_16spa
dc.relation.referencesBukin, Y. S., Galachyants, Y. P., Morozov, I. V., Bukin, S. V., Zakharenko, A. S., & Zemskaya, T. I. (2019). The effect of 16S rRNA region choice on bacterial community metabarcoding results. Scientific Data, 6(1), Article 1. https://doi.org/10.1038/sdata.2019.7spa
dc.relation.referencesCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. https://doi.org/10.1038/nmeth.3869spa
dc.relation.referencesDubey, A., Malla, M. A., Khan, F., Chowdhary, K., Yadav, S., Kumar, A., Sharma, S., Khare, P. K., & Khan, M. L. (2019). Soil microbiome: A key player for conservation of soil health under changing climate. Biodiversity and Conservation, 28(8), 2405– 2429. https://doi.org/10.1007/s10531-019-01760-5spa
dc.relation.referencesGołębiewski, M., & Tretyn, A. (2020). Generating amplicon reads for microbial community assessment with next-generation sequencing. Journal of Applied Microbiology, 128(2), 330–354. https://doi.org/10.1111/jam.14380spa
dc.relation.referencesHaas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S. K., Sodergren, E., Methé, B., DeSantis, T. Z., Human Microbiome Consortium, Petrosino, J. F., Knight, R., & Birren, B. W. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454- pyrosequenced PCR amplicons. Genome Research, 21(3), 494–504. https://doi.org/10.1101/gr.112730.110spa
dc.relation.referencesHall, M., & Beiko, R. G. (2018). 16S rRNA Gene Analysis with QIIME2. In R. G. Beiko, W. Hsiao, & J. Parkinson (Eds.), Microbiome Analysis: Methods and Protocols (pp. 113–129). Springer. https://doi.org/10.1007/978-1-4939-8728-3_8spa
dc.relation.referencesHighlander, S. (2013). Mock Community Analysis. In K. E. Nelson (Ed.), Encyclopedia of Metagenomics (pp. 1–7). Springer. https://doi.org/10.1007/978-1-4614-6418- 1_54-1spa
dc.relation.referencesKarstens, L., Asquith, M., Davin, S., Fair, D., Gregory, W., Wolfe, A., Braun, J., & Mcweeney, S. (2018). Controlling for contaminants in low biomass 16S rRNA gene sequencing experiments. https://doi.org/10.1101/329854spa
dc.relation.referencesKnauth, S., Schmidt, H., & Tippkötter, R. (2013). Comparison of commercial kits for the extraction of DNA from paddy soils. Letters in Applied Microbiology, 56(3), 222– 228. https://doi.org/10.1111/lam.12038spa
dc.relation.referencesKnight, R., Vrbanac, A., Taylor, B. C., Aksenov, A., Callewaert, C., Debelius, J., Gonzalez, A., Kosciolek, T., McCall, L.-I., McDonald, D., Melnik, A. V., Morton, J. T., Navas, J., Quinn, R. A., Sanders, J. G., Swafford, A. D., Thompson, L. R., Tripathi, A., Xu, Z. Z., ... Dorrestein, P. C. (2018). Best practices for analysing microbiomes. Nature Reviews Microbiology, 16(7), Article 7. https://doi.org/10.1038/s41579-018-0029-9spa
dc.relation.referencesLi, S., Deng, Y., Wang, Z., Zhang, Z., Kong, X., Zhou, W., Yi, Y., & Qu, Y. (2020). Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community. Molecular Ecology Resources, 20(1), 170–184. https://doi.org/10.1111/1755-0998.13097spa
dc.relation.referencesLiu, M., Clarke, L. J., Baker, S. C., Jordan, G. J., & Burridge, C. P. (2020). A practical guide to DNA metabarcoding for entomological ecologists. Ecological Entomology, 45(3), 373–385. https://doi.org/10.1111/een.12831spa
dc.relation.referencesLiu, Qin, Y., Chen, T., Lu, M., Qian, X., Guo, X., & Bai, Y. (2021). A practical guide to amplicon and metagenomic analysis of microbiome data. Protein & Cell, 12(5), 315–330. https://doi.org/10.1007/s13238-020-00724-8spa
dc.relation.referencesMayday, M., Khan, L., Chow, E. D., Zinter, M. S., & DeRisi, J. L. (2019). High- Throughput Library Pooling for NGS. https://www.protocols.io/view/high- throughput-library-pooling-for-ngs-tcdeis6spa
dc.relation.referencesNilsson, R. H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P., & Tedersoo, L. (2019). Mycobiome diversity: High-throughput sequencing and identification of fungi. Nature Reviews Microbiology, 17(2), Article 2. https://doi.org/10.1038/s41579-018-0116-yspa
dc.relation.referencesPecundo, M. H., Chang, A. C. G., Chen, T., dela Cruz, T. E. E., Ren, H., & Li, N. (2021). Full-Length 16S rRNA and ITS Gene Sequencing Revealed Rich Microbial Flora in Roots of Cycas spp. In China. Evolutionary Bioinformatics, 17, 1176934321989713. https://doi.org/10.1177/1176934321989713spa
dc.relation.referencesPollock, J., Glendinning, L., Wisedchanwet, T., & Watson, M. (2018). The Madness of Microbiome: Attempting To Find Consensus “Best Practice” for 16S Microbiome Studies. Applied and Environmental Microbiology, 84(7), e02627-17. https://doi.org/10.1128/AEM.02627-17spa
dc.relation.referencesPrasad, S., Malav, L. C., Choudhary, J., Kannojiya, S., Kundu, M., Kumar, S., & Yadav, A. N. (2021). Soil Microbiomes for Healthy Nutrient Recycling. In A. N. Yadav, J. Singh, C. Singh, & N. Yadav (Eds.), Current Trends in Microbial Biotechnology for Sustainable Agriculture (pp. 1–21). Springer. https://doi.org/10.1007/978-981-15- 6949-4_1spa
dc.relation.referencesProdan, A., Tremaroli, V., Brolin, H., Zwinderman, A. H., Nieuwdorp, M., & Levin, E. (2020). Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLOS ONE, 15(1), e0227434. https://doi.org/10.1371/journal.pone.0227434spa
dc.relation.referencesQuast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(Database issue), D590-596. https://doi.org/10.1093/nar/gks1219spa
dc.relation.referencesSchloss, P. D. (2020). Reintroducing mothur: 10 Years Later. Applied and Environmental Microbiology, 86(2), e02343-19. https://doi.org/10.1128/AEM.02343-19spa
dc.relation.referencesSemenov, M. V. (2021). Metabarcoding and Metagenomics in Soil Ecology Research: Achievements, Challenges, and Prospects. Biology Bulletin Reviews, 11(1), 40– 53. https://doi.org/10.1134/S2079086421010084spa
dc.relation.referencesStarke, R., Pylro, V. S., & Morais, D. K. (2021). 16S rRNA Gene Copy Number Normalization Does Not Provide More Reliable Conclusions in Metataxonomic Surveys. Microbial Ecology, 81(2), 535–539. https://doi.org/10.1007/s00248-020- 01586-7spa
dc.relation.referencesSze, M. A., & Schloss, P. D. (2019). The Impact of DNA Polymerase and Number of Rounds of Amplification in PCR on 16S rRNA Gene Sequence Data. MSphere, 4(3), e00163-19. https://doi.org/10.1128/mSphere.00163-19spa
dc.relation.referencesYang, R.-H., Su, J.-H., Shang, J.-J., Wu, Y.-Y., Li, Y., Bao, D.-P., & Yao, Y.-J. (2018). Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLOS ONE, 13(10), 1–17. https://doi.org/10.1371/journal.pone.0206428spa
dc.relation.referencesAmanullah, D., & Khalid, S. (2020). Agronomy: Climate Change (Vol. 1). IntechOpen. https://doi.org/10.5772/intechopen.78102spa
dc.relation.referencesArunrat, N., Pumijumnong, N., & Hatano, R. (2017). Practices sustaining soil organic matter and rice yield in a tropical monsoon region. Soil Science and Plant Nutrition, 1-14. https://doi.org/10.1080/00380768.2017.1323546spa
dc.relation.referencesArunrat, N., Sansupa, C., Kongsurakan, P., Sereenonchai, S., & Hatano, R. (2022). Soil Microbial Diversity and Community Composition in Rice-Fish Co-Culture and Rice Monoculture Farming System. Biology, 11(8), 1242. https://doi.org/10.3390/biology11081242spa
dc.relation.referencesAtique-ur-Rehman, Farooq, M., Rashid, A., Nadeem, F., Stuerz, S., Asch, F., Bell, R. W., & Siddique, K. H. M. (2018). Boron nutrition of rice in different production systems. A review. Agronomy for Sustainable Development, 38(3), 25. https://doi.org/10.1007/s13593-018-0504-8spa
dc.relation.referencesAzadi, A., Baghernejad, M., Gholami, A., & Shakeri, S. (2021). Forms and distribution pattern of soil Fe (Iron) and Mn (Manganese) oxides due to long-term rice cultivation in fars Province Southern Iran. Communications in Soil Science and Plant Analysis, 52(16), 1894-1911. https://doi.org/10.1080/00103624.2021.1900226spa
dc.relation.referencesBarillot, C. D. C., Sarde, C.-O., Bert, V., Tarnaud, E., & Cochet, N. (2013). A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Annals of Microbiology, 63(2), 471-476. https://doi.org/10.1007/s13213-012-0491-yspa
dc.relation.referencesBenson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(Database issue), D36- D42. https://doi.org/10.1093/nar/gks1195spa
dc.relation.referencesBiswas, R., & Sarkar, A. (2018). ‘Omics’ Tools in Soil Microbiology: The State of the Art. En T. K. Adhya, B. Lal, B. Mohapatra, D. Paul, & S. Das (Eds.), Advances in Soil Microbiology: Recent Trends and Future Prospects: Volume 1: Soil-Microbe Interaction (pp. 35-64). Springer. https://doi.org/10.1007/978-981-10-6178-3_3spa
dc.relation.referencesCaulfield, M. E., Fonte, S. J., Groot, J. C. J., Vanek, S. J., Sherwood, S., Oyarzun, P., Borja, R. M., Dumble, S., & Tittonell, P. (2020). Agroecosystem patterns and land management co-develop through environment, management, and land-use interactions. Ecosphere, 11(4), e03113. https://doi.org/10.1002/ecs2.3113spa
dc.relation.referencesChaparro, J. M., Badri, D. V., & Vivanco, J. M. (2014). Rhizosphere microbiome assemblage is affected by plant development. The ISME Journal, 8(4), 790-803. https://doi.org/10.1038/ismej.2013.196spa
dc.relation.referencesChen, L., Zhao, D., Han, G., Yang, F., Gong, Z., Song, X., Li, D., & Zhang, G. (2022). Iron loss of paddy soil in China and its environmental implications. Science China Earth Sciences, 65(7), 1277-1291. https://doi.org/10.1007/s11430-021-9936-6spa
dc.relation.referencesChialva, M., Ghignone, S., Cozzi, P., Lazzari, B., Bonfante, P., Abbruscato, P., & Lumini, E. (2020). Water management and phenology influence the root-associated rice field microbiota. FEMS microbiology ecology, 96. https://doi.org/10.1093/femsec/fiaa146spa
dc.relation.referencesCox, M. P., Peterson, D. A., & Biggs, P. J. (2010). SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics, 11(1), 485. https://doi.org/10.1186/1471-2105-11-485spa
dc.relation.referencesDe Gruyter, J., Weedon, J. T., Bazot, S., Dauwe, S., Fernandez-Garberí, P.-R., Geisen, S., De La Motte, L. G., Heinesch, B., Janssens, I. A., Leblans, N., Manise, T., Ogaya, R., Löfvenius, M. O., Peñuelas, J., Sigurdsson, B. D., Vincent, G., & Verbruggen, E. (2020). Patterns of local, intercontinental and interseasonal variation of soil bacterial and eukaryotic microbial communities. FEMS Microbiology Ecology, 96(3), fiaa018. https://doi.org/10.1093/femsec/fiaa018spa
dc.relation.referencesDevi, R., Kaur, T., Kour, D., Yadav, A., Yadav, A. N., Suman, A., ... & Saxena, A. K. (2022). Minerals solubilizing and mobilizing microbiomes: A sustainable approach for managing minerals’ deficiency in agricultural soil. Journal of Applied Microbiology, 133(3), 1245-1272.spa
dc.relation.referencesDing, L.-J., Cui, H., Nie, S., Long, X., Duan, G., & Zhu, Y.-G. (2019). Microbiomes inhabiting rice roots and rhizosphere. FEMS microbiology ecology. https://doi.org/10.1093/femsec/fiz040spa
dc.relation.referencesDong, H., Sun, H., Jiang, L., Ma, D., & Fan, S. (2022). Characteristics of root-associated bacterial community and nitrogen biochemical properties of two Japonica rice cultivars with different yields. Food and Energy Security, 11(1), e357. https://doi.org/10.1002/fes3.357spa
dc.relation.referencesDoni, F., Suhaimi, N. S. M., Mispan, M. S., Fathurrahman, F., Marzuki, B. M., Kusmoro, J., & Uphoff, N. (2022). Microbial Contributions for Rice Production: From Conventional Crop Management to the Use of ‘Omics’ Technologies. International Journal of Molecular Sciences, 23(2), Art. 2. https://doi.org/10.3390/ijms23020737spa
dc.relation.referencesDou, F., Soriano, J., Tabien, R. E., & Chen, K. (2016). Soil texture and cultivar effects on rice (Oryza sativa, L.) grain yield, yield components and water productivity in three water regimes. PLOS ONE, 11(3), e0150549. https://doi.org/10.1371/journal.pone.0150549spa
dc.relation.referencesFEDEARROZ. (2018). Adopción Masiva De Tecnologia AMTEC AMTEC FEDEARROZ. Revista Arroz, 22-34.spa
dc.relation.referencesGarlapati, D., Charankumar, B., Ramu, K., Madeswaran, P., & Ramana Murthy, M. V. (2019). A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Reviews in Environmental Science and Bio/Technology, 18(3), 389-411. https://doi.org/10.1007/s11157-019-09501-4spa
dc.relation.referencesGliński, J., Horabik, J., & Lipiec, J. (Eds.). (2011). Cation Exchange Capacity. En Encyclopedia of Agrophysics (pp. 110-110). Springer Netherlands. https://doi.org/10.1007/978-90-481-3585-1_550spa
dc.relation.referencesGuo, X., Liu, J., Xu, L., Sun, F., Ma, Y., Yin, D., ... & Lv, Y. (2022). Combined organic and inorganic fertilization can enhance dry direct-seeded rice yield by improving soil fungal community and structure. Agronomy, 12(5), 1213.spa
dc.relation.referencesHartmann, M., & Six, J. (2022). Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 1-15. https://doi.org/10.1038/s43017-022- 00366-wspa
dc.relation.referencesHe, H., Li, W., Yu, R., & Ye, Z. (2017). Illumina-Based Analysis of Bulk and Rhizosphere Soil Bacterial Communities in Paddy Fields Under Mixed Heavy Metal Contamination. Pedosphere, 27(3), 569-578. https://doi.org/10.1016/S1002- 0160(17)60352-7spa
dc.relation.referencesHu, H. W., Zhang, L. M., Yuan, C. L., & He, J. Z. (2013). Contrasting Euryarchaeota communities between upland and paddy soils exhibited similar pH-impacted biogeographic patterns. Soil Biology and Biochemistry, 64, 18-27.spa
dc.relation.referencesJensen, L. J., Julien, P., Kuhn, M., von Mering, C., Muller, J., Doerks, T., & Bork, P. (2008). eggNOG: Automated construction and annotation of orthologous groups of genes. Nucleic Acids Research, 36(Database issue), D250-254. https://doi.org/10.1093/nar/gkm796spa
dc.relation.referencesKalam, S., Basu, A., Ahmad, I., Sayyed, R. Z., El-Enshasy, H. A., Dailin, D. J., & Suriani, N. L. (2020). Recent Understanding of Soil Acidobacteria and Their Ecological Significance: A Critical Review. Frontiers in Microbiology, 11. https://www.frontiersin.org/articles/10.3389/fmicb.2020.580024spa
dc.relation.referencesKanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27spa
dc.relation.referencesKeegan, K. P., Glass, E. M., & Meyer, F. (2016). MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function. En F. Martin & S. Uroz (Eds.), Microbial Environmental Genomics (MEG) (pp. 207-233). Springer. https://doi.org/10.1007/978-1-4939-3369-3_13spa
dc.relation.referencesKendzior, J., Warren raffa, D., & Bogdanski, A. (2022). The soil microbiome: A game changer for food and agriculture : Executive summary for policymakers and researchers. FAO. https://doi.org/10.4060/cc0717enspa
dc.relation.referencesLi, S., Li, G., Huang, X., Chen, Y., Lv, C., Bai, L., Zhang, K., He, H., & Dai, J. (2023). Cultivar-specific response of rhizosphere bacterial community to uptake of cadmium and mineral elements in rice (Oryza sativa L.). Ecotoxicology and Environmental Safety, 249, 114403. https://doi.org/10.1016/j.ecoenv.2022.114403spa
dc.relation.referencesLopes, L. D., Wang, P., Futrell, S. L., & Schachtman, D. P. (2022). Sugars and Jasmonic Acid Concentration in Root Exudates Affect Maize Rhizosphere Bacterial Communities. Applied and Environmental Microbiology, 88(18), e0097122. https://doi.org/10.1128/aem.00971-22spa
dc.relation.referencesLyu, D., & Smith, D. L. (2022). The root signals in rhizosphere inter-organismal communications. Frontiers in Plant Science, 13. https://www.frontiersin.org/articles/10.3389/fpls.2022.1064058spa
dc.relation.referencesMahender, A., Swamy, B. P. M., Anandan, A., & Ali, J. (2019). Tolerance of iron-deficient and -toxic soil conditions in rice. Plants, 8(2), 31. https://doi.org/10.3390/plants8020031spa
dc.relation.referencesMagrane, M. & UniProt Consortium. (2011). UniProt Knowledgebase: A hub of integrated protein data. Database: The Journal of Biological Databases and Curation, 2011, bar009. https://doi.org/10.1093/database/bar009spa
dc.relation.referencesMathesius, U., & Costa, S. R. (2021). Plant signals differentially affect rhizosphere nematode populations. Journal of Experimental Botany, 72(10), 3496-3499. https://doi.org/10.1093/jxb/erab149spa
dc.relation.referencesMeyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., Wilkening, J., & Edwards, R. (2008). The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9(1), 386. https://doi.org/10.1186/1471-2105-9-386spa
dc.relation.referencesMhete, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. (2020). Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Scientific African, 7, e00246. https://doi.org/10.1016/j.sciaf.2019.e00246spa
dc.relation.referencesMustafa, G., Hayat, N., & Alotaibi, B. A. (2023). Chapter fifteen—How and why to prevent over fertilization to get sustainable crop production. En T. Aftab & K. R. Hakeem (Eds.), Sustainable Plant Nutrition (pp. 339-354). Academic Press. https://doi.org/10.1016/B978-0-443-18675-2.00019-5spa
dc.relation.referencesNaveed, M., Herath, L., Moldrup, P., Arthur, E., Nicolaisen, M., Norgaard, T., Ferré, T. P. A., & de Jonge, L. W. (2016). Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Applied Soil Ecology, 103, 44-55. https://doi.org/10.1016/j.apsoil.2016.03.004spa
dc.relation.referencesNguyen, B. T., Phan, B. T., Nguyen, T. X., Nguyen, V. N., Van Tran, T., & Bach, Q.-V. (2020). Contrastive nutrient leaching from two differently textured paddy soils as influenced by biochar addition. Journal of Soils and Sediments, 20(1), 297-307. https://doi.org/10.1007/s11368-019-02366-8spa
dc.relation.referencesNuccio, E. E., Starr, E., Karaoz, U., Brodie, E. L., Zhou, J., Tringe, S. G., Malmstrom, R. R., Woyke, T., Banfield, J. F., Firestone, M. K., & Pett-Ridge, J. (2020). Niche differentiation is spatially and temporally regulated in the rhizosphere. The ISME Journal, 14(4), 999-1014. https://doi.org/10.1038/s41396-019-0582-xspa
dc.relation.referencesO’Brien, S., Gibbons, S., Owens, S., Hampton-Marcell, J., Johnston, E., Jastrow, J., Jack, G., Meyer, F., & Antonopoulos, D. (2016). Spatial scale drives patterns in soil bacterial diversity. Environmental microbiology, 18. https://doi.org/10.1111/1462- 2920.13231spa
dc.relation.referencesOksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). Vegan: Community ecology package. http://CRAN.R- project.org/package=veganspa
dc.relation.referencesOsman, K. T. (2013). Plant Nutrients and Soil Fertility Management. In K. T. Osman (Ed.), Soils: Principles, Properties and Management (pp. 129–159). Springer Netherlands. https://doi.org/10.1007/978-94-007-5663-2_10spa
dc.relation.referencesOtero-Jiménez, V., Carreño-Carreño, J. del P., Barreto-Hernandez, E., van Elsas, J. D., & Uribe-Vélez, D. (2021). Impact of rice straw management strategies on rice rhizosphere microbiomes. Applied Soil Ecology, 167, 104036. https://doi.org/10.1016/j.apsoil.2021.104036spa
dc.relation.referencesOverbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A. R., Xia, F., & Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(Database issue), D206-214. https://doi.org/10.1093/nar/gkt1226spa
dc.relation.referencesPausch, J., & Kuzyakov, Y. (2018). Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Global Change Biology, 24(1), 1-12. https://doi.org/10.1111/gcb.13850spa
dc.relation.referencesPhongchanmixay, S., Bounyavong, B., Khanthavong, P., Khanthavong, T., Ikeura, H., Matsumoto, N., & Kawamura, K. (2019). Rice plant growth and nutrient leaching under different patterns of split chemical fertilization on sandy soil using a pot. Paddy and Water Environment, 17(2), 91-99. https://doi.org/10.1007/s10333-019- 00701-wspa
dc.relation.referencesQuince, C., Walker, A. W., Simpson, J. T., Loman, N. J., & Segata, N. (2017). Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9), Art. 9. https://doi.org/10.1038/nbt.3935spa
dc.relation.referencesR Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www. R-project. org/.spa
dc.relation.referencesSchroth, G., & Sinclair, F. L. (2003). Trees, Crops, and Soil Fertility: Concepts and Research Methods. CABI.spa
dc.relation.referencesSpeirs, L. B. M., Rice, D. T. F., Petrovski, S., & Seviour, R. J. (2019). The Phylogeny, Biodiversity, and Ecology of the Chloroflexi in Activated Sludge. Frontiers in Microbiology, 10. https://www.frontiersin.org/articles/10.3389/fmicb.2019.02015spa
dc.relation.referencesSun, W., Xiao, E., Pu, Z., Krumins, V., Dong, Y., Li, B., & Hu, M. (2017). Paddy soil microbial communities driven by environment-and microbe-microbe interactions: A case study of elevation-resolved microbial communities in a rice terrace. https://doi.org/10.1016/j.scitotenv.2017.08.275spa
dc.relation.referencesWang, Q., Liang, A., Chen, X., Zhang, S., Zhang, Y., McLaughlin, N. B., ... & Jia, S. (2021). The impact of cropping system, tillage and season on shaping soil fungal community in a long-term field trial. European Journal of Soil Biology, 102, 103253.spa
dc.relation.referencesWang, W., Luo, X., Chen, Y., Ye, X., Wang, H., Cao, Z., Ran, W., & Cui, Z. (2019). Succession of Composition and Function of Soil Bacterial Communities During Key Rice Growth Stages. Frontiers in Microbiology, 10, 421. https://doi.org/10.3389/fmicb.2019.00421spa
dc.relation.referencesWang, X., He, T., Gen, S., Zhang, X.-Q., Wang, X., Jiang, D., Li, C., Li, C., Wang, J., Zhang, W., & Li, C. (2020). Soil properties and agricultural practices shape microbial communities in flooded and rainfed croplands. Applied Soil Ecology, 147, 103449. https://doi.org/10.1016/j.apsoil.2019.103449spa
dc.relation.referencesWang, L., & Huang, D. (2021). Soil ammonia-oxidizing archaea in a paddy field with different irrigation and fertilization managements. Scientific Reports, 11(1), 1-11.spa
dc.relation.referencesWei, T., & Simko, V. (2021). R package «corrplot»: Visualization of a Correlation Matrix. (Version 0.92). (Version 0.92). https://cran.r- project.org/web/packages/corrplot/citation.htmlspa
dc.relation.referencesWilke, A., Bischof, J., Gerlach, W., Glass, E., Harrison, T., Keegan, K. P., Paczian, T., Trimble, W. L., Bagchi, S., Grama, A., Chaterji, S., & Meyer, F. (2016). The MG- RAST metagenomics database and portal in 2015. Nucleic Acids Research, 44(D1), D590-D594. https://doi.org/10.1093/nar/gkv1322spa
dc.relation.referencesYadav, A. N. (2021). Soil Microbiomes for Sustainable Agriculture: Functional Annotation. Springer Nature.spa
dc.relation.referencesYuan, C. L., Zhang, L. M., Wang, J. T., Hu, H. W., Shen, J. P., Cao, P., & He, J. Z. (2019). Distributions and environmental drivers of archaea and bacteria in paddy soils. Journal of Soils and Sediments, 19, 23-37.spa
dc.relation.referencesXu, C., Li, Y., Hu, X., Zang, Q., Zhuang, H., & Huang, L. (2022). The influence of organic and conventional cultivation patterns on physicochemical property, enzyme activity and microbial community characteristics of paddy soil. Agriculture, 12(1), 121.spa
dc.relation.referencesZhang, Q., Li, Y., Xing, J., Brookes, P. C., & Xu, J. (2019). Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils. Science of the Total Environment, 658, 723-731.spa
dc.relation.referencesZhong, Y., Hu, J., Xia, Q., Zhang, S., Li, X., Pan, X., Zhao, R., Wang, R., Yan, W., Shangguan, Z., Hu, F., Yang, C., & Wang, W. (2020). Soil microbial mechanisms promoting ultrahigh rice yield. Soil Biology and Biochemistry, 143, 107741. https://doi.org/10.1016/j.soilbio.2020.107741spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddcMicrobiología agrícolaspa
dc.subject.ddcEcología Microbianaspa
dc.subject.lembArrozspa
dc.subject.lembRiceeng
dc.subject.lembAgricultura sosteniblespa
dc.subject.lembSustainable agricultureeng
dc.subject.proposalRice soil metagenomicseng
dc.subject.proposalBulk soil Microbiomeseng
dc.subject.proposalRhizosphere microbiomeseng
dc.subject.proposalAmplicon sequencingeng
dc.subject.proposalShotgun sequencingeng
dc.subject.proposalMetagenómica del suelo de arrozspa
dc.subject.proposalMicrobiomas de suelo de soportespa
dc.subject.proposalMicrobiomas de rizosferaspa
dc.subject.proposalSecuenciacion shotgunspa
dc.titleCaracterización del metagenoma de la comunidad microbiana edáfica asociada a un cultivo de arroz (oryza sativa) bajo un esquema agronómico de manejo de agricultura por ambientesspa
dc.title.translatedMetagenomic characterization of the edaphic microbial community associated with a rice crop (Oryza sativa) under an agronomic scheme of agriculture management by management zoneseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEXPLORACIÓN DE LA INTERACCIÓN DE LO FÍSICO, COMPONENTES QUÍMICOS Y BIOLÓGICOS DEL SUELO EN LA PRODUCTIVIDAD DEL CULTIVO DE ARROZ EN AGRICULTURA POR AMBIENTESspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Juan_Saavedra_Rice_Microbiomes_THESIS_MSc.pdf
Tamaño:
3.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: