Obtención de una superficie polimérica con base en metacrilatos modificada con resorcinarenos y evaluación de su aplicación en la preconcentración de carnitina por la técnica de extracción en fase sólida

dc.contributor.advisorMaldonado Villamil, Mauricio
dc.contributor.authorRamírez Perdomo, Gabriel Andrés
dc.contributor.researchgroupAplicaciones Analíticas de Compuestos Orgánicos (Aaco)spa
dc.date.accessioned2023-01-12T16:16:04Z
dc.date.available2023-01-12T16:16:04Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractEste trabajo de investigación tiene como objetivo la síntesis y caracterización de resorcinarenos tipo corona para modificar una superficie polimérica con base en metacrilatos y evaluar la interacción molecular y su capacidad de preconcentración con L-carnitina. La investigación se realizó en cinco etapas: En la primera etapa se desarrolló la síntesis de los resorcinarenos de partida entre el resorcinol y propanal y/o heptanal obteniendo como resultado los productos C-tetra(etil)calix[4]resorcinareno (1A) y C-tetra(hexil)calix[4]resorcinareno (1B), los cuales fueron caracterizados por diferentes técnicas instrumentales tales como IR-ATR, RMN-1H, RMN-13C y espectrometría de masas obteniendo como un único confórmero el tipo corona de gran utilidad por su facilidad de formar sistemas tipo host-guest. En la segunda etapa se evaluó la interacción host-guest (huésped-hospedero) en solución entre los resorcinarenos C-tetra(etil)calix[4]resorcinareno (1A) y C-tetra(hexil) calix[4]resorcinareno (1B) con L-carnitina (1C),este se realizó en disolucion acuosa donde se evaluó mediante RMN-1H y espectrometría de masas evidenciando una interacción entre ellos debido a la cavidad existente entre los resorcinarenos gracias a sus interacciones tipo π. La tercera etapa consistió en la copolimerización entre el butilmetacrilato (BMA) y etilendimetacrilato (EDMA) y su modificación física con los resorcinarenos (1A y 1B) el material polímero se caracterizó a través de IR y SEM – MEB En la cuarta etapa se evalúan las variables de tiempo, solvente, volumen de carga, concentración y pH. Elegidas las mejores condiciones estas se aplican en la última etapa para la cuantificación de la L-carnitina (1C) partiendo del material polímero modificado con resorcinarenos (1A y 1B) mediante cromatografía líquida acoplada a masas.spa
dc.description.abstractThis research work aims to synthesize and characterize corona-type resorcinarenes to modify a methacrylate-based polymeric surface and to evaluate the molecular interaction and their preconcentration ability with L-carnitine. The research was carried out in five stages: In the first stage, the synthesis of the starting resorcinarenes between resorcinol and propanal and/or heptanal was developed obtaining as a result the products C-tetra(ethyl)calix[4]resorcinarene (1A) and C-tetra(hexyl)calix[4]resorcinarene (1B), which were characterized by different instrumental techniques such as IR-ATR, 1H-NMR, 13C-NMR and mass spectrometry obtaining as a single conformer the crown type of great utility for its ease of forming host-guest systems. In the second stage, the host-guest interaction in solution between the resorcinarenes C-tetra(ethyl)calix[4]resorcinarene (1A) and C-tetra(hexyl)calix[4]resorcinarene (1B) with L-carnitine (1C) was evaluated, This was performed in aqueous solution where it was evaluated by 1H-NMR and mass spectrometry evidencing an interaction between them due to the existing cavity between the resorcinarenes thanks to their π-type interactions. The third stage consisted of the copolymerization between butylmethacrylate (BMA) and ethylenedimethacrylate (EDMA) and its physical modification with resorcinarenes (1A and 1B) the polymer material was characterized by IR and SEM-MEB. In the fourth stage, the variables of time, solvent, loading volume, concentration and pH are evaluated. Once the best conditions are chosen, these are applied in the last stage for the quantification of L-carnitine (1C) from the polymer material modified with resorcinarenes (1A and 1B) by mass-coupled liquid chromatography.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaSíntesis orgánicaspa
dc.format.extent112 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82893
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesPitt, M. A. & Johnson, D. W. Main group supramolecular chemistry. Chem. Soc. Rev. 36, 1441–1453 (2007).spa
dc.relation.referencesIzatt, R. M. Charles J. Pedersen’s legacy to chemistry. Chem. Soc. Rev. 46, 2380– 2384 (2017).spa
dc.relation.referencesAgrawal, Y. K. & Patadia, R. N. Studies on resorcinarenes and their analytical applications. Rev. Anal. Chem. 25, 155–239 (2006).spa
dc.relation.referencesMorand, R., Donzelli, M., Haschke, M. & Krähenbühl, S. Quantification of plasma carnitine and acylcarnitines by high-performance liquid chromatography-tandem mass spectrometry using online solid-phase extraction. Anal. Bioanal. Chem. 405, 8829–8836 (2013).spa
dc.relation.referencesJohnson, D. W. An acid hydrolysis method for quantification of plasma free and total carnitine by flow injection tandem mass spectrometry. Clin. Biochem. 43, 1362–1367 (2010).spa
dc.relation.referencesZhang, Z. et al. Electrochemical enzyme biosensor for carnitine detection based on cathodic stripping voltammetry. Sensors Actuators, B Chem. 321, 128473 (2020).spa
dc.relation.referencesWang, M. et al. A simple and precise method for measurement of serum free carnitine and acylcarnitines by isotope dilution HILIC-ESI-MS/MS. Int. J. Mass Spectrom. 446, 116208 (2019).spa
dc.relation.referencesSeline, K. G. & Johein, H. The determination of l-carnitine in several food samples. Food Chem. 105, 793–804 (2007).spa
dc.relation.referencesLu, W. H. et al. Using matrix-induced ion suppression combined with LC-MS/MS for quantification of trimethylamine-N-oxide, choline, carnitine and acetylcarnitine in dried blood spot samples. Anal. Chim. Acta 1149, 338214 (2021).spa
dc.relation.referencesRudolph, W., Remane, D., Wissenbach, D. K. & Peters, F. T. Liquid chromatography-mass spectrometry-based determination of ergocristine, ergocryptine, ergotamine, ergovaline, hypoglycin A, lolitrem B, methylene cyclopropyl acetic acid carnitine, N-acetylloline, N-formylloline, paxilline, and peramine in equine hai. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1117, 127–135 (2019).spa
dc.relation.referencesMinkler, P. E., Stoll, M. S. K., Ingalls, S. T., Kerner, J. & Hoppel, C. L. Validated Method for the Quantification of Free and Total Carnitine, Butyrobetaine, and Acylcarnitines in Biological Samples. Anal. Chem. 87, 8994–9001 (2015).spa
dc.relation.referencesAhn, J. H., Kwak, B. M., Park, J. M., Kim, N. K. & Kim, J. M. Rapid determination of L-carnitine in infant and toddler formulas by liquid chromatography tandem mass spectrometry. Korean J. Food Sci. Anim. Resour. 34, 749–756 (2014).spa
dc.relation.referencesProkorátová, V., Kvasnička, F., Ševčík, R. & Voldřich, M. Capillary electrophoresis determination of carnitine in food supplements. J. Chromatogr. A 1081, 60–64 (2005).spa
dc.relation.referencesTan, X. et al. Novel competitive fluorescence sensing platform for l-carnitine based on cationic pillar[5]arene modified gold nanoparticles. Sensors (Switzerland) 18, (2018).spa
dc.relation.referencesChen, Y. C., Tsai, C. J. & Feng, C. H. Fluorescent derivatization combined with aqueous solvent-based dispersive liquid-liquid microextraction for determination of butyrobetaine, L-carnitine and acetyl-L-carnitine in human plasma. J. Chromatogr. A 1464, 32–41 (2016)spa
dc.relation.referencesManjón, A., Obón, J. M. & Iborra, J. L. Determination of L-carnitine by flow injection analysis with NADH fluorescence detection. Anal. Biochem. 281, 176–181 (2000).spa
dc.relation.referencesHe, Q., Vargas-Zúñiga, G. I., Kim, S. H., Kim, S. K. & Sessler, J. L. Macrocycles as Ion Pair Receptors. Chem. Rev. 119, 9753–9835 (2019).spa
dc.relation.referencesRuiz-Botella, S., Vidossich, P., Ujaque, G., Vicent, C. & Peris, E. A Tetraferrocenyl Resorcinarene Cavitand as a Redox-Switchable Host of Ammonium Salts. Chem. - A Eur. J. 21, 10558–10565 (2015).spa
dc.relation.referencesTaylor, P. J. Matrix effects: The Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin. Biochem. 38, 328–334 (2005).spa
dc.relation.referencesHuang, Z. et al. Determination of inorganic pharmaceutical counterions using hydrophilic interaction chromatography coupled with a Corona® CAD detector. J. Pharm. Biomed. Anal. 50, 809–814 (2009).spa
dc.relation.referencesJohnson, W. M., Kido Soule, M. C. & Kujawinski, E. B. Extraction efficiency and quantification of dissolved metabolites in targeted marine metabolomics. Limnol. Oceanogr. Methods 15, 417–428 (2017).spa
dc.relation.referencesLee, M. et al. Selective solid-phase extraction of catecholamines by the chemically modified polymeric adsorbents with crown ether. J. Chromatogr. A 1160, 340–344 (2007).spa
dc.relation.referencesChen, L. Q. et al. High-throughput and selective solid-phase extraction of urinary catecholamines by crown ether-modified resin composite fiber. J. Chromatogr. A 1561, 48–55 (2018).spa
dc.relation.referencesCastillo-Aguirre, A. & Maldonado, M. Preparation of methacrylate-based polymers modified with chiral resorcinarenes and their evaluation as sorbents in norepinephrine microextraction. Polymers (Basel). 11, 1–21 (2019).spa
dc.relation.referencesVelásquez-Silva, B. A., Castillo-Aguirre, A., Rivera-Monroy, Z. J. & Maldonado, M. Aminomethylated calix[4]resorcinarenes as modifying agents for glycidyl methacrylate (GMA) rigid copolymers surface. Polymers (Basel). 11, (2019).spa
dc.relation.referencesBaeyer, A. Ueber die Verbindungen der Aldehyde mit den Phenolen und aromatischen Kohlenwasserstoffen. Berichte der Dtsch. Chem. Gesellschaft 5, 1094–1100 (1872).spa
dc.relation.referencesNiederl, J. & Vogel, H. Aldeyde-Resorcinol Condensations. J. Am. Chem. Soc. 62, 2512 (1940).spa
dc.relation.referencesHolger Erdtman and Sverker Hogberg. Tetrahedron Lett. 1679–1682 (1968).spa
dc.relation.referencesJain, V. K. & Kanaiya, P. H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 80, 75–102 (2011).spa
dc.relation.referencesIn, R., Recognition, M. & Devices, S. and Supramolecular Devices. 67–94 (1999).spa
dc.relation.referencesCalixarenes: a versa tile class of macrocyclic compounds.spa
dc.relation.referencesVerboom, W., Durie, A., Egberink, R. J. M., Asfari, Z. & Reinhoudt, D. N. Ipso Nitration of p-tert-Butylcalix[4]arenes. J. Org. Chem. 57, 1313–1316 (1992).spa
dc.relation.referencesCram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture). Angew. Chemie Int. Ed. English 27, 1009–1020 (1988).spa
dc.relation.referencesSchneider, U. & Schneider, H. ‐J. Synthese und Eigenschaften von Makrocyclen aus Resorcinen sowie von entsprechenden Derivaten und Wirt‐Gast‐Komplexen. Chem. Ber. 127, 2455–2469 (1994).spa
dc.relation.referencesPfeiffer, C. R., Feaster, K. A., Dalgarno, S. J. & Atwood, J. L. Syntheses and characterization of aryl-substituted pyrogallol[4]arenes and resorcin[4]arenes. CrystEngComm 18, 222–229 (2015).spa
dc.relation.referencesde Namor, A. F. D. et al. Thermodynamic and electrochemical aspects of the interactions of functionalised calix(4)arenes and metal cations in ‘allosteric media’’’. Pure Appl. Chem. 66, 435–440 (1994).spa
dc.relation.referencesIwanek, W. The synthesis of octamethoxyresorc[4]arenes catalysed by Lewis acids. Tetrahedron 54, 14089–14094 (1998).spa
dc.relation.referencesMcIldowie, M. J., Mocerino, M., Skelton, B. W. & White, A. H. Facile Lewis Acid Catalyzed Synthesis of C4 Symmetric Resorcinarenes. Org. Lett. 2, 3869–3871 (2000).spa
dc.relation.referencesYamakawa, Y., Ueda, M., Nagahata, R., Takeuchi, K. & Asai, M. Rapid synthesis of dendrimers based on calix[4]resorcinarenes. J. Chem. Soc. - Perkin Trans. 1 4135–4139 (1998). doi:10.1039/a806475jspa
dc.relation.referencesKijima, T.; Kato, Y.; Ohe, K.; et al. Bull. Chem. Soc. Jpn. 1994.pdf.spa
dc.relation.referencesLewis, P. T. et al. Tetraarylboronic Acid Resorcinarene Stereoisomers. Versatile New Substrates for Divergent Polyfunctionalization and Molecular Recognition. J. Org. Chem. 62, 6110–6111 (1997).spa
dc.relation.referencesBeer, P. D. Meldola Medal Lecture. Redox responsive macrocyclic receptor molecules containing transition metal redox centres. Chem. Soc. Rev. 18, 409–450 (1989).spa
dc.relation.referencesCurtis, A. D. M. Novel Calix[4]resorcinarene glycosides. Tetrahedron Lett. 38, 4295–4296 (1997).spa
dc.relation.referencesAoyama, Y., Tanaka, Y. & Sugahara, S. Molecular Recognition. 5. Molecular Recognition. 68, 5397–5404 (1989)spa
dc.relation.referencesGibb, B. C., Chapman, R. G., Sherman, J. C. & Soc, D. J. J. A. C. Synthesis of Hydroxyl-Footed Cavitands their rigidity , enforced cavities , and synthetic viability . Thus , the incorporation of new functionalities into the pendant groups of these compounds would expand their versatility toward future applications . Fo. Reactions 1505–1509 (1996).spa
dc.relation.referencesKobayashi, K., Asakawa, Y., Kato, Y. & Aoyama, Y. Complexation of Hydrophobic Sugars and Nucleosides in Water with Tetrasulfonate Derivatives of Resorcinol Cyclic Tetramer Having a Polyhydroxy Aromatic Cavity: Importance of Guest–Host CH–π Interaction. J. Am. Chem. Soc. 114, 10307–10313 (1992).spa
dc.relation.referencesScott, M. P. & Sherburn, M. S. Resorcinarenes and Pyrogallolarenes. Comprehensive Supramolecular Chemistry II 1, (Elsevier, 2017).spa
dc.relation.referencesTunstad, L. M. et al. Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands. J. Org. Chem. 54, 1305–1312 (1989).spa
dc.relation.referencesMorikawa, O., Ueno, R., Nakajima, K., Kobayashi, K. & Konishi, H. Trifluoromethanesulfonic acid-catalyzed synthesis of resorcinarenes: Cyclocondensation of 2-bromoresorcinol with aldehydes. Synthesis (Stuttg). 761– 765 (2002). doi:10.1055/s-2002-25765spa
dc.relation.referencesBeyeh, N. K. & Rissanen, K. Tetranitroresorcin[4]arene: synthesis and structure of a new stereoisomer. Tetrahedron Lett. 50, 7369–7373 (2009).spa
dc.relation.referencesBourgeois, J. M. & Stoeckli-Evans, H. Synthesis of new resorcinarenes under alkaline conditions. Helv. Chim. Acta 88, 2722–2730 (2005).spa
dc.relation.referencesVicens, J. & Vicens, Q. Origins and emergences of supramolecular chemistry. J. Incl. Phenom. Macrocycl. Chem. 65, 221–235 (2009).spa
dc.relation.referencesWeinelt, F. & Schneider, H. J. Mechanisms of Macrocycle Genesis. The Condensation of Resorcinol with Aldehydes. J. Org. Chem. 56, 5527–5535 (1991).spa
dc.relation.referencesSverker Hógberg, A. G. Stereoselective Synthesis and DNMR Study of Two 1,8,15,22-T etraphenyl [I4]metacyclophan-3,5,10,12,17,19,24,26-octolss. J. Am. Chem. Soc. 102, 6046–6050 (1980).spa
dc.relation.referencesMa, B. Q. & Coppens, P. A novel scoop-shaped conformation of C methylcalix[4]resorcinarene in a bilayer structure. Chem. Commun. 2, 424–425 (2002).spa
dc.relation.referencesAbis, L., Dalcanale, E., Du vosel, A. & Sperala, S. Structurally New Macrocycles from the Resorcinol-Aldehyde Condensation. Configurational and Conformational Analyses by Means of Dynamic NMR, NOE, and T1 Experiments. J. Org. Chem. 53, 5475–5479 (1988).spa
dc.relation.referencesTimmerman W.; Reinhoudt, D. N. P. . V., Timmerman W.; Reinhoudt, D. N. P. . V. & Timmerman W.; Reinhoudt, D. N. P. . V. Resorcinarenes. Tetrahedron 52, 2663–2704 (1996).spa
dc.relation.referencesSanabria, E., Esteso, M. A., Pérez-Redondo, A., Vargas, E. & Maldonado, M. Synthesis and characterization of two sulfonated resorcinarenes: A new example of a linear array of sodium centers and macrocycles. Molecules 20, 9915–9928 (2015).spa
dc.relation.referencesVelásquez-Silva, A., Cortés, B., Rivera-Monroy, Z. J., Pérez-Redondo, A. & Maldonado, M. Crystal structure and dynamic NMR studies of octaacetyl tetra(propyl)calix[4]resorcinarene. J. Mol. Struct. 1137, 380–386 (2017).spa
dc.relation.referencesCastillo-Aguirre, A., Esteso, M. A. & Maldonado, M. Resorcin[4]arenes: Generalities and Their Role in the Modification and Detection of Amino Acids. Curr. Org. Chem. 24, 2412–2425 (2020).spa
dc.relation.referencesFabbri, P. & Messori, M. Surface Modification of Polymers: Chemical, Physical, and Biological Routes. Modification of Polymer Properties (Elsevier Inc., 2017). doi:10.1016/B978-0-323-44353-1.00005-1spa
dc.relation.referencesFader, R. et al. Novel organic polymer for UV-enhanced substrate conformal imprint lithography. Microelectron. Eng. 98, 238–241 (2012).spa
dc.relation.referencesMaldonado, M., Sanabria, E., Batanero, B. & Esteso, M. Á. Apparent molal volume and viscosity values for a new synthesized diazoted resorcin[4]arene in DMSO at several temperatures. J. Mol. Liq. 231, 142–148 (2017).spa
dc.relation.referencesSokoließ, T., Menyes, U., Roth, U. & Jira, T. Separation of cis- and trans-isomers of thioxanthene and dibenz[b,e]oxepin derivatives on calixarene- and resorcinarene bonded high-performance liquid chromatography stationary phases. J. Chromatogr. A 948, 309–319 (2002).spa
dc.relation.referencesRuderisch, A. et al. Synthesis and characterization of a novel resorcinarene-based stationary phase bearing polar headgroups for use in reversed-phase high performance liquid chromatography. J. Chromatogr. A 1095, 40–49 (2005).spa
dc.relation.referencesAghazadeh-Habashi, A., Asghar, W. & Jamali, F. Simultaneous determination of selected eicosanoids by reversed-phase HPLC method using fluorescence detection and application to rat and human plasma, and rat heart and kidney samples. J. Pharm. Biomed. Anal. 110, 12–19 (2015).spa
dc.relation.referencesSynthesis, A. 3 , 3 0 -Diaryl-BINOL Phosphoric Acids as Enantioselective Extractants of Benzylic Primary Amines. 43, 34–43 (2011).spa
dc.relation.referencesLipkowski, J. et al. Host-guest interactions of calix[4]resorcinarenes with benzene derivatives in conditions of reversed-phase high-performance liquid chromatography. Determination of stability constants. J. Phys. Org. Chem. 11, 426–437 (1998).spa
dc.relation.referencesZhang, H. et al. Resorcarene derivative used as a new stationary phase for capillary gas chromatography. J. Chromatogr. A 787, 161–169 (1997).spa
dc.relation.referencesBachmann, K. et al. Resorcarenes as Pseudostationary Phases with Selectivity for Electrokinetic Chromatography. Anal. Chem. 67, 1722–1726 (1995).spa
dc.relation.referencesBazzanella, A. et al. Highly efficient separation of amines by electrokinetic chromatography using resorcarene-octacarboxylic acids as pseudostationary phases. J. Chromatogr. A 792, 143–149 (1997).spa
dc.relation.referencesBazzanella, A., Bächmann, K., Milbradt, R., Böhmer, V. & Vogt, W. Discontinuous electrokinetic chromatography of parabens using different substituted resonances as pseudostationary phases. Electrophoresis 20, 92–99 (1999).spa
dc.relation.referencesLi, N., Harrison, R. G. & Lamb, J. D. Application of resorcinarene derivatives in chemical separations. J. Incl. Phenom. Macrocycl. Chem. 78, 39–60 (2014).spa
dc.relation.referencesZwir-Ferenc, A. & Biziuk, M. Solid phase extraction technique - Trends, opportunities and applications. Polish J. Environ. Stud. 15, 677–690 (2006).spa
dc.relation.referencesPuttreddy, R. et al. Host–guest complexes of conformationally flexible C -hexyl-2- bromoresorcinarene and aromatic N -oxides: solid-state, solution and computational studies . Beilstein J. Org. Chem. 14, 1723–1733 (2018).spa
dc.relation.referencesBallester, P. & Biros, S. M. CH-π and π-π Interactions as Contributors to the Guest Binding in Reversible Inclusion and Encapsulation Complexes. Importance Pi Interactions Cryst. Eng. Front. Cryst. Eng. 79–107 (2012). doi:10.1002/9781119945888.ch3spa
dc.relation.referencesKazakova, E. K. et al. The complexation properties of the water-soluble tetrasulfonatomethylcalix[4]resorcinarene toward α-aminoacids. J. Incl. Phenom. 43, 65–69 (2002).spa
dc.relation.referencesZeisel, S. H. A conceptual framework for studying and investing in precision nutrition. Front. Genet. 10, 1–11 (2019).spa
dc.relation.referencesWang, X. F., Zhou, Y., Xu, J. J. & Chen, H. Y. Signal-on electrochemiluminescence biosensors based on CdS-carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine. Adv. Funct. Mater. 19, 1444–1450 (2009).spa
dc.relation.referencesZhu, B. et al. A highly selective ratiometric visual and red-emitting fluorescent dual channel probe for imaging fluoride anions in living cells. Biosens. Bioelectron. 52, 298–303 (2014).spa
dc.relation.referencesPereira, N. M. et al. Electrodeposition of Co and Co composites with carbon nanotubes using choline chloride-based ionic liquids. Surf. Coatings Technol. 324, 451–462 (2017).spa
dc.relation.referencesAskarpour, M. et al. Beneficial effects of L-carnitine supplementation for weight management in overweight and obese adults: An updated systematic review and dose-response meta-analysis of randomized controlled trials. Pharmacological Research 151, (Elsevier Ltd, 2020).spa
dc.relation.referencesJones, L. L., McDonald, D. A. & Borum, P. R. Acylcarnitines: Role in brain. Prog. Lipid Res. 49, 61–75 (2010).spa
dc.relation.referencesRibas, G. S., Vargas, C. R. & Wajner, M. L-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene 533, 469–476 (2014).spa
dc.relation.referencesAlves, E. et al. Acetyl-l-carnitine provides effective in vivo neuroprotection over 3,4- methylenedioximethamphetamine-induced mitochondrial neurotoxicity in the adolescent rat brain. Neuroscience 158, 514–523 (2009).spa
dc.relation.referencesCalabrese, V., Stella, A. M. G., Calvani, M. & Butterfield, D. A. Acetylcarnitine and cellular stress response: Roles in nutritional redox homeostasis and regulation of longevity genes. J. Nutr. Biochem. 17, 73–88 (2006).spa
dc.relation.referencesCahova, M. et al. Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats. Appl. Physiol. Nutr. Metab. 40, 280–291 (2015).spa
dc.relation.referencesBenjamin Chun-Kit Tong. 乳鼠心肌提取 HHS Public Access. Physiol. Behav. 176, 139–148 (2017).spa
dc.relation.referencesSuchy, J., Chan, A. & Shea, T. B. Dietary supplementation with a combination of α-lipoic acid, acetyl-l-carnitine, glycerophosphocoline, docosahexaenoic acid, and phosphatidylserine reduces oxidative damage to murine brain and improves cognitive performance. Nutr. Res. 29, 70–74 (2009).spa
dc.relation.referencesScafidi, S., Racz, J., Hazelton, J., McKenna, M. C. & Fiskum, G. Neuroprotection by acetyl-L-carnitine after traumatic injury to the immature rat brain. Dev. Neurosci. 32, 480–487 (2011).spa
dc.relation.referencesZhang, R. et al. Neuroprotective effects of pre-treament with L-carnitine and Acetyl L-carnitine on ischemic injury in vivo and in vitro. Int. J. Mol. Sci. 13, 2078–2090 (2012)spa
dc.relation.referencesPatel, S. P., Sullivan, P. G., Lyttle, T. S., Magnuson, D. S. K. & Rabchevsky, A. G. Acetyl-l-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery. Neuroscience 210, 296–307 (2012).spa
dc.relation.referencesKocsis, K. et al. Acetyl-L-carnitine and oxaloacetate in post-treatment against LTP impairment in a rat ischemia model. An in vitro electrophysiological study. J. Neural Transm. 122, 867–872 (2015).spa
dc.relation.referencesHota, S. K., Chaurasia, O. P. & Singh, S. B. Acetyl-L-carnitine mediated neuroprotection during hypoxia is attributed to ERK1/2-Nrf2-regulated mitochondrial biosynthesis. Hippocampus 22, 723–736 (2012).spa
dc.relation.referencesBarhwal, K., Hota, S. K., Prasad, D., Singh, S. B. & Ilavazhagan, G. Hypoxia induced deactivation of NGF-mediated ERK1/2 signaling in hippocampal cells: Neuroprotection by acetyl-L-carnitine. J. Neurosci. Res. 86, 2705–2721 (2008).spa
dc.relation.referencesIshii, T.; Shimpo, Y.; Matsuoka, Y.; Kinoshit, K. 2000.pdf.spa
dc.relation.referencesWainwright, M. S., Mannix, M. K., Brown, J. & Stumpf, D. A. L-Carnitine Reduces Brain Injury after Hypoxia-Ischemia in Newborn Rats. Pediatr. Res. 54, 688–695 (2003).spa
dc.relation.referencesWainwright, M. S., Kohli, R., Whitington, P. F. & Chace, D. H. Carnitine treatment inhibits increases in cerebral carnitine esters and glutamate detected by mass spectrometry after hypoxia-ischemia in newborn rats. Stroke 37, 524–530 (2006).spa
dc.relation.referencesRoe, C. R. et al. Metabolic response to carnitine in methylmalonic aciduria. Arch. Dis. Child. 58, 916–920 (1983).spa
dc.relation.referencesVieira Neto, E. et al. Analysis of acylcarnitine profiles in umbilical cord blood and during the early neonatal period by electrospray ionization tandem mass spectrometry. Brazilian J. Med. Biol. Res. 45, 546–556 (2012).spa
dc.relation.referencesSchmidt-Sommerfeld, E. et al. Quantitation of urinary carnitine esters in a patient with medium-chain acyl-coenzyme A dehydrogenase deficiency: Effect of metabolic state and l-carnitine therapy. J. Pediatr. 115, 577–582 (1989).spa
dc.relation.referencesRashed, M. S., Ozand, P. T., Bucknall, M. P. & Little, D. Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. Pediatr. Res. 38, 324–331 (1995)spa
dc.relation.referencesRibas, G. S. et al. Reduction of lipid and protein damage in patients with disorders of propionate metabolism under treatment: a possible protective role of l-carnitine supplementation. Int. J. Dev. Neurosci. 28, 127–132 (2010).spa
dc.relation.referencesAl-Sharefi, A. & Bilous, R. Reversible weakness and encephalopathy while on long term valproate treatment due to carnitine deficiency. BMJ Case Rep. 2015, 1–3 (2015).spa
dc.relation.referencesKim, H. et al. Acquired encephalopathy associated with carnitine deficiency after cefditoren pivoxil administration. Neurol. Sci. 33, 1393–1396 (2012).spa
dc.relation.referencesLuis Casas-Hinestroza, J. & Maldonado, M. Conformational Aspects of the O acetylation of C-tetra(phenyl)calixpyrogallol[4]arene. Molecules 23, (2018).spa
dc.relation.referencesFranco, L. S., Salamanca, Y. P., Maldonado, M. & Vargas, E. F. Lina S. Franco, † Yina P. Salamanca, †,‡ Mauricio Maldonado, ‡ and Edgar F. Vargas* ,†. 1042– 1044 (2010).spa
dc.relation.referencesPlachkova-Petrova, D., Petrova, P., Miloshev, S. & Novakov, C. Optimization of reaction conditions for synthesis C-tetramethylcalix[4] resorcinarene. Bulg. Chem. Commun. 44, 208–215 (2012).spa
dc.relation.referencesMorikawa, O. et al. Host-guest complexation behavior of resorcinarenes with tetraalkylammonium ions and N-methylpyridinium ions in methanol: The effect of bulky hydrophobic substituents at the extra-annular positions. Phosphorus, Sulfur Silicon Relat. Elem. 181, 2877–2886 (2006).spa
dc.relation.referencesJ.-M. Lehn. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chemie Int. Ed. English 27, 89–112 (1988).spa
dc.relation.referencesLehn, J. ‐M. Supramolecular chemistry — Molecular information and the design of supramolecular materials. Makromol. Chemie. Macromol. Symp. 69, 1–17 (1993).spa
dc.relation.referencesPastor, A. & Martínez-Viviente, E. NMR spectroscopy in coordination supramolecular chemistry: A unique and powerful methodology. Coord. Chem. Rev. 252, 2314–2345 (2008).spa
dc.relation.referencesOngkudon, C. M., Kansil, T. & Wong, C. Challenges and strategies in the preparation of large-volume polymer-based monolithic chromatography adsorbents. J. Sep. Sci. 37, 455–464 (2014).spa
dc.relation.referencesEeltink, S. & Svec, F. Recent advances in the control of morphology and surface chemistry of porous polymer-based monolithic stationary phases and their application in CEC. Electrophoresis 28, 137–147 (2007).spa
dc.relation.referencesHorák, D. et al. The effect of polymeric porogen on the properties of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate). Polymer (Guildf). 34, 3481– 3489 (1993).spa
dc.relation.referencesMustafina, A. R., Elistratova, Y. G., Syakaev, V. V., Amirov, R. R. & Konovalova, A. I. Receptor properties of calix[4]resorcinarenes toward tetramethylammonium and choline cations in micellar solutions of sodium dodecyl sulfate. Russ. Chem. Bull. 55, 1419–1424 (2006).spa
dc.relation.referencesPaquin, F., Rivnay, J., Salleo, A., Stingelin, N. & Silva, C. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J. Mater. Chem. C 3, 10715–10722 (2015).spa
dc.relation.referencesMerhar, M., Podgornik, A., Barut, M., Žigon, M. & Štrancar, A. Methacrylate monoliths prepared from various hydrophobic and hydrophilic monomers - Structural and chromatographic characteristics. J. Sep. Sci. 26, 322–330 (2003).spa
dc.relation.referencesErmakova, A. M. et al. Nanoconjugates of a calixresorcinarene derivative with methoxy poly(ethylene glycol) fragments for drug encapsulation. Beilstein J. Nanotechnol. 9, 2057–2070 (2018).spa
dc.rightsDerechos reservados al autor, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.otherPolimerizaciónspa
dc.subject.otherPolymerizationeng
dc.subject.proposalResorcinarenosspa
dc.subject.proposalSistemas huésped–hospederospa
dc.subject.proposalInteracciones molecularesspa
dc.subject.proposalL-carnitinaspa
dc.subject.proposalCuantificaciónspa
dc.subject.proposalResorcinareneseng
dc.subject.proposalHost-guest systemseng
dc.subject.proposalMolecular interactionseng
dc.subject.proposalL-carnitineeng
dc.subject.proposalQuantificationeng
dc.subject.spinesQuímica de los polímerosspa
dc.titleObtención de una superficie polimérica con base en metacrilatos modificada con resorcinarenos y evaluación de su aplicación en la preconcentración de carnitina por la técnica de extracción en fase sólidaspa
dc.title.translatedObtaining a methacrylate-based polymeric surface modified with resorcinarenes and evaluation of its application in the preconcentration of carnitine by the solid phase extraction techniqueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026289725.2022.pdf
Tamaño:
3.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: