Evaluación de una estrategia de valorización de ácidos grasos para la producción de comunidades microbianas diazótrofas con potencial biofertilizante
dc.contributor.advisor | Sanabria Gómez, Irma Janeth | |
dc.contributor.advisor | Uribe Vélez, Daniel | |
dc.contributor.author | Rodríguez Romero, Andrés Nicolás | |
dc.contributor.orcid | https://orcid.org/0000-0002-7635-4361 | spa |
dc.contributor.researchgroup | Laboratorio de Microbiología Y Biotecnología Ambiental | spa |
dc.contributor.researchgroup | Microbiologia Agricola | spa |
dc.date.accessioned | 2025-03-10T14:48:31Z | |
dc.date.available | 2025-03-10T14:48:31Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones, gráficas, tablas | spa |
dc.description.abstract | La agricultura actual usa cerca de 100 millones de toneladas anuales de fertilizantes nitrogenados para sostener la demanda alimentaria mundial; la producción de estos fertilizantes y su aplicación en campo ha causado efectos ambientales considerables. Por otra parte, la producción de alimentos también viene asociada con la producción de millones de toneladas anuales de residuos agroindustriales. Se han propuesto alternativas de solución para estas problemáticas basadas en: la teoría ecológica de comunidades microbianas, la ingeniería de bioprocesos y la valorización de residuos agroindustriales con el fin de producir biofertilizantes. En este estudio, nuestro objetivo fue utilizar la bioprospección dirigida centrada en microbiomas, para cultivar comunidades microbianas diazótrofas. Esto se logró mediante el enriquecimiento de muestras de suelo en biorreactores que suministran nitrógeno mediante bombeo de aire y son alimentan con ácidos grasos volátiles como fuente de carbono. Los resultados muestran que a través de un proceso de selección microbiana se puede obtener una comunidad microbiana diazótrofa capaz de fijar 2,7 veces más nitrógeno que el inóculo de partida. Dicha comunidad es capaz de crecer usando ácidos grasos volátiles provenientes de residuos como fuente de carbono. Durante el proceso de cultivo se pueden obtener formas inorgánicas de nitrógeno en el sobrenadante en concentraciones que alcanzan 12,7 mg*ml-1 . La comunidad microbiana diazótrofa crecida en bioreactores, cuyos tres géneros más abundantes son Sinirhodobacter sp. (44,4%), Aureimonas sp. (17,7%) y Taibaiella sp. (12,4%); es capaz de promover el crecimiento de plantas de tomate tanto en hidroponía como en suelo. Alcanzando una altura y producción igual a la obtenida usando fertilizantes nitrogenados de síntesis química con aporte completo de nitrógeno. Se evidencia el potencial de la metodología para hacer crecer una comunidad microbiana diazótrofa con potencial biofertilizante. La sencillez de funcionamiento del reactor y la capacidad de operar con fuentes de carbono provenientes del tratamiento de residuos agroindustriales hace que su aplicación sea prometedora para los países en desarrollo con bajo progreso tecnológico. (Texto tomado de la fuente) | spa |
dc.description.abstract | Current agriculture utilizes approximately 100 million tons of nitrogen fertilizers annually to sustain global food demand, yet their production and application have led to significant environmental consequences. Additionally, food production generates millions of tons of agro-industrial waste annually. Proposed solutions to these issues involve leveraging ecological theories of microbial communities, bioprocess engineering, and valorization of agro-industrial waste to produce biofertilizers. This study aimed to utilize directed bioprospecting focused on microbiomes to cultivate diazotrophic microbial communities. This was achieved by enriching soil samples in bioreactors that supplied nitrogen through air pumping and were fed with volatile fatty acids as a carbon source. Results demonstrate that through microbial selection, a diazotrophic microbial community capable of fixing 2.7 times more nitrogen than the initial inoculum can be obtained. This community can grow using volatile fatty acids from waste as a carbon source. During cultivation, inorganic forms of nitrogen can be obtained in the supernatant at concentrations reaching 12.7 mg*ml-1 . The diazotrophic microbial community grown in bioreactors, with the three most abundant genera being Sinirhodobacter sp. (44.4%), Aureimonas sp. (17.7%), and Taibaiella sp. (12.4%), is capable of promoting tomato plant growth in both hydroponic and soil environments. Achieving height and production equal to that obtained using chemically synthesized nitrogen fertilizers. The potential of this methodology to cultivate a diazotrophic microbial community with biofertilizer potential is evident. The simplicity of reactor operation and the ability to operate with carbon sources from agro-industrial waste treatment make its application promising for technologically underdeveloped countries. | eng |
dc.description.curriculararea | Ciencias Agropecuarias.Sede Palmira | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Agrarias | spa |
dc.description.methods | Se han propuesto alternativas de solución para estas problemáticas basadas en: la teoría ecológica de comunidades microbianas, la ingeniería de bioprocesos y la valorización de residuos agroindustriales con el fin de producir biofertilizantes. En este estudio, nuestro objetivo fue utilizar la bioprospección dirigida centrada en microbiomas, para cultivar comunidades microbianas diazótrofas. Esto se logró mediante el enriquecimiento de muestras de suelo en biorreactores que suministran nitrógeno mediante bombeo de aire y se alimentan con ácidos grasos volátiles como fuente de carbono. | spa |
dc.description.researcharea | Suelos y Aguas | spa |
dc.format.extent | xix, 81 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87625 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | spa |
dc.publisher.faculty | Facultad de Ciencias Agropecuarias | spa |
dc.publisher.place | Palmira, Valle del Cauca, Colombia | spa |
dc.publisher.program | Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias | spa |
dc.relation.references | Agnihotri, S., Yin, D.-M., Mahboubi, A., Sapmaz, T., Varjani, S., Qiao, W., Koseoglu-Imer, D. Y., & Taherzadeh, M. J. (2022). A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. Bioengineered, 13(1), 1249-1275. https://doi.org/10.1080/21655979.2021.1996044 | spa |
dc.relation.references | Alexandre, G. (2015). Chemotaxis in Azospirillum. En F. D. Cassán, Y. Okon, & C. M. Creus (Eds.), Handbook for Azospirillum: Technical Issues and Protocols (pp. 101-114). Springer International Publishing. https://doi.org/10.1007/978-3-319-06542-7_6 | spa |
dc.relation.references | Aloo, B. N., Makumba, B. A., & Mbega, E. R. (2021). Status of biofertilizer research, commercialization, and practical applications: A global perspective. Biofertilizers: Volume 1: Advances in Bio-inoculants, 191-208. https://doi.org/10.1016/B978-0-12-821667-5.00017-8 | spa |
dc.relation.references | Aloo, B. N., Tripathi, V., Makumba, B. A., & Mbega, E. R. (2022). Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, 13. https://www.frontiersin.org/articles/10.3389/fpls.2022.1002448 | spa |
dc.relation.references | Amaresan, N., Dharumadurai, D., & Babalola, O. O. (2023). Agricultural Microbiology Based Entrepreneurship Making Money from Microbes (N. Amaresan, D. Dharumadurai, & O. Babalola, Eds.; 1.a ed.). Springer Singapore. https://doi.org/10.1007/978-981-19-5747-5 | spa |
dc.relation.references | Ambrosio, R., Ortiz-Marquez, J. C. F., & Curatti, L. (2017). Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae. Metabolic Engineering, 40, 59-68. https://doi.org/10.1016/j.ymben.2017.01.002 | spa |
dc.relation.references | Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018). Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 268, 773-786. https://doi.org/10.1016/j.biortech.2018.07.042 | spa |
dc.relation.references | Barillot, C. D. C., Sarde, C. O., Bert, V., Tarnaud, E., & Cochet, N. (2013). A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Annals of Microbiology, 63(2), 471-476. https://doi.org/10.1007/s13213-012-0491-y | spa |
dc.relation.references | Batista, M. B., Brett, P., Appia-Ayme, C., Wang, Y.-P., & Dixon, R. (2021). Disrupting hierarchical control of nitrogen fixation enables carbon-dependent regulation of ammonia excretion in soil diazotrophs. PLOS Genetics, 17(6), e1009617. https://doi.org/10.1371/journal.pgen.1009617 | spa |
dc.relation.references | Ben Rebah, F., Prévost, D., Yezza, A., & Tyagi, R. D. (2007). Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: A review. Bioresource Technology, 98(18), 3535-3546. https://doi.org/10.1016/j.biortech.2006.11.066 | spa |
dc.relation.references | Benavides, H. S., Uribe-Velez, D., & Restrepo-Díaz, H. (2023). Evaluation of brassinosteroids and plant growth-promoting bacteria on the growth and yield of Lactuca sativa L. under soilless cultivation conditions. Journal of Plant Nutrition, 46(18), 4438-4453. https://doi.org/10.1080/01904167.2023.2232390 | spa |
dc.relation.references | Bicer, Y., Dincer, I., Vezina, G., & Raso, F. (2017). Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes. Environmental Management, 59(5), 842-855. https://doi.org/10.1007/s00267-017-0831-6 | spa |
dc.relation.references | Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), Article 8. https://doi.org/10.1038/s41587-019-0209-9 | spa |
dc.relation.references | Bonilla Buitrago, R., Gonzalez de Bashan, L. E., & Pedraza, R. O. (2021). Rol de las bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible. https://doi.org/10.21930/agrosavia. analisis.7405019 | spa |
dc.relation.references | Boss, B. L., Wanees, A. E., Zaslow, S. J., Normile, T. G., & Izquierdo, J. A. (2022). Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. Strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata. BMC Genomics, 23(1), 508. https://doi.org/10.1186/s12864-022-08738-8 | spa |
dc.relation.references | Branthôme, F.-X. (2023). Worldwide (total fresh) tomato production in 2021—Tomato News. Tomato news. https://www.tomatonews.com/en/worldwide-total-fresh-tomato-production-in-2021_2_1911.html | spa |
dc.relation.references | Bueno Batista, M., & Dixon, R. (2019). Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochemical Society Transactions, 47(2), 603-614. https://doi.org/10.1042/BST20180342 | spa |
dc.relation.references | Burton-Freeman, B., & Reimers, K. (2011). Tomato Consumption and Health: Emerging Benefits. American Journal of Lifestyle Medicine, 5(2), 182-191. https://doi.org/10.1177/1559827610387488 | spa |
dc.relation.references | Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), Article 7. https://doi.org/10.1038/nmeth.3869 | spa |
dc.relation.references | Chang, C.-Y., Bajić, D., Vila, J. C. C., Estrela, S., & Sanchez, A. (2023). Emergent coexistence in multispecies microbial communities. Science, 381(6655), 343-348. https://doi.org/10.1126/science.adg0727 | spa |
dc.relation.references | Chemotaxis in Azospirillum | SpringerLink. (s. f.). Recuperado 24 de enero de 2024, de https://link.springer.com/chapter/10.1007/978-3-319-06542-7_6 | spa |
dc.relation.references | Clark, D. P., & Cronan, J. E. (2005). Two-Carbon Compounds and Fatty Acids as Carbon Sources. EcoSal Plus, 1(2), 10.1128/ecosalplus.3.4.4. https://doi.org/10.1128/ecosalplus.3.4.4 | spa |
dc.relation.references | Clavijo-Salinas, J. C., Fuertez, J., Cadavid-Rodríguez, L. S., & Sanabria, J. (2020). Compatible Technologies to Anaerobic Digestion for the Integral Valorization of Organic Waste. En Z. A. Zakaria, R. Boopathy, & J. R. Dib (Eds.), Valorisation of Agro-industrial Residues – Volume I: Biological Approaches (pp. 185-202). Springer International Publishing. https://doi.org/10.1007/978-3-030-39137-9_9 | spa |
dc.relation.references | Costa, J. M., & Heuvelink, E. (2018). The global tomato industry. | Tomatoes. En Tomatoes (pp. 1-26). https://www.cabidigitallibrary.org/doi/10.1079/9781780641935.0001 | spa |
dc.relation.references | DANE. (2023). Boletín Técnico N° 130.Insumos y factores de la producción Boletin deagropecuaria Abril 2023. https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_abr_2023.pdf | spa |
dc.relation.references | Diaz-Colunga, J., Lu, N., Sanchez-Gorostiaga, A., Chang, C.-Y., Cai, H. S., Goldford, J. E., Tikhonov, M., & Sánchez, Á. (2022). Top-down and bottom-up cohesiveness in microbial community coalescence. Proceedings of the National Academy of Sciences, 119(6), e2111261119. https://doi.org/10.1073/pnas.2111261119 | spa |
dc.relation.references | Díaz-García, L., Huang, S., Spröer, C., Sierra-Ramírez, R., Bunk, B., Overmann, J., & Jiménez, D. J. (2021). Dilution-to-Stimulation/Extinction Method: A Combination Enrichment Strategy To Develop a Minimal and Versatile Lignocellulolytic Bacterial Consortium. Applied and Environmental Microbiology, 87(2). https://doi.org/10.1128/AEM.02427-20 | spa |
dc.relation.references | Einsle, O., & Rees, D. C. (2020). Structural Enzymology of Nitrogenase Enzymes. Chemical Reviews, 120(12), 4969-5004. https://doi.org/10.1021/ACS.CHEMREV.0C00067/ASSET/IMAGES/MEDIUM/CR0C00067_0020.GIF | spa |
dc.relation.references | Environment, U. N. (2017, septiembre 26). Solid waste management. UNEP - UN Environment Programme. http://www.unep.org/explore-topics/resource-efficiency/what-we-do/cities/solid-waste-management | spa |
dc.relation.references | Estrada Salazar, E. I., García Dávila, M. A., Baena García, D., Gutierrez F., A., Cardozo Conde, C. I., & Sánchez, M. S. (2004). Cultivo de tomate: Variedad UNAPAL maravilla. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/51973 | spa |
dc.relation.references | Estrela, S., Vila, J. C. C., Lu, N., Bajić, D., Rebolleda-Gómez, M., Chang, C.-Y., Goldford, J. E., Sanchez-Gorostiaga, A., & Sánchez, Á. (2022). Functional attractors in microbial community assembly. Cell Systems, 13(1), 29-42.e7. https://doi.org/10.1016/j.cels.2021.09.011 | spa |
dc.relation.references | FAO (Ed.). (2019). The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. Food and Agriculture Organization of the United Nations. | spa |
dc.relation.references | FAO. (2020). Livestock and environment statistics: Manure and greenhouse gas emissions. 14. | spa |
dc.relation.references | FAO. (2022a). ENVIRONMENTAL PERFORMANCE OF PIG SUPPLY CHAINS. www.fao.org/partnerships/leap/en | spa |
dc.relation.references | FAO. (2022b). World fertilizer trends and outlook to 2022. 40. https://doi.org/10.4060/ca6746en | spa |
dc.relation.references | FAOSTAT. (2023a). Agricultural production statistics 2000–2022 | spa |
dc.relation.references | FAOSTAT. (2023b). Fertilizers by nutrient. https://www.fao.org/faostat/en/#data/RFN/visualize | spa |
dc.relation.references | Fujita, Y., Matsuoka, H., & Hirooka, K. (2007). Regulation of fatty acid metabolism in bacteria. Molecular Microbiology, 66(4), 829-839. https://doi.org/10.1111/j.1365-2958.2007.05947.x | spa |
dc.relation.references | Fúnez Guerra, C., Reyes-Bozo, L., Vyhmeister, E., Jaén Caparrós, M., Salazar, J. L., & Clemente-Jul, C. (2020). Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan. Renewable Energy, 157, 404-414. https://doi.org/10.1016/j.renene.2020.05.041 | spa |
dc.relation.references | Galloway, J. N., Bleeker, A., & Erisman, J. W. (2021). The Human Creation and Use of Reactive Nitrogen: A Global and Regional Perspective. Annual Review of Environment and Resources, 46(1), 255-288. https://doi.org/10.1146/annurev-environ-012420-045120 | spa |
dc.relation.references | Geng, J. B., Chen, F. R., Ji, Q., & Liu, B. Y. (2021). Network connectedness between natural gas markets, uncertainty and stock markets. Energy Economics, 95. https://doi.org/10.1016/j.eneco.2020.105001 | spa |
dc.relation.references | Girotto, F., & Cossu, R. (2017). Animal Waste: Opportunities and Challenges. En E. Lichtfouse (Ed.), Sustainable Agriculture Reviews (pp. 1-13). Springer International Publishing. https://doi.org/10.1007/978-3-319-48006-0_1 | spa |
dc.relation.references | González-Andrés, F., & James, E. (Eds.). (2016). Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction. Springer International Publishing. https://doi.org/10.1007/978-3-319-32528-6 | spa |
dc.relation.references | Rodriguez-Gonzalez, C., Ospina-Betancourth, C., & Sanabria, J. (2021). High Resistance of a Sludge Enriched with Nitrogen-Fixing Bacteria to Ammonium Salts and Its Potential as a Biofertilizer. Bioengineering, 8(5), 55. https://doi.org/10.3390/bioengineering8050055 | spa |
dc.relation.references | Gutiérrez, C. F., Rodríguez-Romero, N., Egan, S., Holmes, E., & Sanabria, J. (2022). Exploiting the Potential of Bioreactors for Creating Spatial Organization in the Soil Microbiome: A Strategy for Increasing Sustainable Agricultural Practices. Microorganisms, 10(7), Article 7. https://doi.org/10.3390/microorganisms10071464 | spa |
dc.relation.references | Gutierrez, C. F., Sanabria, J., Raaijmakers, J. M., & Oyserman, B. O. (2020). Restoring degraded microbiome function with self-assembled communities. FEMS Microbiology Ecology, 96(12), fiaa225. https://doi.org/10.1093/femsec/fiaa225 | spa |
dc.relation.references | Harirchi, S., Wainaina, S., Sar, T., Nojoumi, S. A., Parchami, M., Parchami, M., Varjani, S., Khanal, S. K., Wong, J., Awasthi, M. K., & Taherzadeh, M. J. (2022). Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. https://doi.org/10.1080/21655979.2022.2035986, 13(3), 6521-6557. https://doi.org/10.1080/21655979.2022.2035986 | spa |
dc.relation.references | Islam, Md. R., Sultana, T., Joe, M. M., Yim, W., Cho, J.-C., & Sa, T. (2013). Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. Journal of Basic Microbiology, 53(12), 1004-1015. https://doi.org/10.1002/jobm.201200141 | spa |
dc.relation.references | Jing, X., Liu, X., Zhang, Z., Wang, X., Rensing, C., & Zhou, S. (2022). Anode respiration-dependent biological nitrogen fixation by Geobacter sulfurreducens. Water Research, 208, 117860. https://doi.org/10.1016/j.watres.2021.117860 | spa |
dc.relation.references | Joshi, S. K., & Gauraha, A. K. (2022). 24 - Global biofertilizer market: Emerging trends and opportunities. En R. Soni, D. C. Suyal, A. N. Yadav, & R. Goel (Eds.), Trends of Applied Microbiology for Sustainable Economy (pp. 689-697). Academic Press. https://doi.org/10.1016/B978-0-323-91595-3.00024-0 | spa |
dc.relation.references | K. Keerthana Ponni, A. M. (2021). Characterization of Sinirhodobacter sp., and Bacillus zanthoxylifrom Bio methanation plant with emphasis on its plant growth promotion(PGP). Annals of the Romanian Society for Cell Biology, 13308-13318. | spa |
dc.relation.references | Kang, D., Jacquiod, S., Herschend, J., Wei, S., Nesme, J., & Sørensen, S. J. (2020). Construction of Simplified Microbial Consortia to Degrade Recalcitrant Materials Based on Enrichment and Dilution-to-Extinction Cultures. Frontiers in Microbiology, 10. https://www.frontiersin.org/articles/10.3389/fmicb.2019.03010 | spa |
dc.relation.references | Karapetyan, A. (2023). Application of biofertilizers in hydroponics: A review. Journal of Plant Nutrition, 0(0), 1-15. https://doi.org/10.1080/01904167.2023.2280159 | spa |
dc.relation.references | Kasana, R. C., & Pandey, C. B. (2018). Exiguobacterium: An overview of a versatile genus with potential in industry and agriculture. Critical Reviews in Biotechnology, 38(1), 141-156. https://doi.org/10.1080/07388551.2017.1312273 | spa |
dc.relation.references | Kaur, H., Sharda, R., & Sharma, P. (2016). Effect of Hoagland solution for growing tomato hydroponically in greenhouse. HortFlora Research Spectrum, 5(4), 310-315. | spa |
dc.relation.references | Kayasth, M., Kumar, V., & Gera, R. (2014). Gordonia sp. sp.: A salt tolerant bacterial inoculant for growth promotion of pearl millet under saline soil conditions. 3 Biotech, 4(5), 553-557. https://doi.org/10.1007/s13205-013-0178-5 | spa |
dc.relation.references | Kranert, M., Kusch, S., Huang, J., & Fischer, K. (2012). Anaerobic Digestion of Waste. En A. Karagiannidis (Ed.), Waste to Energy: Opportunities and Challenges for Developing and Transition Economies (pp. 107-135). Springer. https://doi.org/10.1007/978-1-4471-2306-4_5 | spa |
dc.relation.references | Kumar, A., & Samadder, S. R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 197, 117253. https://doi.org/10.1016/j.energy.2020.117253 | spa |
dc.relation.references | Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725-741. https://doi.org/10.1038/s41579-019-0255-9 | spa |
dc.relation.references | Li, H.-B., Singh, R. K., Singh, P., Song, Q.-Q., Xing, Y.-X., Yang, L.-T., & Li, Y.-R. (2017). Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere. Frontiers in Microbiology, 8. https://www.frontiersin.org/articles/10.3389/fmicb.2017.01268 | spa |
dc.relation.references | Lü, F., Wang, Z., Zhang, H., Shao, L., & He, P. (2021). Anaerobic digestion of organic waste: Recovery of value-added and inhibitory compounds from liquid fraction of digestate. Bioresource Technology, 333, 125196. https://doi.org/10.1016/j.biortech.2021.125196 | spa |
dc.relation.references | McMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 | spa |
dc.relation.references | Meselmani, M. A. A. (2022). Nutrient Solution for Hydroponics. En Recent Research and Advances in Soilless Culture. IntechOpen. https://doi.org/10.5772/intechopen.101604 | spa |
dc.relation.references | Monisha, K., Kalai Selvi, H., Sivanandhini, P., Sona Nachammai, A., Anuradha, C. T., Rama Devi, S., Kavitha Sri, A., Neya, N. R., Vaitheeswari, M., & Hikku, G. S. (2023). Hydroponics agriculture as a modern agriculture technique. Journal of Achievements in Materials and Manufacturing Engineering, Vol. 116(nr 1). https://doi.org/10.5604/01.3001.0016.3395 | spa |
dc.relation.references | Móring, A., Hooda, S., Raghuram, N., Adhya, T. K., Ahmad, A., Bandyopadhyay, S. K., Barsby, T., Beig, G., Bentley, A. R., Bhatia, A., Dragosits, U., Drewer, J., Foulkes, J., Ghude, S. D., Gupta, R., Jain, N., Kumar, D., Kumar, R. M., Ladha, J. K., … Sutton, M. A. (2021). Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India. Frontiers in Sustainable Food Systems, 5. https://www.frontiersin.org/articles/10.3389/fsufs.2021.505347 | spa |
dc.relation.references | Nakayasu, M., Takamatsu, K., Yazaki, K., & Sugiyama, A. (2023). Plant specialized metabolites in the rhizosphere of tomatoes: Secretion and effects on microorganisms. Bioscience, Biotechnology, and Biochemistry, 87(1), 13-20. https://doi.org/10.1093/bbb/zbac181 | spa |
dc.relation.references | Ortiz-Marquez, J. C. F., Do Nascimento, M., & Curatti, L. (2014). Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. Metabolic Engineering, 23, 154-164. https://doi.org/10.1016/j.ymben.2014.03.002 | spa |
dc.relation.references | Ortiz-Marquez, J. C. F., Do Nascimento, M., Dublan, M. de los A., & Curatti, L. (2012). Association with an Ammonium-Excreting Bacterium Allows Diazotrophic Culture of Oil-Rich Eukaryotic Microalgae. Applied and Environmental Microbiology, 78(7), 2345-2352. https://doi.org/10.1128/AEM.06260-11 | spa |
dc.relation.references | Ospina-Betancourth, C., Acharya, K., Allen, B., Entwistle, J., Head, I. M., Sanabria, J., & Curtis, T. P. (2020). Enrichment of Nitrogen-Fixing Bacteria in a Nitrogen-Deficient Wastewater Treatment System. Environmental Science & Technology, 54(6), 3539-3548. https://doi.org/10.1021/acs.est.9b05322 | spa |
dc.relation.references | Ospina-Betancourth, C., Acharya, K., Allen, B., Head, I. M., Sanabria, J., Curtis, T. P., & member, W. (2021). Valorization of pulp and paper industry wastewater using sludge enriched with nitrogen-fixing bacteria. Water Environ Res, 93, 1734-1747. https://doi.org/10.1002/wer.1561 | spa |
dc.relation.references | Pandey, N. (2020). Chapter 10—Exiguobacterium. En N. Amaresan, M. Senthil Kumar, K. Annapurna, K. Kumar, & A. Sankaranarayanan (Eds.), Beneficial Microbes in Agro-Ecology (pp. 169-183). Academic Press. https://doi.org/10.1016/B978-0-12-823414-3.00010-1 | spa |
dc.relation.references | R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ | spa |
dc.relation.references | Ren, K., Xu, M., Li, R., Zheng, L., Liu, S., Reis, S., Wang, H., Lu, C., Zhang, W., Gao, H., Duan, Y., & Gu, B. (2022). Optimizing nitrogen fertilizer use for more grain and less pollution. Journal of Cleaner Production, 360, 132180. https://doi.org/10.1016/j.jclepro.2022.132180 | spa |
dc.relation.references | Rennie, R. J. (1981). A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Canadian Journal of Microbiology, 27(1), 8-14. https://doi.org/10.1139/m81-002 | spa |
dc.relation.references | Sansinenea, E. (2021). Chapter 14 - Application of biofertilizers: Current worldwide status. En A. Rakshit, V. S. Meena, M. Parihar, H. B. Singh, & A. K. Singh (Eds.), Biofertilizers (pp. 183-190). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821667-5.00004-X | spa |
dc.relation.references | Sekoai, P. T., Ghimire, A., Ezeokoli, O. T., Rao, S., Ngan, W. Y., Habimana, O., Yao, Y., Yang, P., Yiu Fung, A. H., Yoro, K. O., Daramola, M. O., & Hung, C.-H. (2021). Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept. Renewable and Sustainable Energy Reviews, 143, 110971. https://doi.org/10.1016/j.rser.2021.110971 | spa |
dc.relation.references | Sethi, S. K., & Adhikary, S. P. (2012). Cost effective pilot scale production of biofertilizer using Rhizobium and Azotobacter. African Journal of Biotechnology, 11(70), Article 70. https://doi.org/10.5897/AJBx11.012 | spa |
dc.relation.references | Singhania, R. R., Patel, A. K., Christophe, G., Fontanille, P., & Larroche, C. (2013). Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresource Technology, 145, 166-174. https://doi.org/10.1016/j.biortech.2012.12.137 | spa |
dc.relation.references | Smith, C., Hill, A. K., & Torrente-Murciano, L. (2020). Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science, 13(2), 331-344. https://doi.org/10.1039/C9EE02873K | spa |
dc.relation.references | Son, J. E., Kim, H. J., & Ahn, T. I. (2020). Chapter 20—Hydroponic systems. En T. Kozai, G. Niu, & M. Takagaki (Eds.), Plant Factory (Second Edition) (pp. 273-283). Academic Press. https://doi.org/10.1016/B978-0-12-816691-8.00020-0 | spa |
dc.relation.references | Sowani, H., Kulkarni, M., & Zinjarde, S. (2018). An insight into the ecology, diversity and adaptations of Gordonia sp. species. Critical Reviews in Microbiology, 44(4), 393-413. https://doi.org/10.1080/1040841X.2017.1418286 | spa |
dc.relation.references | Suthar, H., Hingurao, K., Vaghashiya, J., & Parmar, J. (2017). Fermentation: A Process for Biofertilizer Production. En D. G. Panpatte, Y. K. Jhala, R. V. Vyas, & H. N. Shelat (Eds.), Microorganisms for Green Revolution: Volume 1: Microbes for Sustainable Crop Production (pp. 229-252). Springer. https://doi.org/10.1007/978-981-10-6241-4_12 | spa |
dc.relation.references | Tobias-Hünefeldt, S. P., Wenley, J., Baltar, F., & Morales, S. E. (2021). Ecological drivers switch from bottom–up to top–down during model microbial community successions. The ISME Journal, 15(4), Article 4. https://doi.org/10.1038/s41396-020-00833-6 | spa |
dc.relation.references | USDA. (2024). Livestock and Poultry: World Markets and Trade. United States Department of Agriculture Foreign Agricultural Service. https://www.statista.com/statistics/263964/number-of-pigs-in-selected-countries/ | spa |
dc.relation.references | Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2020). Root exudates: From plant to rhizosphere and beyond. Plant Cell Reports, 39(1), 3-17. https://doi.org/10.1007/s00299-019-02447-5 | spa |
dc.relation.references | Wainaina, S., Lukitawesa, Kumar Awasthi, M., & Taherzadeh, M. J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered, 10(1), 437-458. https://doi.org/10.1080/21655979.2019.1673937 | spa |
dc.relation.references | Wang, M., Khan, M. A., Mohsin, I., Wicks, J., Ip, A. H., Sumon, K. Z., Dinh, C.-T., Sargent, E. H., Gates, I. D., & Kibria, M. G. (2021). Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes? Energy & Environmental Science, 14(5), 2535-2548. https://doi.org/10.1039/D0EE03808C | spa |
dc.relation.references | Wang, D., Xu, A., Elmerich, C., & Ma, L. Z. (2017). Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions. The ISME Journal, 11(7), 1602-1613. https://doi.org/10.1038/ismej.2017.30 | spa |
dc.relation.references | Xi, L., Qiao, N., Zhang, Z., Yan, L., Li, F., Hu, J., & Li, J. (2017). Sinorhodobacter hungdaonensis sp. Nov. Isolated from activated sludge collected from a municipal wastewater treatment plant. Antonie van Leeuwenhoek, 110(1), 27-32. https://doi.org/10.1007/s10482-016-0770-x | spa |
dc.relation.references | Xu, X., Wang, N., Lipson, D., Sinsabaugh, R., Schimel, J., He, L., Soudzilovskaia, N. A., & Tedersoo, L. (2020). Microbial macroecology: In search of mechanisms governing microbial biogeographic patterns. Global Ecology and Biogeography, 29(11), 1870-1886. https://doi.org/10.1111/geb.13162 | spa |
dc.relation.references | Young, W. L., Tran, S. H., & Moon-Soo, R. (2020). Sinirhodobacter hankyongi sp. Nov., a novel denitrifying bacterium isolated from sludge | Microbiology Society. 70(1). https://doi.org/10.1099/ijsem.0.003814 | spa |
dc.relation.references | Yu, P., He, X., Baer, M., Beirinckx, S., Tian, T., Moya, Y. A. T., Zhang, X., Deichmann, M., Frey, F. P., Bresgen, V., Li, C., Razavi, B. S., Schaaf, G., von Wirén, N., Su, Z., Bucher, M., Tsuda, K., Goormachtig, S., Chen, X., & Hochholdinger, F. (2021). Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants, 7(4), Article 4. https://doi.org/10.1038/s41477-021-00897-y | spa |
dc.relation.references | Zhang, X., Zou, T., Lassaletta, L., Mueller, N. D., Tubiello, F. N., Lisk, M. D., Lu, C., Conant, R. T., Dorich, C. D., Gerber, J., Tian, H., Bruulsema, T., Maaz, T. M., Nishina, K., Bodirsky, B. L., Popp, A., Bouwman, L., Beusen, A., Chang, J., … Davidson, E. A. (2021). Quantification of global and national nitrogen budgets for crop production. Nature Food, 2(7), Article 7. https://doi.org/10.1038/s43016-021-00318-5 | spa |
dc.relation.references | Zhao, M., Zhao, J., Yuan, J., Hale, L., Wen, T., Huang, Q., Vivanco, J. M., Zhou, J., Kowalchuk, G. A., & Shen, Q. (2021). Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant, Cell & Environment, 44(2), 613-628. https://doi.org/10.1111/pce.13928 | spa |
dc.relation.references | Zuberer, D. A. (2021). 16 - Biological dinitrogen (N2) fixation: Introduction and nonsymbiotic. En T. J. Gentry, J. J. Fuhrmann, & D. A. Zuberer (Eds.), Principles and Applications of Soil Microbiology (Third Edition) (pp. 423-453). Elsevier. https://doi.org/10.1016/B978-0-12-820202-9.00016-2 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Biofertilizante | |
dc.subject.agrovoc | Biofertilizers | |
dc.subject.agrovoc | Ecosistema | |
dc.subject.agrovoc | Ecosystems | |
dc.subject.agrovoc | Bacteria fijadora del nitrógeno | |
dc.subject.agrovoc | Nitrogen-fixing bacteria | |
dc.subject.agrovoc | Biorreactor | |
dc.subject.agrovoc | Bioreactors | |
dc.subject.agrovoc | Residuo | |
dc.subject.agrovoc | Residues | |
dc.subject.agrovoc | Agroindustria | |
dc.subject.agrovoc | Agro-industry | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas | spa |
dc.subject.proposal | Nitrógeno | spa |
dc.subject.proposal | Fijación biológica de nitrógeno | spa |
dc.subject.proposal | Comunidades auto ensambladas | spa |
dc.subject.proposal | Promoción de crecimiento vegetal | spa |
dc.subject.proposal | Nitrogen | eng |
dc.subject.proposal | Biological nitrogen fixation | eng |
dc.subject.proposal | Self-assembled communities | eng |
dc.subject.proposal | Plant growth promotion | eng |
dc.title | Evaluación de una estrategia de valorización de ácidos grasos para la producción de comunidades microbianas diazótrofas con potencial biofertilizante | spa |
dc.title.translated | Assessment of a Strategy for Valorization of Fatty Acids in the Production of Diazotrophic Microbial Communities with Biofertilizer Potential | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Universidad del Valle - Sistema General de Regalias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1071631770.2024.pdf
- Tamaño:
- 3.71 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Maestría en Ciencias Agrarias
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: