Evaluación de una estrategia de valorización de ácidos grasos para la producción de comunidades microbianas diazótrofas con potencial biofertilizante

dc.contributor.advisorSanabria Gómez, Irma Janeth
dc.contributor.advisorUribe Vélez, Daniel
dc.contributor.authorRodríguez Romero, Andrés Nicolás
dc.contributor.orcidhttps://orcid.org/0000-0002-7635-4361spa
dc.contributor.researchgroupLaboratorio de Microbiología Y Biotecnología Ambientalspa
dc.contributor.researchgroupMicrobiologia Agricolaspa
dc.date.accessioned2025-03-10T14:48:31Z
dc.date.available2025-03-10T14:48:31Z
dc.date.issued2024
dc.descriptionIlustraciones, gráficas, tablasspa
dc.description.abstractLa agricultura actual usa cerca de 100 millones de toneladas anuales de fertilizantes nitrogenados para sostener la demanda alimentaria mundial; la producción de estos fertilizantes y su aplicación en campo ha causado efectos ambientales considerables. Por otra parte, la producción de alimentos también viene asociada con la producción de millones de toneladas anuales de residuos agroindustriales. Se han propuesto alternativas de solución para estas problemáticas basadas en: la teoría ecológica de comunidades microbianas, la ingeniería de bioprocesos y la valorización de residuos agroindustriales con el fin de producir biofertilizantes. En este estudio, nuestro objetivo fue utilizar la bioprospección dirigida centrada en microbiomas, para cultivar comunidades microbianas diazótrofas. Esto se logró mediante el enriquecimiento de muestras de suelo en biorreactores que suministran nitrógeno mediante bombeo de aire y son alimentan con ácidos grasos volátiles como fuente de carbono. Los resultados muestran que a través de un proceso de selección microbiana se puede obtener una comunidad microbiana diazótrofa capaz de fijar 2,7 veces más nitrógeno que el inóculo de partida. Dicha comunidad es capaz de crecer usando ácidos grasos volátiles provenientes de residuos como fuente de carbono. Durante el proceso de cultivo se pueden obtener formas inorgánicas de nitrógeno en el sobrenadante en concentraciones que alcanzan 12,7 mg*ml-1 . La comunidad microbiana diazótrofa crecida en bioreactores, cuyos tres géneros más abundantes son Sinirhodobacter sp. (44,4%), Aureimonas sp. (17,7%) y Taibaiella sp. (12,4%); es capaz de promover el crecimiento de plantas de tomate tanto en hidroponía como en suelo. Alcanzando una altura y producción igual a la obtenida usando fertilizantes nitrogenados de síntesis química con aporte completo de nitrógeno. Se evidencia el potencial de la metodología para hacer crecer una comunidad microbiana diazótrofa con potencial biofertilizante. La sencillez de funcionamiento del reactor y la capacidad de operar con fuentes de carbono provenientes del tratamiento de residuos agroindustriales hace que su aplicación sea prometedora para los países en desarrollo con bajo progreso tecnológico. (Texto tomado de la fuente)spa
dc.description.abstractCurrent agriculture utilizes approximately 100 million tons of nitrogen fertilizers annually to sustain global food demand, yet their production and application have led to significant environmental consequences. Additionally, food production generates millions of tons of agro-industrial waste annually. Proposed solutions to these issues involve leveraging ecological theories of microbial communities, bioprocess engineering, and valorization of agro-industrial waste to produce biofertilizers. This study aimed to utilize directed bioprospecting focused on microbiomes to cultivate diazotrophic microbial communities. This was achieved by enriching soil samples in bioreactors that supplied nitrogen through air pumping and were fed with volatile fatty acids as a carbon source. Results demonstrate that through microbial selection, a diazotrophic microbial community capable of fixing 2.7 times more nitrogen than the initial inoculum can be obtained. This community can grow using volatile fatty acids from waste as a carbon source. During cultivation, inorganic forms of nitrogen can be obtained in the supernatant at concentrations reaching 12.7 mg*ml-1 . The diazotrophic microbial community grown in bioreactors, with the three most abundant genera being Sinirhodobacter sp. (44.4%), Aureimonas sp. (17.7%), and Taibaiella sp. (12.4%), is capable of promoting tomato plant growth in both hydroponic and soil environments. Achieving height and production equal to that obtained using chemically synthesized nitrogen fertilizers. The potential of this methodology to cultivate a diazotrophic microbial community with biofertilizer potential is evident. The simplicity of reactor operation and the ability to operate with carbon sources from agro-industrial waste treatment make its application promising for technologically underdeveloped countries.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.methodsSe han propuesto alternativas de solución para estas problemáticas basadas en: la teoría ecológica de comunidades microbianas, la ingeniería de bioprocesos y la valorización de residuos agroindustriales con el fin de producir biofertilizantes. En este estudio, nuestro objetivo fue utilizar la bioprospección dirigida centrada en microbiomas, para cultivar comunidades microbianas diazótrofas. Esto se logró mediante el enriquecimiento de muestras de suelo en biorreactores que suministran nitrógeno mediante bombeo de aire y se alimentan con ácidos grasos volátiles como fuente de carbono.spa
dc.description.researchareaSuelos y Aguasspa
dc.format.extentxix, 81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87625
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAgnihotri, S., Yin, D.-M., Mahboubi, A., Sapmaz, T., Varjani, S., Qiao, W., Koseoglu-Imer, D. Y., & Taherzadeh, M. J. (2022). A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. Bioengineered, 13(1), 1249-1275. https://doi.org/10.1080/21655979.2021.1996044spa
dc.relation.referencesAlexandre, G. (2015). Chemotaxis in Azospirillum. En F. D. Cassán, Y. Okon, & C. M. Creus (Eds.), Handbook for Azospirillum: Technical Issues and Protocols (pp. 101-114). Springer International Publishing. https://doi.org/10.1007/978-3-319-06542-7_6spa
dc.relation.referencesAloo, B. N., Makumba, B. A., & Mbega, E. R. (2021). Status of biofertilizer research, commercialization, and practical applications: A global perspective. Biofertilizers: Volume 1: Advances in Bio-inoculants, 191-208. https://doi.org/10.1016/B978-0-12-821667-5.00017-8spa
dc.relation.referencesAloo, B. N., Tripathi, V., Makumba, B. A., & Mbega, E. R. (2022). Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, 13. https://www.frontiersin.org/articles/10.3389/fpls.2022.1002448spa
dc.relation.referencesAmaresan, N., Dharumadurai, D., & Babalola, O. O. (2023). Agricultural Microbiology Based Entrepreneurship Making Money from Microbes (N. Amaresan, D. Dharumadurai, & O. Babalola, Eds.; 1.a ed.). Springer Singapore. https://doi.org/10.1007/978-981-19-5747-5spa
dc.relation.referencesAmbrosio, R., Ortiz-Marquez, J. C. F., & Curatti, L. (2017). Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae. Metabolic Engineering, 40, 59-68. https://doi.org/10.1016/j.ymben.2017.01.002spa
dc.relation.referencesAtasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018). Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 268, 773-786. https://doi.org/10.1016/j.biortech.2018.07.042spa
dc.relation.referencesBarillot, C. D. C., Sarde, C. O., Bert, V., Tarnaud, E., & Cochet, N. (2013). A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Annals of Microbiology, 63(2), 471-476. https://doi.org/10.1007/s13213-012-0491-yspa
dc.relation.referencesBatista, M. B., Brett, P., Appia-Ayme, C., Wang, Y.-P., & Dixon, R. (2021). Disrupting hierarchical control of nitrogen fixation enables carbon-dependent regulation of ammonia excretion in soil diazotrophs. PLOS Genetics, 17(6), e1009617. https://doi.org/10.1371/journal.pgen.1009617spa
dc.relation.referencesBen Rebah, F., Prévost, D., Yezza, A., & Tyagi, R. D. (2007). Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: A review. Bioresource Technology, 98(18), 3535-3546. https://doi.org/10.1016/j.biortech.2006.11.066spa
dc.relation.referencesBenavides, H. S., Uribe-Velez, D., & Restrepo-Díaz, H. (2023). Evaluation of brassinosteroids and plant growth-promoting bacteria on the growth and yield of Lactuca sativa L. under soilless cultivation conditions. Journal of Plant Nutrition, 46(18), 4438-4453. https://doi.org/10.1080/01904167.2023.2232390spa
dc.relation.referencesBicer, Y., Dincer, I., Vezina, G., & Raso, F. (2017). Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes. Environmental Management, 59(5), 842-855. https://doi.org/10.1007/s00267-017-0831-6spa
dc.relation.referencesBolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), Article 8. https://doi.org/10.1038/s41587-019-0209-9spa
dc.relation.referencesBonilla Buitrago, R., Gonzalez de Bashan, L. E., & Pedraza, R. O. (2021). Rol de las bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible. https://doi.org/10.21930/agrosavia. analisis.7405019spa
dc.relation.referencesBoss, B. L., Wanees, A. E., Zaslow, S. J., Normile, T. G., & Izquierdo, J. A. (2022). Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. Strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata. BMC Genomics, 23(1), 508. https://doi.org/10.1186/s12864-022-08738-8spa
dc.relation.referencesBranthôme, F.-X. (2023). Worldwide (total fresh) tomato production in 2021—Tomato News. Tomato news. https://www.tomatonews.com/en/worldwide-total-fresh-tomato-production-in-2021_2_1911.htmlspa
dc.relation.referencesBueno Batista, M., & Dixon, R. (2019). Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochemical Society Transactions, 47(2), 603-614. https://doi.org/10.1042/BST20180342spa
dc.relation.referencesBurton-Freeman, B., & Reimers, K. (2011). Tomato Consumption and Health: Emerging Benefits. American Journal of Lifestyle Medicine, 5(2), 182-191. https://doi.org/10.1177/1559827610387488spa
dc.relation.referencesCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), Article 7. https://doi.org/10.1038/nmeth.3869spa
dc.relation.referencesChang, C.-Y., Bajić, D., Vila, J. C. C., Estrela, S., & Sanchez, A. (2023). Emergent coexistence in multispecies microbial communities. Science, 381(6655), 343-348. https://doi.org/10.1126/science.adg0727spa
dc.relation.referencesChemotaxis in Azospirillum | SpringerLink. (s. f.). Recuperado 24 de enero de 2024, de https://link.springer.com/chapter/10.1007/978-3-319-06542-7_6spa
dc.relation.referencesClark, D. P., & Cronan, J. E. (2005). Two-Carbon Compounds and Fatty Acids as Carbon Sources. EcoSal Plus, 1(2), 10.1128/ecosalplus.3.4.4. https://doi.org/10.1128/ecosalplus.3.4.4spa
dc.relation.referencesClavijo-Salinas, J. C., Fuertez, J., Cadavid-Rodríguez, L. S., & Sanabria, J. (2020). Compatible Technologies to Anaerobic Digestion for the Integral Valorization of Organic Waste. En Z. A. Zakaria, R. Boopathy, & J. R. Dib (Eds.), Valorisation of Agro-industrial Residues – Volume I: Biological Approaches (pp. 185-202). Springer International Publishing. https://doi.org/10.1007/978-3-030-39137-9_9spa
dc.relation.referencesCosta, J. M., & Heuvelink, E. (2018). The global tomato industry. | Tomatoes. En Tomatoes (pp. 1-26). https://www.cabidigitallibrary.org/doi/10.1079/9781780641935.0001spa
dc.relation.referencesDANE. (2023). Boletín Técnico N° 130.Insumos y factores de la producción Boletin deagropecuaria Abril 2023. https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_abr_2023.pdfspa
dc.relation.referencesDiaz-Colunga, J., Lu, N., Sanchez-Gorostiaga, A., Chang, C.-Y., Cai, H. S., Goldford, J. E., Tikhonov, M., & Sánchez, Á. (2022). Top-down and bottom-up cohesiveness in microbial community coalescence. Proceedings of the National Academy of Sciences, 119(6), e2111261119. https://doi.org/10.1073/pnas.2111261119spa
dc.relation.referencesDíaz-García, L., Huang, S., Spröer, C., Sierra-Ramírez, R., Bunk, B., Overmann, J., & Jiménez, D. J. (2021). Dilution-to-Stimulation/Extinction Method: A Combination Enrichment Strategy To Develop a Minimal and Versatile Lignocellulolytic Bacterial Consortium. Applied and Environmental Microbiology, 87(2). https://doi.org/10.1128/AEM.02427-20spa
dc.relation.referencesEinsle, O., & Rees, D. C. (2020). Structural Enzymology of Nitrogenase Enzymes. Chemical Reviews, 120(12), 4969-5004. https://doi.org/10.1021/ACS.CHEMREV.0C00067/ASSET/IMAGES/MEDIUM/CR0C00067_0020.GIFspa
dc.relation.referencesEnvironment, U. N. (2017, septiembre 26). Solid waste management. UNEP - UN Environment Programme. http://www.unep.org/explore-topics/resource-efficiency/what-we-do/cities/solid-waste-managementspa
dc.relation.referencesEstrada Salazar, E. I., García Dávila, M. A., Baena García, D., Gutierrez F., A., Cardozo Conde, C. I., & Sánchez, M. S. (2004). Cultivo de tomate: Variedad UNAPAL maravilla. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/51973spa
dc.relation.referencesEstrela, S., Vila, J. C. C., Lu, N., Bajić, D., Rebolleda-Gómez, M., Chang, C.-Y., Goldford, J. E., Sanchez-Gorostiaga, A., & Sánchez, Á. (2022). Functional attractors in microbial community assembly. Cell Systems, 13(1), 29-42.e7. https://doi.org/10.1016/j.cels.2021.09.011spa
dc.relation.referencesFAO (Ed.). (2019). The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. Food and Agriculture Organization of the United Nations.spa
dc.relation.referencesFAO. (2020). Livestock and environment statistics: Manure and greenhouse gas emissions. 14.spa
dc.relation.referencesFAO. (2022a). ENVIRONMENTAL PERFORMANCE OF PIG SUPPLY CHAINS. www.fao.org/partnerships/leap/enspa
dc.relation.referencesFAO. (2022b). World fertilizer trends and outlook to 2022. 40. https://doi.org/10.4060/ca6746enspa
dc.relation.referencesFAOSTAT. (2023a). Agricultural production statistics 2000–2022spa
dc.relation.referencesFAOSTAT. (2023b). Fertilizers by nutrient. https://www.fao.org/faostat/en/#data/RFN/visualizespa
dc.relation.referencesFujita, Y., Matsuoka, H., & Hirooka, K. (2007). Regulation of fatty acid metabolism in bacteria. Molecular Microbiology, 66(4), 829-839. https://doi.org/10.1111/j.1365-2958.2007.05947.xspa
dc.relation.referencesFúnez Guerra, C., Reyes-Bozo, L., Vyhmeister, E., Jaén Caparrós, M., Salazar, J. L., & Clemente-Jul, C. (2020). Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan. Renewable Energy, 157, 404-414. https://doi.org/10.1016/j.renene.2020.05.041spa
dc.relation.referencesGalloway, J. N., Bleeker, A., & Erisman, J. W. (2021). The Human Creation and Use of Reactive Nitrogen: A Global and Regional Perspective. Annual Review of Environment and Resources, 46(1), 255-288. https://doi.org/10.1146/annurev-environ-012420-045120spa
dc.relation.referencesGeng, J. B., Chen, F. R., Ji, Q., & Liu, B. Y. (2021). Network connectedness between natural gas markets, uncertainty and stock markets. Energy Economics, 95. https://doi.org/10.1016/j.eneco.2020.105001spa
dc.relation.referencesGirotto, F., & Cossu, R. (2017). Animal Waste: Opportunities and Challenges. En E. Lichtfouse (Ed.), Sustainable Agriculture Reviews (pp. 1-13). Springer International Publishing. https://doi.org/10.1007/978-3-319-48006-0_1spa
dc.relation.referencesGonzález-Andrés, F., & James, E. (Eds.). (2016). Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction. Springer International Publishing. https://doi.org/10.1007/978-3-319-32528-6spa
dc.relation.referencesRodriguez-Gonzalez, C., Ospina-Betancourth, C., & Sanabria, J. (2021). High Resistance of a Sludge Enriched with Nitrogen-Fixing Bacteria to Ammonium Salts and Its Potential as a Biofertilizer. Bioengineering, 8(5), 55. https://doi.org/10.3390/bioengineering8050055spa
dc.relation.referencesGutiérrez, C. F., Rodríguez-Romero, N., Egan, S., Holmes, E., & Sanabria, J. (2022). Exploiting the Potential of Bioreactors for Creating Spatial Organization in the Soil Microbiome: A Strategy for Increasing Sustainable Agricultural Practices. Microorganisms, 10(7), Article 7. https://doi.org/10.3390/microorganisms10071464spa
dc.relation.referencesGutierrez, C. F., Sanabria, J., Raaijmakers, J. M., & Oyserman, B. O. (2020). Restoring degraded microbiome function with self-assembled communities. FEMS Microbiology Ecology, 96(12), fiaa225. https://doi.org/10.1093/femsec/fiaa225spa
dc.relation.referencesHarirchi, S., Wainaina, S., Sar, T., Nojoumi, S. A., Parchami, M., Parchami, M., Varjani, S., Khanal, S. K., Wong, J., Awasthi, M. K., & Taherzadeh, M. J. (2022). Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. https://doi.org/10.1080/21655979.2022.2035986, 13(3), 6521-6557. https://doi.org/10.1080/21655979.2022.2035986spa
dc.relation.referencesIslam, Md. R., Sultana, T., Joe, M. M., Yim, W., Cho, J.-C., & Sa, T. (2013). Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper. Journal of Basic Microbiology, 53(12), 1004-1015. https://doi.org/10.1002/jobm.201200141spa
dc.relation.referencesJing, X., Liu, X., Zhang, Z., Wang, X., Rensing, C., & Zhou, S. (2022). Anode respiration-dependent biological nitrogen fixation by Geobacter sulfurreducens. Water Research, 208, 117860. https://doi.org/10.1016/j.watres.2021.117860spa
dc.relation.referencesJoshi, S. K., & Gauraha, A. K. (2022). 24 - Global biofertilizer market: Emerging trends and opportunities. En R. Soni, D. C. Suyal, A. N. Yadav, & R. Goel (Eds.), Trends of Applied Microbiology for Sustainable Economy (pp. 689-697). Academic Press. https://doi.org/10.1016/B978-0-323-91595-3.00024-0spa
dc.relation.referencesK. Keerthana Ponni, A. M. (2021). Characterization of Sinirhodobacter sp., and Bacillus zanthoxylifrom Bio methanation plant with emphasis on its plant growth promotion(PGP). Annals of the Romanian Society for Cell Biology, 13308-13318.spa
dc.relation.referencesKang, D., Jacquiod, S., Herschend, J., Wei, S., Nesme, J., & Sørensen, S. J. (2020). Construction of Simplified Microbial Consortia to Degrade Recalcitrant Materials Based on Enrichment and Dilution-to-Extinction Cultures. Frontiers in Microbiology, 10. https://www.frontiersin.org/articles/10.3389/fmicb.2019.03010spa
dc.relation.referencesKarapetyan, A. (2023). Application of biofertilizers in hydroponics: A review. Journal of Plant Nutrition, 0(0), 1-15. https://doi.org/10.1080/01904167.2023.2280159spa
dc.relation.referencesKasana, R. C., & Pandey, C. B. (2018). Exiguobacterium: An overview of a versatile genus with potential in industry and agriculture. Critical Reviews in Biotechnology, 38(1), 141-156. https://doi.org/10.1080/07388551.2017.1312273spa
dc.relation.referencesKaur, H., Sharda, R., & Sharma, P. (2016). Effect of Hoagland solution for growing tomato hydroponically in greenhouse. HortFlora Research Spectrum, 5(4), 310-315.spa
dc.relation.referencesKayasth, M., Kumar, V., & Gera, R. (2014). Gordonia sp. sp.: A salt tolerant bacterial inoculant for growth promotion of pearl millet under saline soil conditions. 3 Biotech, 4(5), 553-557. https://doi.org/10.1007/s13205-013-0178-5spa
dc.relation.referencesKranert, M., Kusch, S., Huang, J., & Fischer, K. (2012). Anaerobic Digestion of Waste. En A. Karagiannidis (Ed.), Waste to Energy: Opportunities and Challenges for Developing and Transition Economies (pp. 107-135). Springer. https://doi.org/10.1007/978-1-4471-2306-4_5spa
dc.relation.referencesKumar, A., & Samadder, S. R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 197, 117253. https://doi.org/10.1016/j.energy.2020.117253spa
dc.relation.referencesLawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O’Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17(12), 725-741. https://doi.org/10.1038/s41579-019-0255-9spa
dc.relation.referencesLi, H.-B., Singh, R. K., Singh, P., Song, Q.-Q., Xing, Y.-X., Yang, L.-T., & Li, Y.-R. (2017). Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere. Frontiers in Microbiology, 8. https://www.frontiersin.org/articles/10.3389/fmicb.2017.01268spa
dc.relation.referencesLü, F., Wang, Z., Zhang, H., Shao, L., & He, P. (2021). Anaerobic digestion of organic waste: Recovery of value-added and inhibitory compounds from liquid fraction of digestate. Bioresource Technology, 333, 125196. https://doi.org/10.1016/j.biortech.2021.125196spa
dc.relation.referencesMcMurdie, P. J., & Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217spa
dc.relation.referencesMeselmani, M. A. A. (2022). Nutrient Solution for Hydroponics. En Recent Research and Advances in Soilless Culture. IntechOpen. https://doi.org/10.5772/intechopen.101604spa
dc.relation.referencesMonisha, K., Kalai Selvi, H., Sivanandhini, P., Sona Nachammai, A., Anuradha, C. T., Rama Devi, S., Kavitha Sri, A., Neya, N. R., Vaitheeswari, M., & Hikku, G. S. (2023). Hydroponics agriculture as a modern agriculture technique. Journal of Achievements in Materials and Manufacturing Engineering, Vol. 116(nr 1). https://doi.org/10.5604/01.3001.0016.3395spa
dc.relation.referencesMóring, A., Hooda, S., Raghuram, N., Adhya, T. K., Ahmad, A., Bandyopadhyay, S. K., Barsby, T., Beig, G., Bentley, A. R., Bhatia, A., Dragosits, U., Drewer, J., Foulkes, J., Ghude, S. D., Gupta, R., Jain, N., Kumar, D., Kumar, R. M., Ladha, J. K., … Sutton, M. A. (2021). Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India. Frontiers in Sustainable Food Systems, 5. https://www.frontiersin.org/articles/10.3389/fsufs.2021.505347spa
dc.relation.referencesNakayasu, M., Takamatsu, K., Yazaki, K., & Sugiyama, A. (2023). Plant specialized metabolites in the rhizosphere of tomatoes: Secretion and effects on microorganisms. Bioscience, Biotechnology, and Biochemistry, 87(1), 13-20. https://doi.org/10.1093/bbb/zbac181spa
dc.relation.referencesOrtiz-Marquez, J. C. F., Do Nascimento, M., & Curatti, L. (2014). Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. Metabolic Engineering, 23, 154-164. https://doi.org/10.1016/j.ymben.2014.03.002spa
dc.relation.referencesOrtiz-Marquez, J. C. F., Do Nascimento, M., Dublan, M. de los A., & Curatti, L. (2012). Association with an Ammonium-Excreting Bacterium Allows Diazotrophic Culture of Oil-Rich Eukaryotic Microalgae. Applied and Environmental Microbiology, 78(7), 2345-2352. https://doi.org/10.1128/AEM.06260-11spa
dc.relation.referencesOspina-Betancourth, C., Acharya, K., Allen, B., Entwistle, J., Head, I. M., Sanabria, J., & Curtis, T. P. (2020). Enrichment of Nitrogen-Fixing Bacteria in a Nitrogen-Deficient Wastewater Treatment System. Environmental Science & Technology, 54(6), 3539-3548. https://doi.org/10.1021/acs.est.9b05322spa
dc.relation.referencesOspina-Betancourth, C., Acharya, K., Allen, B., Head, I. M., Sanabria, J., Curtis, T. P., & member, W. (2021). Valorization of pulp and paper industry wastewater using sludge enriched with nitrogen-fixing bacteria. Water Environ Res, 93, 1734-1747. https://doi.org/10.1002/wer.1561spa
dc.relation.referencesPandey, N. (2020). Chapter 10—Exiguobacterium. En N. Amaresan, M. Senthil Kumar, K. Annapurna, K. Kumar, & A. Sankaranarayanan (Eds.), Beneficial Microbes in Agro-Ecology (pp. 169-183). Academic Press. https://doi.org/10.1016/B978-0-12-823414-3.00010-1spa
dc.relation.referencesR Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/spa
dc.relation.referencesRen, K., Xu, M., Li, R., Zheng, L., Liu, S., Reis, S., Wang, H., Lu, C., Zhang, W., Gao, H., Duan, Y., & Gu, B. (2022). Optimizing nitrogen fertilizer use for more grain and less pollution. Journal of Cleaner Production, 360, 132180. https://doi.org/10.1016/j.jclepro.2022.132180spa
dc.relation.referencesRennie, R. J. (1981). A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Canadian Journal of Microbiology, 27(1), 8-14. https://doi.org/10.1139/m81-002spa
dc.relation.referencesSansinenea, E. (2021). Chapter 14 - Application of biofertilizers: Current worldwide status. En A. Rakshit, V. S. Meena, M. Parihar, H. B. Singh, & A. K. Singh (Eds.), Biofertilizers (pp. 183-190). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821667-5.00004-Xspa
dc.relation.referencesSekoai, P. T., Ghimire, A., Ezeokoli, O. T., Rao, S., Ngan, W. Y., Habimana, O., Yao, Y., Yang, P., Yiu Fung, A. H., Yoro, K. O., Daramola, M. O., & Hung, C.-H. (2021). Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept. Renewable and Sustainable Energy Reviews, 143, 110971. https://doi.org/10.1016/j.rser.2021.110971spa
dc.relation.referencesSethi, S. K., & Adhikary, S. P. (2012). Cost effective pilot scale production of biofertilizer using Rhizobium and Azotobacter. African Journal of Biotechnology, 11(70), Article 70. https://doi.org/10.5897/AJBx11.012spa
dc.relation.referencesSinghania, R. R., Patel, A. K., Christophe, G., Fontanille, P., & Larroche, C. (2013). Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresource Technology, 145, 166-174. https://doi.org/10.1016/j.biortech.2012.12.137spa
dc.relation.referencesSmith, C., Hill, A. K., & Torrente-Murciano, L. (2020). Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science, 13(2), 331-344. https://doi.org/10.1039/C9EE02873Kspa
dc.relation.referencesSon, J. E., Kim, H. J., & Ahn, T. I. (2020). Chapter 20—Hydroponic systems. En T. Kozai, G. Niu, & M. Takagaki (Eds.), Plant Factory (Second Edition) (pp. 273-283). Academic Press. https://doi.org/10.1016/B978-0-12-816691-8.00020-0spa
dc.relation.referencesSowani, H., Kulkarni, M., & Zinjarde, S. (2018). An insight into the ecology, diversity and adaptations of Gordonia sp. species. Critical Reviews in Microbiology, 44(4), 393-413. https://doi.org/10.1080/1040841X.2017.1418286spa
dc.relation.referencesSuthar, H., Hingurao, K., Vaghashiya, J., & Parmar, J. (2017). Fermentation: A Process for Biofertilizer Production. En D. G. Panpatte, Y. K. Jhala, R. V. Vyas, & H. N. Shelat (Eds.), Microorganisms for Green Revolution: Volume 1: Microbes for Sustainable Crop Production (pp. 229-252). Springer. https://doi.org/10.1007/978-981-10-6241-4_12spa
dc.relation.referencesTobias-Hünefeldt, S. P., Wenley, J., Baltar, F., & Morales, S. E. (2021). Ecological drivers switch from bottom–up to top–down during model microbial community successions. The ISME Journal, 15(4), Article 4. https://doi.org/10.1038/s41396-020-00833-6spa
dc.relation.referencesUSDA. (2024). Livestock and Poultry: World Markets and Trade. United States Department of Agriculture Foreign Agricultural Service. https://www.statista.com/statistics/263964/number-of-pigs-in-selected-countries/spa
dc.relation.referencesVives-Peris, V., de Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2020). Root exudates: From plant to rhizosphere and beyond. Plant Cell Reports, 39(1), 3-17. https://doi.org/10.1007/s00299-019-02447-5spa
dc.relation.referencesWainaina, S., Lukitawesa, Kumar Awasthi, M., & Taherzadeh, M. J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered, 10(1), 437-458. https://doi.org/10.1080/21655979.2019.1673937spa
dc.relation.referencesWang, M., Khan, M. A., Mohsin, I., Wicks, J., Ip, A. H., Sumon, K. Z., Dinh, C.-T., Sargent, E. H., Gates, I. D., & Kibria, M. G. (2021). Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes? Energy & Environmental Science, 14(5), 2535-2548. https://doi.org/10.1039/D0EE03808Cspa
dc.relation.referencesWang, D., Xu, A., Elmerich, C., & Ma, L. Z. (2017). Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions. The ISME Journal, 11(7), 1602-1613. https://doi.org/10.1038/ismej.2017.30spa
dc.relation.referencesXi, L., Qiao, N., Zhang, Z., Yan, L., Li, F., Hu, J., & Li, J. (2017). Sinorhodobacter hungdaonensis sp. Nov. Isolated from activated sludge collected from a municipal wastewater treatment plant. Antonie van Leeuwenhoek, 110(1), 27-32. https://doi.org/10.1007/s10482-016-0770-xspa
dc.relation.referencesXu, X., Wang, N., Lipson, D., Sinsabaugh, R., Schimel, J., He, L., Soudzilovskaia, N. A., & Tedersoo, L. (2020). Microbial macroecology: In search of mechanisms governing microbial biogeographic patterns. Global Ecology and Biogeography, 29(11), 1870-1886. https://doi.org/10.1111/geb.13162spa
dc.relation.referencesYoung, W. L., Tran, S. H., & Moon-Soo, R. (2020). Sinirhodobacter hankyongi sp. Nov., a novel denitrifying bacterium isolated from sludge | Microbiology Society. 70(1). https://doi.org/10.1099/ijsem.0.003814spa
dc.relation.referencesYu, P., He, X., Baer, M., Beirinckx, S., Tian, T., Moya, Y. A. T., Zhang, X., Deichmann, M., Frey, F. P., Bresgen, V., Li, C., Razavi, B. S., Schaaf, G., von Wirén, N., Su, Z., Bucher, M., Tsuda, K., Goormachtig, S., Chen, X., & Hochholdinger, F. (2021). Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nature Plants, 7(4), Article 4. https://doi.org/10.1038/s41477-021-00897-yspa
dc.relation.referencesZhang, X., Zou, T., Lassaletta, L., Mueller, N. D., Tubiello, F. N., Lisk, M. D., Lu, C., Conant, R. T., Dorich, C. D., Gerber, J., Tian, H., Bruulsema, T., Maaz, T. M., Nishina, K., Bodirsky, B. L., Popp, A., Bouwman, L., Beusen, A., Chang, J., … Davidson, E. A. (2021). Quantification of global and national nitrogen budgets for crop production. Nature Food, 2(7), Article 7. https://doi.org/10.1038/s43016-021-00318-5spa
dc.relation.referencesZhao, M., Zhao, J., Yuan, J., Hale, L., Wen, T., Huang, Q., Vivanco, J. M., Zhou, J., Kowalchuk, G. A., & Shen, Q. (2021). Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant, Cell & Environment, 44(2), 613-628. https://doi.org/10.1111/pce.13928spa
dc.relation.referencesZuberer, D. A. (2021). 16 - Biological dinitrogen (N2) fixation: Introduction and nonsymbiotic. En T. J. Gentry, J. J. Fuhrmann, & D. A. Zuberer (Eds.), Principles and Applications of Soil Microbiology (Third Edition) (pp. 423-453). Elsevier. https://doi.org/10.1016/B978-0-12-820202-9.00016-2spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocBiofertilizante
dc.subject.agrovocBiofertilizers
dc.subject.agrovocEcosistema
dc.subject.agrovocEcosystems
dc.subject.agrovocBacteria fijadora del nitrógeno
dc.subject.agrovocNitrogen-fixing bacteria
dc.subject.agrovocBiorreactor
dc.subject.agrovocBioreactors
dc.subject.agrovocResiduo
dc.subject.agrovocResidues
dc.subject.agrovocAgroindustria
dc.subject.agrovocAgro-industry
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalNitrógenospa
dc.subject.proposalFijación biológica de nitrógenospa
dc.subject.proposalComunidades auto ensambladasspa
dc.subject.proposalPromoción de crecimiento vegetalspa
dc.subject.proposalNitrogeneng
dc.subject.proposalBiological nitrogen fixationeng
dc.subject.proposalSelf-assembled communitieseng
dc.subject.proposalPlant growth promotioneng
dc.titleEvaluación de una estrategia de valorización de ácidos grasos para la producción de comunidades microbianas diazótrofas con potencial biofertilizantespa
dc.title.translatedAssessment of a Strategy for Valorization of Fatty Acids in the Production of Diazotrophic Microbial Communities with Biofertilizer Potentialeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad del Valle - Sistema General de Regaliasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1071631770.2024.pdf
Tamaño:
3.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: