A mathematical framework of physics-informed neural networks for the solution of parabolic PDEs

dc.contributor.advisorBastidas Olivares, Manuela
dc.contributor.advisorMuñoz Durango, Diego Alejandro
dc.contributor.authorAcosta Castrillón , Josué David
dc.contributor.orcidBastidas Olivares, Manuela [0000000230062363]
dc.date.accessioned2025-10-17T16:45:02Z
dc.date.available2025-10-17T16:45:02Z
dc.date.issued2025-10-02
dc.description.abstractPartial differential equations are some of the most useful mathematical tools to describe physical phenomena. Yet useful, many partial differential equations are difficult to solve in a classical way, even the solutions are difficult to find just by using analytical methods. For this reason many numerical methods are used in order to find numerical approximations. In the last years, the interest for developing numerical methods for solving PDEs using artificial neural networks have risen, following the accessibility to more user friendly frameworks for their development using home computers. Many methods have been documented that solve PDE in its strong and variational form for parabolic problems, however, there is not many progress in using neural networks for the solution of parabolic partial differential equations. Here we make use recent ideas for the development of variational physics informed neural networks for the solution of parabolic PDEs and expand on the mathematical background that supports their robustness. We obtained an neural network architecture that via time discretization, minimizes a loss function which achieves good approximations of the solution of time dependent problems in each time-step of the approximation maintaining coherence with the main idea behind classical VPINNs and the deep Fourier method. We show the effectiveness of our method in the solution of the freezing of coffee extracts in a industrial context and make use of measurements data for validation. We anticipate our work as a introductory material for any mathematician who wants to begin working on physics informed neural networks, by including an exhaustive and rigorous treatment on all the functional analysis topics necessary to lay the foundations in a mathematical way of the subject and also for any machine learning enthusiast who needs to make a bridge between the main ideas of data driven learning and the mathematical machinery behind residual minimization methods or partial differential equations in general.eng
dc.description.curricularareaMatemáticas.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMaestría en Ciencias - Matemáticas
dc.description.notesLas ecuaciones diferenciales parciales son algunas de las herramientas matemáticas más útiles para describir fenómenos físicos. Sin embargo, aunque resultan muy ´útiles, muchas ecuaciones diferenciales parciales son difíciles de resolver de manera clásica, e incluso sus soluciones son complicadas de encontrar mediante métodos analíticos. Por esta razón, se emplean numerosos métodos numéricos con el fin de obtener aproximaciones numéricas. En los ´últimos años, ha crecido el interés por desarrollar métodos numéricos para la resolución de EDPs utilizando redes neuronales artificiales, impulsado por la accesibilidad a marcos de trabajo más amigables para su desarrollo en computadoras personales. Se han documentado muchos métodos que resuelven EDPs en su forma fuerte y variacional para problemas parabólicos; sin embargo, no se ha avanzado tanto en el uso de redes neuronales para la solución de ecuaciones diferenciales parciales parabólicas. En este trabajo hacemos uso de ideas recientes para el desarrollo de redes neuronales informadas por la física en su formulación variacional (VPINNs) para la solución de EDPs parabólicas, y profundizamos en los fundamentos matemáticos que respaldan su robustez. Obtuvimos una arquitectura de red neuronal que, mediante la discretización temporal, minimiza una función de perdida que logra buenas aproximaciones de la solución de problemas dependientes del tiempo en cada paso temporal de la aproximación, manteniendo coherencia con la idea principal detrás de las VPINNs clásicas y del método de Fourier profundo (Deep Fourier Method). Mostramos la efectividad de nuestro método en la solución del proceso de congelación de extractos de café en un contexto industrial, utilizando datos experimentales para su validación. Anticipamos que nuestro trabajo sirva como material introductorio para cualquier matemático que desee comenzar a trabajar con redes neuronales informadas por la física, al incluir un tratamiento exhaustivo y riguroso de todos los temas de análisis funcional necesarios para sentar las bases matemáticas del tema, así como para cualquier entusiasta del aprendizaje automático que necesite tender un puente entre las ideas principales del aprendizaje basado en datos y la maquinaria matemática detrás de los métodos de minimización residual o de las ecuaciones diferenciales parciales en general. (texto tomado de l afuente)
dc.format.extent1 recurso en líne (114 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89040
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Matemáticas
dc.relation.references[1] Akrivis, G., Makridakis, C., and Nochetto, R. H. (2006). A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Mathematics of Computation, 75(254), 511–531.http://www.jstor.org/stable/4100298.
dc.relation.references[2] Apostol, T. M. (1984). Mathematical Analysis. Addison-Wesley.
dc.relation.references[3] Baharlouei, S., Taylor, J. M., Uriarte, C., & Pardo, D. (2025). A Least-Squares-Based Neural Network (LS-Net) for Solving Linear Parametric PDEs. Computer Methods in Applied Mechanics and Engineering, 437, 117757. doi:10.1016/j.cma.2025.117757.
dc.relation.references[4] Badia, S., Li, W., & Mart´ın, A. F. (2024). Finite element interpolated neural networks for solving forward and inverse problems. Computer Methods in Applied Mechanics and Engineering, 418, 116505. doi:10.1016/j.cma.2023.116505.
dc.relation.references[5] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2015). Automatic differentiation in machine learning: A survey. arXiv. https://arxiv.org/abs/1502. 05767.
dc.relation.references[6] Becker, B. R., & Fricke, B. A. (2004). Heat transfer coefficients for forced-air cooling and freezing of selected foods. International Journal of Refrigeration, 27(5), 540–551.
dc.relation.references[7] Bellumori, M., Angeloni, G., Guerrini, L., et al. (2021). Effects of different stabilization techniques on the shelf life of cold brew coffee: Chemical composition, flavor profile, and microbiological analysis. LWT, 142, 111043.
dc.relation.references[8] Berrone, S., Canuto, C., and Pintore, M. (2022). Variational Physics Informed Neural Networks: The Role of Quadratures and Test Functions. arXiv preprint, arXiv:2206.04941. https://arxiv.org/abs/2206.04941.
dc.relation.references[9] Berrone, S., Canuto, C., & Pintore, M. (2022). Solving PDEs by variational physics- informed neural networks: An a posteriori error analysis. Annali dell’Universit`a di Ferrara, 68, 575–595. doi:10.1007/s11565-022-00393-2.
dc.relation.references[10] Berrone, S., Canuto, C., & Pintore, M. (2022). Variational physics-informed neural networks: The role of quadratures and test functions. Journal of Scientific Computing, 92, 100. doi:10.1007/s10915-022-01877-3.
dc.relation.references[11] Brezis, H. (2010). Functional Analysis, Sobolev Spaces and Partial Differential Equa- tions. Springer Science and Business Media.
dc.relation.references[12] Burden, R. L., & Faires, J. D. (2010). Numerical Analysis (9th ed.). Cengage Learning.
dc.relation.references[13] Calabro, F., Cuomo, S., di Serafino, D., Izzo, G., and Messina, E. (2023). Time discretization in the solution of parabolic PDEs with ANNs. Applied Mathematics and Computation, 458, 128230. https://doi.org/10.1016/j.amc.2023.128230.
dc.relation.references[14] Cengel, Y. A., & Ghajar, A. J. (2020). Heat and Mass Transfer: Fundamentals and Applications (6th ed.). McGraw Hill.
dc.relation.references[15] Cimrman, R., Lukes, V., & Rohan, E. (2019). Multiscale finite element calculations in Python using sfepy. Advances in Computational Mathematics.
dc.relation.references[16] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathe- matics of Control, Signals, and Systems, 2(4), 303–314. doi:10.1007/BF02551274.
dc.relation.references[17] Cheng, A., & Cheng, D. T. (2005). Heritage and early history of the boundary element method. Engineering Analysis with Boundary Elements, 29(3), 268–302.
dc.relation.references[18] Delgado, A., & Sun, D. W. (2001). Heat and mass transfer models for predicting freezing processes – a review. Journal of Food Engineering, 47, 157–174.
dc.relation.references[19] Davies, E. B. (1995). Spectral Theory and Differential Operators. Cambridge University Press.
dc.relation.references[20] Ern, A., and Guermond, J. L. (2021). Finite Elements III: First-Order and Time- Dependent PDEs. Springer. https://doi.org/10.1007/978-3-030-57348-5.
dc.relation.references[21] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366. https://doi.org/10. 1016/0893-6080(89)90020-8.
dc.relation.references[22] Jagtap, A. D., Kharazmi, E., & Karniadakis, G. E. (2020). Conservative physics- informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems. Computer Methods in Applied Mechanics and Engineer- ing, 365, 113028. doi:10.1016/j.cma.2020.113028.
dc.relation.references[23] Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3, 422–440. doi:10.1038/s42254-021-00314-5.
dc.relation.references[24] Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017). Physics Informed Deep Learning (Part I): Data-driven solutions of nonlinear partial differential equations. arXiv.https://arxiv.org/abs/1711.10561.
dc.relation.references[25] Karlsson, H. F. (2023). Solving partial differential equations with neural networks (Dissertation). Uppsala University. https://urn.kb.se/resolve?urn=urn:nbn:se: uu:diva-499348.
dc.relation.references[26] Kharazmi, E., Zhang, Z., & Karniadakis, G. E. (2021). hp-VPINNs: Variational physics- informed neural networks with domain decomposition. Computer Methods in Applied Mechanics and Engineering, 374, 113547. doi:10.1016/j.cma.2020.113547.
dc.relation.references[27] Kharazmi, E., Zhang, Z., and Karniadakis, G. E. (2019). Variational Physics-Informed Neural Networks for solving partial differential equations. arXiv. https://arxiv.org/ abs/1912.00873.
dc.relation.references[28] Khodayi-Mehr, R., & Zavlanos, M. (2020). VarNet: Variational neural networks for the solution of partial differential equations. In Proceedings of the 2nd Conference on Learning for Dynamics and Control, PMLR, pp. 298–307.
dc.relation.references[29] Khodayi-Mehr, R., & Zavlanos, M. M. (2020). Deep learning for robotic mass transport cloaking. IEEE Transactions on Robotics, 36(4), 967–974. doi:10.1109/TRO.2020.2978604.
dc.relation.references[30] Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44(247), 335–341. doi:10.1080/01621459.1949.10483310.
dc.relation.references[31] Moreno, F., Quintanilla-Carvajal, M., Sotelo, L., et al. (2015). Volatile compounds, sensory quality and ice morphology in falling-film and block freeze concentration of coffee extract. Journal of Food Engineering, 166, 64–71.
dc.relation.references[32] Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta Numerica, 8, 143–195. doi:10.1017/S0962492900002919.
dc.relation.references[33] Poisson, S. D. (1823). M´emoire sur la th´eorie du magn´etisme en mouvement. M´emoires de l’Academie Royale des Sciences de l’Institut de France, 5, 247–338.
dc.relation.references[34] Presiga-Posada, N., Restrepo-Dıaz, C., Velasquez, S., Gil, L., & Muñoz, D. A. (2024). Study on the industrial freezing process of coffee extracts under different conditions using a validated phenomenological model. Manuscript submitted for publication in Journal of Food Engineering.
dc.relation.references[35] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. doi:10.1016/j.jcp.2018.10.045.
dc.relation.references[36] Rivera, J. A., Taylor, J. M., Omella, ´A. J., & Pardo, D. (2022). On quadrature rules for solving partial differential equations using neural networks. Computer Methods in Applied Mechanics and Engineering, 393, 114710. doi:10.1016/j.cma.2022.114710.
dc.relation.references[37] Rojas, S., Maczuga, P., Munoz-Matute, J., Pardo, D., and Paszynski, M. (2024). Robust Variational Physics-Informed Neural Networks. Computer Methods in Applied Mechanics and Engineering, 425, 116904. https://doi.org/10.1016/j.cma.2024.116904.
dc.relation.references[38] Santos, C., Carciofi, B., et al. (2007). Determination of heat transfer coefficient in cooling-freezing tunnels using experimental time–temperature data. Journal of Food Process Engineering, 30, 717–728
dc.relation.references[39] Silva, A. C. C., et al. (2023). Effect of concentration and temperature on the physical and thermophysical properties of coffee extract. Journal of Food Engineering, 340, 111304.
dc.relation.references[40] Sirignano, J., & Spiliopoulos, K. (2018). DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 375, 1339–1364. doi:10.1016/j.jcp.2018.08.029.
dc.relation.references[41] Taylor, J. M., Bastidas, M., Calo, V. M., and Pardo, D. (2024). Adaptive deep Fourier residual method via overlapping domain decomposition. Computer Methods in Applied Mechanics and Engineering, 427, 116997. https://doi.org/10.1016/j.cma.2024. 116997.
dc.relation.references[42] Taylor, J. M., Bastidas, M., Pardo, D., & Muga, I. (2023). Deep Fourier Residual method for solving time-harmonic Maxwell’s equations. Preprint, CUNEF University, University of the Basque Country, Basque Centre for Applied Mathematics, Ikerbasque, and Pontificia Universidad Cat´olica de Valpara´ıso.
dc.relation.references[43] Taylor, J. M., Pardo, D., and Muga, I. (2022). A deep Fourier residual method for solving PDEs using neural networks. arXiv. https://arxiv.org/abs/2203.09341.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510 - Matemáticas::511 - Principios generales de las matemáticas
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.subject.lembEcuaciones diferenciales parciales
dc.subject.lembRedes neuronales (Computadores)
dc.subject.lembAnalisis funcional
dc.subject.lembAnalisis númerico
dc.subject.proposalPhysics informed Neural Networkseng
dc.subject.proposalParabolic partial differential equationseng
dc.subject.proposalResidual minimization methodseng
dc.subject.proposalRedes neuronales informadas por la físicaspa
dc.subject.proposalEcuaciones diferenciales parciales parabólicasspa
dc.subject.proposalMétodos de minimización residualspa
dc.subject.proposalNumerical methodseng
dc.subject.proposalMétodos numéricosspa
dc.subject.proposalVariational physics informed neural networkseng
dc.subject.proposalRedes neuronales informadas por la física variacionales.spa
dc.titleA mathematical framework of physics-informed neural networks for the solution of parabolic PDEseng
dc.title.translatedUn marco matemático de redes neuronales basadas en la física para la solución de ecuaciones diferenciales parciales (EDP) parabólicasspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Matemáticas
Tamaño:
1.21 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: