Evaluación de inductores de la capacitación espermática en semen criopreservado de asnos (equus asinus)

dc.contributor.advisorRestrepo Betancur, Giovanni
dc.contributor.authorMendoza Arenas, Luis Mendoza
dc.contributor.researchgroupGIBA (Grupo de Investigación Biotecnología Animal)spa
dc.date.accessioned2023-02-03T18:35:52Z
dc.date.available2023-02-03T18:35:52Z
dc.date.issued2022-02-02
dc.description.abstractLas biotecnologías reproductivas, constituyen una serie de herramientas para la conservación de las razas consideradas en peligro de extinción como los burros. El objetivo de esta investigación fue evaluar el uso de inductores de capacitación espermática en semen congelado-descongelado de asnos. Se colectaron 5 asnos, localizados en el Valle de Aburrá con edades entre 4-8 años, se obtuvieron 3 eyaculados por animal, mediante vagina artificial, el semen recién recolectado fue diluido en proporción 1:1 en Equiplus® para ser criopreservado. Después, se descongelaron dos pajillas de 0.5 mL cada una del mismo eyaculado en un baño María a 37 °C, este volumen fue divido en 8 submuetras y 125 μL de semen fueron depositados en tubos eppendorf, posteriormente se adicionó a cada tubo el inductor de capacitación pentoxifilina (PTX) 2.5, 5 y 7.5 mM, ácido etilendiaminotetraacético (EDTA) 0.5, 1 y 1.5 mM, heparina (HEP) 1.1 mM como control positivo y sin aditivo (control) por 20 minutos. Se evaluaron variables de cinética espermática sistema IVOS (Hamilton Thorne), vitalidad espermática (VE) mediante el kit de viabilidad LIVE/DEAD, integridad acrosómica con (FITC-PSA), mientras que la capacitación, potencial mitocondrial e ingreso de Ca2+, fue evaluado usando un citómetro de flujo (FORTESSA LSR, BD Biosciences, EE. UU). Se observó que la movilidad total (MT) y la vitalidad espermática (VE) aumentaron en relación con el control, con el uso de 2,5 y 5.0 mM de PTX respectivamente (p<0.05), mientras que la movilidad progresiva (MP) disminuyó para las 3 concentraciones de EDTA (p<0.05), otras variables como velocidad lineal (VSL), velocidad curvilínea (VCL), amplitud lateral de la cabeza (ALH) y frecuencia de batida (BCF) disminuyen su proporción (p<0.05) al adicionar de EDTA 1, 1.5 y PTX 7.5 mM. En cuanto a la capacitación, se encontró que las concentraciones de EDTA 1, 1.5 mM y PTX 5, 7.5 mM (p<0.01) favorecen eventos asociados a la capacitación espermática y además disminuye la concentración de Ca2+ intracelular para todas las concentraciones de PTX y EDTA 0.5 mM (p<0.01). No se observaron efectos en la actividad mitocondrial. Se concluye que la adición de PTX a 2.5, 5 mM, incrementa la proporción de la MT y VE, por el contrario, la MP disminuye al aumentar la concentración de EDTA, además cambios en la estructura de la membrana plasmática asociados a eventos de capacitación de semen congelado-descongelado de burro, puede ser modulada por la suplementación con PTX (5 mM y 7.5 mM) y EDTA (1 mM y 1.5 mM). Sin embargo, la adición de estos inductores de la capacitación, no logró influencia en el ingreso de Ca2+, por lo tanto, se requiere mayor nivel de investigación ya que los mecanismos e implicaciones en la capacitación espermática para semen de burro aún son desconocidos. (Tomado de la fuente)spa
dc.description.abstractReproductive biotechnologies constitute a series of tools for the conservation of breeds considered in danger of extinction, such as donkeys. The objective of this research was to evaluate the use of sperm capacitation inducers in frozen-thawed donkey semen. Five donkeys were collected, located in the Valle de Aburrá with ages between 4-8 years, 3 ejaculates were obtained per animal, by means of an artificial vagina, the recently collected semen was diluted in a 1:1 ratio in Eplus® to be cryopreserved. Afterwards, two straws of 0.5 mL each of the same ejaculate were thawed in a water bath at 37 °C, this volume was divided into 8 sub-samples and 125 μL of semen were deposited in eppendorf tubes, later the sperm inducer was added to each tube. capacitation pentoxifylline (PTX) 2.5, 5 and 7.5 mM, ethylenediaminetetraacetic acid (EDTA) 0.5, 1 and 1.5 mM, heparin (HEP) 1.1 mM as positive control and without additive (control) for 20 minutes. Sperm kinetic variables IVOS system (Hamilton Thorne), sperm vitality (SV) using the LIVE/DEAD viability kit, acrosomal integrity with (FITC-PSA), while capacitation, mitochondrial potential and Ca2+ ingress were evaluated. using a flow cytometer (FORTESSA LSR, BD Biosciences, USA). It was observed that the total motility (MT) and the sperm vitality (VE) increased in relation to the control, with the use of 2.5 and 5.0 mM of PTX respectively (p<0.05), while the progressive motility (MP) decreased for the 3 concentrations of EDTA (p<0.05), other variables such as linear velocity (VSL), curvilinear velocity (VCL), lateral amplitude of the head (ALH) and beat frequency (BCF) decrease its proportion (p<0.05) by adding EDTA 1, 1.5 and PTX 7.5 mM. Regarding capacitation, it was found that concentrations of EDTA 1, 1.5 mM and PTX 5, 7.5 mM (p<0.01) favor events associated with sperm capacitation and also decrease intracellular Ca2+ concentration for all concentrations of PTX and 0.5mM EDTA (p<0.01). No effects on mitochondrial activity were observed. It is concluded that the addition of PTX at 2.5, 5 mM, increases the proportion of MT and VE, on the contrary, MP decreases with increasing concentration of EDTA, in addition to changes in the structure of the plasma membrane associated with capacitation events. of frozen-thawed donkey semen, can be modulated by supplementation with PTX (5 mM and 7.5 mM) and EDTA (1 mM and 1.5 mM). However, the addition of these capacitation inducers did not influence Ca2+ entry, therefore, a higher level of research is required since the mechanisms and implications in sperm capacitation for donkey semen are still unknown.eng
dc.description.curricularareaÁrea curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.researchareaReproducción Animalspa
dc.format.extentxi, 65 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83291
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAcha, D., Hidalgo, M., Ortiz, I., Gálvez, M. J., Carrasco, J. J., Gómez-Arrones, V., & Dorado, J. (2016). Freezability of Andalusian donkey (Equus asinus) spermatozoa: Effect of extenders and permeating cryoprotectants. Reproduction, Fertility and Development, 28(12), 1990–1998. https://doi.org/10.1071/RD14449spa
dc.relation.referencesArenas, E., Cambron, A., Ambriz, D., Zuñiga, P., Rodriguez, A., & Rosado, A. (2010). Bases fisiologicas de la capacitacion y de la reaccion acrosomal del espermatozoide. Contactos, 78, 5–11.spa
dc.relation.referencesBall, G. F., & Balthazart, J. (2008). How useful is the appetitive and consummatory distinction for our understanding of the neuroendocrine control of sexual behavior? In Hormones and Behavior (Vol. 53, Issue 2, pp. 307–311). NIH Public Access. https://doi.org/10.1016/j.yhbeh.2007.09.023spa
dc.relation.referencesBarakat, I. A. H., Danfour, M. A., Galewan, F. A. M., & Dkhil, M. A. (2015). Effect of Various Concentrations of Caffeine, Pentoxifylline, and Kallikrein on Hyperactivation of Frozen Bovine Semen. BioMed Research International, 2015, 948575. https://doi.org/10.1155/2015/948575spa
dc.relation.referencesBennett, R., & Pfuderer, S. (2020). The potential for new donkey farming systems to supply the growing demand for hides. Animals, 10(4). https://doi.org/10.3390/ani10040718spa
dc.relation.referencesBhattacharya, S. (2018). Cryopretectants and Their Usage in Cryopreservation Process. Cryopreservation Biotechnology in Biomedical and Biological Sciences. https://doi.org/10.5772/intechopen.80477spa
dc.relation.referencesBlench, R. (2012). Wild Asses and Donkeys in Africa: Interdisciplinary Evidence for Their Biogeography, History and Current Use. Soas, May 2012.spa
dc.relation.referencesBollwein, H., Fuchs, I., & Koess, C. (2008). Interrelationship Between Plasma Membrane Integrity, Mitochondrial Membrane Potential and DNA Fragmentation in Cryopreserved Bovine Spermatozoa. Reproduction in Domestic Animals, 43(2), 189–195. https://doi.org/10.1111/j.1439-0531.2007.00876.xspa
dc.relation.referencesBoni, R., Gallo, A., & Cecchini, S. (2017). Kinetic activity, membrane mitochondrial potential, lipid peroxidation, intracellular pH and calcium of frozen/thawed bovine spermatozoa treated with metabolic enhancers. Andrology, 5(1), 133–145. https://doi.org/10.1111/andr.12259spa
dc.relation.referencesBreitbart, H., & Finkelstein, M. (2015). Regulation of Sperm Capacitation and the Acrosome Reaction by PIP2 and Actin Modulation. Asian Journal of Andrology, 17(4), 597–600. https://doi.org/10.4103/1008-682X.154305spa
dc.relation.referencesBreitbart, H., & Shabtay, O. (2018). Sperm acrosome reaction. In Encyclopedia of Reproduction (Second Edi, Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.66186-Xspa
dc.relation.referencesBrener, E., Rubinstein, S., Cohen, G., Shternall, K., Rivlin, J., & Breitbart, H. (2003). Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biology of Reproduction, 68(3), 837–845. https://doi.org/10.1095/biolreprod.102.009233spa
dc.relation.referencesBuffone, M. G., Wertheimer, E. V., Visconti, P. E., & Krapf, D. (2014). Central role of soluble adenylyl cyclase and cAMP in sperm physiology. In Biochimica et Biophysica Acta - Molecular Basis of Disease (Vol. 1842, Issue 12, pp. 2610–2620). Elsevier. https://doi.org/10.1016/j.bbadis.2014.07.013spa
dc.relation.referencesBustamante, I. C., Pederzolli, C. D., Sgaravatti, A. M., Gregory, R. M., Dutra Filho, C. S., Jobim, M. I. M., & Mattos, R. C. (2009). Skim milk-egg yolk based semen extender compensates for non-enzymatic antioxidant activity loss during equine semen cryopreservation. In Anim. Reprod., v (Vol. 6, Issue 2). Colégio Brasileiro de Reprodução Animal.spa
dc.relation.referencesCalogero, A. E., Fishel, S., Hall, J., Ferrara, E., Vicari, E., Green, S., Hunter, A., Burrello, N., Thornton, S., & D’Agata, R. (1998). Correlation between intracellular cAMP content, kinematic parameters and hyperactivation of human spermatozoa after incubation with pentoxifylline. Human Reproduction, 13(4), 911–915. https://doi.org/10.1093/humrep/13.4.911spa
dc.relation.referencesCanisso, I. F., Carvalho, G. R., Morel, M. C. G. D., Guimarães, J. D., & McDonnell, S. M. (2010). Sexual behavior and ejaculate characteristics in Pêga donkeys (Equus asinus) mounting estrous horse mares (Equus caballus). Theriogenology, 73(1), 56–63. https://doi.org/10.1016/j.theriogenology.2009.07.026spa
dc.relation.referencesCanisso, I. F., & McDonnell, S. M. (2010). Donkey breeding behavior with an emphasis on the Pêga breed. MATTHEWS NS &TAYLOR TS.Veterinary Care of Donkeys.Ithaca: International Veterinary Information Service, 310.spa
dc.relation.referencesCanisso, I. F., Panzani, D., Miró, J., & Ellerbrock, R. E. (2019). Key Aspects of Donkey and Mule Reproduction. Veterinary Clinics of North America - Equine Practice, 35(3), 607–642. https://doi.org/10.1016/j.cveq.2019.08.014spa
dc.relation.referencesCarluccio, A., Contri, A., Amendola, S., De Angelis, E., De Amicis, I., & Mazzatenta, A. (2013). Male isolation: A behavioral representation of the pheromonal “female effect” in donkey (Equus asinus). Physiology and Behavior, 118, 1–7. https://doi.org/10.1016/j.physbeh.2013.04.005spa
dc.relation.referencesCarminati, D., & Tidona, F. (2017). Nutritional Value and Potential Health Benefits of Donkey Milk. In Nutrients in Dairy and Their Implications for Health and Disease. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809762-5.00031-0spa
dc.relation.referencesCarneiro, G. F., Cavalcante Lucena, J. E., & de Oliveira Barros, L. (2018). The Current Situation and Trend of the Donkey Industry in South America. Journal of Equine Veterinary Science, 65, 106–110. https://doi.org/10.1016/j.jevs.2018.03.007spa
dc.relation.referencesCarvalho, L. E., Silva Filho, J. M., Palhares, M. S., Sales, A. L. R., Gonczarowska, A. T., Oliveira, H. N., Resende, M. C., Neves, M. G., & Madison, R. J. (2017). Physical characteristics and fertility of fractionated donkey semen cooled at 5°C. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 69(1), 29–38. https://doi.org/10.1590/1678-4162-7976spa
dc.relation.referencesConsuegra, C., Crespo, F., Bottrel, M., Ortiz, I., Dorado, J., Diaz-Jimenez, M., Pereira, B., & Hidalgo, M. (2018). Stallion sperm freezing with sucrose extenders: A strategy to avoid permeable cryoprotectants. Animal Reproduction Science, 191, 85–91. https://doi.org/10.1016/j.anireprosci.2018.02.013spa
dc.relation.referencesContri, A., Gloria, A., Robbe, D., De Amicis, I., & Carluccio, A. (2012a). Characteristics of donkey spermatozoa along the length of the epididymis. Theriogenology, 77(1), 166–173. https://doi.org/10.1016/j.theriogenology.2011.07.031spa
dc.relation.referencesContri, A., Gloria, A., Robbe, D., Sfirro, M. P., & Carluccio, A. (2012b). Effect of sperm concentration on characteristics of frozen-thawed semen in donkeys. Animal Reproduction Science, 136(1–2), 74–80. https://doi.org/10.1016/j.anireprosci.2012.10.022spa
dc.relation.referencesCortés-Gutiérrez, E. I., Dávila-Rodríguez, M. I., López-Fernández, C., Fernández, J. L., Crespo, F., & Gosálvez, J. (2014). Localization of alkali-labile sites in donkey (Equus asinus) and stallion (Equus caballus) spermatozoa. Theriogenology, 81(2), 321–325. https://doi.org/10.1016/J.THERIOGENOLOGY.2013.10.001spa
dc.relation.referencesDarwin, C. (1859). Origem das espécies: E a seleção natural.spa
dc.relation.referencesDavoodi, F., Raisi, A., Rajabzadeh, A., Hablolvarid, M. H., & Zakian, A. (2020). The effects of verapamil and heparin co-administration on sperm parameters and oxidative stress in prevention of testicular torsion/detorsion damage in rats. Andrologia, 52(2), 1–8. https://doi.org/10.1111/and.13479spa
dc.relation.referencesde Andrade, A. F. C., Zaffalon, F. G., Celeghini, E. C. C., Nascimento, J., Tarragó, O. F. B., Martins, S., Alonso, M. A., & Arruda, R. P. (2011). Addition of Seminal Plasma to Post-thawing Equine Semen: What is the Effect on Sperm Cell Viability? Reproduction in Domestic Animals, 46(4), 682–686. https://doi.org/https://doi.org/10.1111/j.1439-0531.2010.01729.xspa
dc.relation.referencesde Vasconcelos Franco, J. S., Faheem, M., Chaveiro, A., & Moreira da Silva, F. (2016). Effects of α-tocopherol and freezing rates on the quality and heterologous in vitro fertilization capacity of stallion sperm after cryopreservation. Theriogenology, 86(4), 957–962. https://doi.org/10.1016/j.theriogenology.2016.03.019spa
dc.relation.referencesDemyda-Peyrás, S., Bottrel, M., Acha, D., Ortiz, I., Hidalgo, M., Carrasco, J. J., Gómez-Arrones, V., Gósalvez, J., & Dorado, J. (2018). Effect of cooling rate on sperm quality of cryopreserved Andalusian donkey spermatozoa. Animal Reproduction Science, 193, 201–208. https://doi.org/10.1016/j.anireprosci.2018.04.069spa
dc.relation.referencesDhanju, C. K., Toor, G., & Cheema, R. S. (2009). Effect of seminal plasma on quantily and qualily of proteins leaked during heparin - induced in vitro capacitation of bull sperm. Indian Journal of Animal Research, 43(2), 136–138.spa
dc.relation.referencesDi Palma, T., Cecchini, S., MacChia, G., Pasolini, M. P., Cocchia, N., & Boni, R. (2020). Kinematic, bioenergetic and oxidative evaluations of donkey sperm preserved at +4°C. Zygote, 1–8. https://doi.org/10.1017/S096719942000012Xspa
dc.relation.referencesDi Paolo, G., & De Camilli, P. (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature, 443(7112), 651–657. https://doi.org/10.1038/nature05185spa
dc.relation.referencesDi Santo, M., Tarozzi, N., Nadalini, M., & Borini, A. (2012). Human sperm cryopreservation: Update on techniques, effect on DNA integrity, and implications for ART. Advances in Urology, 2012. https://doi.org/10.1155/2012/854837spa
dc.relation.referencesDiaz-Jimenez, M., Dorado, J., Ortiz, I., Consuegra, C., Pereira, B., Gonzalez-De Cara, C. A., Aguilera, R., Mari, G., Mislei, B., Love, C. C., & Hidalgo, M. (2018). Cryopreservation of donkey sperm using non-permeable cryoprotectants. Animal Reproduction Science, 189(December 2017), 103–109. https://doi.org/10.1016/j.anireprosci.2017.12.013spa
dc.relation.referencesDong, W. W., Zeng, Z. Da, Au, D., Chan, C. O., Yang, D. J., & Li, X. B. (2012). Quality control of Colla corii asini using near-infrared spectroscopy and chemometrics clustering techniques. Journal of Food and Drug Analysis, 20(1), 152–158.spa
dc.relation.referencesDorado, J., Acha, D., Ortiz, I., Gálvez, M. J., Carrasco, J. J., Díaz, B., Gómez-Arrones, V., Calero-Carretero, R., & Hidalgo, M. (2013). Relationship between conventional semen characteristics, sperm motility patterns and fertility of Andalusian donkeys (Equus asinus). Animal Reproduction Science, 143(1–4), 64–71. https://doi.org/10.1016/j.anireprosci.2013.10.003spa
dc.relation.referencesDorado, J., Hidalgo, M., Acha, D., Ortiz, I., Bottrel, M., Azcona, F., Carrasco, J. J., Gómez-Arrones, V., & Demyda-Peyrás, S. (2019). Cryopreservation of Andalusian donkey (Equus asinus) spermatozoa: Use of alternative energy sources in the freezing extender affects post-thaw sperm motility patterns but not DNA stability. Animal Reproduction Science, 208(June), 106126. https://doi.org/10.1016/j.anireprosci.2019.106126spa
dc.relation.referencesDouet, C., Reigner, F., Barrière, P., Blard, T., Deleuze, S., & Goudet, G. (2019). First attempts for vitrification of immature oocytes in donkey (Equus asinus): Comparison of two vitrification methods. Theriogenology, 126, 261–265. https://doi.org/10.1016/j.theriogenology.2018.12.030spa
dc.relation.referencesEl-Shahat, K. H., Taysser, M. I., Badr, M. R., & Zaki, K. A. (2016). Effect of heparin, caffeine and calcium ionophore A23187 on in vitro induction of the acrosome reaction of fresh ram spermatozoa. Asian Pacific Journal of Reproduction, 5(2), 148–155. https://doi.org/10.1016/j.apjr.2016.01.012spa
dc.relation.referencesEsteves, S. C., Spaine, D. M., & Cedenho, A. P. (2007). Effects of pentoxifylline treatment before freezing on motility, viability and acrosome status of poor quality human spermatozoa cryopreserved by the liquid nitrogen vapor method. Brazilian Journal of Medical and Biological Research, 40(7), 985–992. https://doi.org/10.1590/S0100-879X2006005000118spa
dc.relation.referencesFernández, S., Morado, S., Cetica, P., & Córdoba, M. (2020). Hyaluronic acid capacitation induces intracellular signals modulated by membrane-associated adenylate cyclase and tyrosine kinase involved in bovine in vitro fertilization. Theriogenology, 148, 174–179. https://doi.org/10.1016/j.theriogenology.2020.02.033spa
dc.relation.referencesFerrante, A., Baca Castex, C., Bruno, S., Arraztoa, C., Plaza, J., Neild, D., & Miragaya, M. (2018a). Comparison of Whole and Centrifuged Egg Yolk Added to Kenney’s and Lactose-EDTA Extenders for Donkey Semen Cryopreservation. Journal of Equine Veterinary Science, 65, 12–18. https://doi.org/10.1016/j.jevs.2018.02.024spa
dc.relation.referencesFerrante, A., Baca Castex, C., Bruno, S., Arraztoa, C., Plaza, J., Neild, D., & Miragaya, M. (2018b). Comparison of Whole and Centrifuged Egg Yolk Added to Kenney’s and Lactose-EDTA Extenders for Donkey Semen Cryopreservation. Journal of Equine Veterinary Science, 65, 12–18. https://doi.org/10.1016/J.JEVS.2018.02.024spa
dc.relation.referencesFerré, L. B., Kjelland, M. E., Strøbech, L. B., Hyttel, P., Mermillod, P., & Ross, P. J. (2020). Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal, 14(5), 991–1004. https://doi.org/10.1017/S1751731119002775spa
dc.relation.referencesFinkelstein, M., Etkovitz, N., & Breitbart, H. (2010). Role and regulation of sperm gelsolin prior to fertilization. The Journal of Biological Chemistry, 285(51), 39702–39709. https://doi.org/10.1074/jbc.M110.170951spa
dc.relation.referencesFinkelstein, M., Megnagi, B., Ickowicz, D., & Breitbart, H. (2013). Regulation of sperm motility by PIP2(4,5) and actin polymerization. Developmental Biology, 381(1), 62–72. https://doi.org/10.1016/j.ydbio.2013.06.014spa
dc.relation.referencesFredholm, B. B., & Lindström, K. (1986). The Xanthine Derivative 1-(5′-Oxohexyl)-3-methyl-7-propyl Xanthine (HWA 285) Enhances the Actions of Adenosine. Acta Pharmacologica et Toxicologica, 58(3), 187–192. https://doi.org/https://doi.org/10.1111/j.1600-0773.1986.tb00093.xspa
dc.relation.referencesGamboa, S., Rodrigues, A. S., Henriques, L., Batista, C., & Ramalho-Santos, J. (2010). Seasonal functional relevance of sperm characteristics in equine spermatozoa. Theriogenology, 73(7), 950–958. https://doi.org/10.1016/j.theriogenology.2009.11.023spa
dc.relation.referencesGarcía-Álvarez, O., Maroto-Morales, A., Jiménez-Rabadán, P., Ramón, M., del Olmo, E., Iniesta-Cuerda, M., Anel-López, L., Fernández-Santos, M. R., Garde, J. J., & Soler, A. J. (2015). Effect of different media additives on capacitation of frozen–thawed ram spermatozoa as a potential replacement for estrous sheep serum. Theriogenology, 84(6), 948–955. https://doi.org/10.1016/J.THERIOGENOLOGY.2015.05.032spa
dc.relation.referencesGervasi, M. G., Marczylo, T. H., Lam, P. M., Rana, S., Franchi, A. M., Konje, J. C., & Perez-Martinez, S. (2013). Anandamide Levels Fluctuate in the Bovine Oviduct during the Oestrous Cycle. PLoS ONE, 8(8), e72521. https://doi.org/10.1371/journal.pone.0072521spa
dc.relation.referencesGervasi, M. G., & Visconti, P. E. (2016). Chang’s meaning of capacitation: A molecular perspective. Molecular Reproduction and Development, 83(10), 860–874. https://doi.org/10.1002/mrd.22663spa
dc.relation.referencesGhasemzadeh, A., Karkon-Shayan, F., Yousefzadeh, S., Naghavi-Behzad, M., & Hamdi, K. (2016). Study of pentoxifylline effects on motility and viability of spermatozoa from infertile asthenozoospermic males. Nigerian Medical Journal, 57(6), 324. https://doi.org/10.4103/0300-1652.193857spa
dc.relation.referencesGlogowski, J., Danforth, D. R., & Ciereszko, A. (2002). Inhibition of alkaline phosphatase activity of boar semen by pentoxifylline, caffeine, and theophylline. Journal of Andrology, 23(6), 783–792.spa
dc.relation.referencesGloria, A., Contri, A., De Amicis, I., Robbe, D., & Carluccio, A. (2011). Differences between epididymal and ejaculated sperm characteristics in donkey. Animal Reproduction Science, 128(1–4), 117–122. https://doi.org/10.1016/j.anireprosci.2011.09.007spa
dc.relation.referencesGrötter, L. G., Cattaneo, L., Marini, P. E., Kjelland, M. E., & Ferré, L. B. (2019). Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post-thaw quality optimization. Reproduction in Domestic Animals, 54(4), 655–665. https://doi.org/10.1111/rda.13409spa
dc.relation.referencesGuasti, P. N., Monteiro, G. A., Maziero, R. R. D., Carmo, M. T., Dell’Aqua, J. A., Crespilho, A. M., Rifai, E. A., & Papa, F. O. (2017). Pentoxifylline effects on capacitation and fertility of stallion epididymal sperm. Animal Reproduction Science, 179, 27–34. https://doi.org/10.1016/j.anireprosci.2017.01.013spa
dc.relation.referencesGuo, S., Savolainen, P., Su, J., Zhang, Q., Qi, D., Zhou, J., Zhong, Y., Zhao, X., & Liu, J. (2006). Origin of mitochondrial DNA diversity of domestic yaks. BMC Evolutionary Biology, 6, 73. https://doi.org/10.1186/1471-2148-6-73spa
dc.relation.referencesHaddad, R., Khan, R., Takahashi, Y. K., Mori, K., Harel, D., & Sobel, N. (2008). A metric for odorant comparison. Nature Methods, 5(5), 425–429. https://doi.org/10.1038/nmeth.1197spa
dc.relation.referencesHenry, M., Snoeck, P. P. N., & Cottorello, A. C. P. (2002). Post-thaw spermatozoa plasma membrane integrity and motility of stallion semen frozen with different cryoprotectants. Theriogenology, 58(2–4), 245–248. https://doi.org/10.1016/S0093-691X(02)00750-1spa
dc.relation.referencesHu, J., Zhong, C., Ding, C., Chi, Q., Walz, A., Mombaerts, P., Matsunami, H., & Luo, M. (2007). Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science, 317(5840), 953–957. https://doi.org/10.1126/science.1144233spa
dc.relation.referencesHussain, N., Andrabi, S. M. H., & Mehmood, M. U. (2019). Effect of EDTA as Chelating Agent in Extender on the Post Thaw Quality of Buffalo Bull Spermatozoa. Cryo Letters, 40(3), 159–163.spa
dc.relation.referencesItach, S. B.-S., Finklestein, M., Etkovitz, N., & Breitbart, H. (2012). Hyper-activated motility in sperm capacitation is mediated by phospholipase D-dependent actin polymerization. Developmental Biology, 362(2), 154–161. https://doi.org/10.1016/j.ydbio.2011.12.002spa
dc.relation.referencesKaneko, T., & Nakagata, N. (2006). Improvement in the long-term stability of freeze-dried mouse spermatozoa by adding of a chelating agent. Cryobiology, 53(2), 279–282. https://doi.org/10.1016/J.CRYOBIOL.2006.06.004spa
dc.relation.referencesKeshtgar, S., Iravanpour, F., Gharesi-Fard, B., & Kazerooni, M. (2016). Combined effect of trolox and EDTA on frozen-thawed sperm quality. Iranian Journal of Medical Sciences, 41(3), 230–237.spa
dc.relation.referencesKeverne, E. B. (2002). Pheromones, vomeronasal function, and gender-specific behavior. In Cell (Vol. 108, Issue 6, pp. 735–738). Cell Press. https://doi.org/10.1016/S0092-8674(02)00687-6spa
dc.relation.referencesKugler, W., Grunenfelder, H. P., & Broxham, E. (2008). Donkey Breeds in Europe: Inventory, Description, Need for Action, Conservation. In … and Seeds in Europe.spa
dc.relation.referencesKumeta, Y., Maruyama, T., Asama, H., Yamamoto, Y., Hakamatsuka, T., & Goda, Y. (2014). Species identification of Asini Corii Collas (donkey glue) by PCR amplification of cytochrome b gene. Journal of Natural Medicines, 68(1), 181–185. https://doi.org/10.1007/s11418-013-0790-zspa
dc.relation.referencesLeclerc, P., Sirard, M. A., Chafouleas, J. G., & Lambert, R. D. (1992). Decrease in calmodulin concentrations during heparin-induced capacitation in bovine spermatozoa. Journal of Reproduction and Fertility, 94(1), 23–32. https://doi.org/10.1530/jrf.0.0940023spa
dc.relation.referencesLi, N., Yu, J., Yang, F., Shao, Y., Wu, S., Liu, B., Li, M., Wang, T., Li, J., & Zeng, S. (2021). L-Proline: An Effective Agent for Frozen and Post-thawed Donkey Semen Storage. Journal of Equine Veterinary Science, 101, 103393. https://doi.org/10.1016/j.jevs.2021.103393spa
dc.relation.referencesLópez, L. F. M. (2018). El puente de Occidente y la inegración de Antioquia. Universidad Nacional de Colombia-Sede Medellín.spa
dc.relation.referencesMackenna, A. (1995). Contribution of the male factor to unexplained infertility: a review. International Journal of Andrology, 18 Suppl 1, 58–61. https://doi.org/10.1111/j.1365-2605.1995.tb00640.xspa
dc.relation.referencesMarshall, F. (2007). African pastoral perspectives on domestication of the donkey. In In Rethinking agriculture: archaeological and ethnoarchaeological perspectives (eds T. P. Denham, J. Iriarte & L. Vrydaghs) (Walnut Cre, pp. 371–407).spa
dc.relation.referencesMartínez-León, E., Osycka-Salut, C., Signorelli, J., Pozo, P., Pérez, B., Kong, M., Morales, P., Pérez-Martínez, S., & Díaz, E. S. (2015). Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway. Human Reproduction, 30(9), 2138–2151. https://doi.org/10.1093/humrep/dev154spa
dc.relation.referencesMassip, A. (2001). Cryopreservation of embryos of farm animals. In Reproduction in Domestic Animals (Vol. 36, Issue 2, pp. 49–55). John Wiley & Sons, Ltd. https://doi.org/10.1046/j.1439-0531.2001.00248.xspa
dc.relation.referencesMazur, P., Leibo, S. P., & Chu, E. H. Y. (1972). A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Experimental Cell Research, 71(2), 345–355. https://doi.org/10.1016/0014-4827(72)90303-5spa
dc.relation.referencesMcDonnell, S. (2003). A Practical Field Guide to Horse Behavior: The Equid Ethogram. Journal of Equine Veterinary Science, 23(1), A1. https://doi.org/10.1016/s0737-0806(03)70087-2spa
dc.relation.referencesMcLean, A. K., Navas González, F. J., & Canisso, I. F. (2019). Donkey and Mule Behavior. Veterinary Clinics of North America - Equine Practice, 35(3), 575–588. https://doi.org/10.1016/j.cveq.2019.08.010spa
dc.relation.referencesMedeiros, A. S. L., Gomes, G. M., Carmo, M. T., Papa, F. O., & Alvarenga, M. A. (2002). Cryopreservation of stallion sperm using different amides. Theriogenology, 58(2–4), 273–276. https://doi.org/10.1016/S0093-691X(02)00898-1spa
dc.relation.referencesMendoza, C., Carreras, A., Moos, J., & Tesarik, J. (1992). Distinction between true acrosome reaction and degenerative acrosome loss by a one-step staining method using Pisum sativum agglutinin. Journal of Reproduction and Fertility, 95(3), 755–763. https://doi.org/10.1530/jrf.0.0950755spa
dc.relation.referencesMercati, F., Domingo, P., Pasquariello, R., Dall’Aglio, C., Di Michele, A., Forti, K., Cocci, P., Boiti, C., Gil, L., Zerani, M., & Maranesi, M. (2020). Effect of chelating and antioxidant agents on morphology and DNA methylation in freeze-drying rabbit (Oryctolagus cuniculus) spermatozoa. Reproduction in Domestic Animals, 55(1), 29–37. https://doi.org/10.1111/rda.13577spa
dc.relation.referencesMesa, A. M., Sc, M., R, G. H., & Sc, M. (2012). Efecto del colesterol y la dimetilformamida sobre parámetros posdescongelación en espermatozoides de caballos criollos colombianos Effect of cholesterol and dimethiyl-formamide on post-thawing parameters in Colombian creole stallion sperm. 17(1), 2908–2915.spa
dc.relation.referencesMeskini, N., Némoz, G., Okyayuz-Baklouti, I., Lagarde, M., & Prigent, A. F. (1994). Phosphodiesterase inhibitory profile of some related xanthine derivatives pharmacologically active on the peripheral microcirculation. Biochemical Pharmacology, 47(5), 781–788. https://doi.org/10.1016/0006-2952(94)90477-4spa
dc.relation.referencesMiragaya, M. H., Chaves, M. G., & Agüero, A. (2006). Reproductive biotechnology in South American camelids. Small Ruminant Research, 61(2–3), 299–310. https://doi.org/10.1016/J.SMALLRUMRES.2005.07.017spa
dc.relation.referencesMiragaya, M. H., Neild, D. M., & Alonso, A. E. (2018). A Review of Reproductive Biology and Biotechnologies in Donkeys. Journal of Equine Veterinary Science, 65, 55–61. https://doi.org/10.1016/j.jevs.2017.12.005spa
dc.relation.referencesMiró, J., Taberner, E., Rivera, M., Peña, A., Medrano, A., Rigau, T., & Peñalba, A. (2009). Effects of dilution and centrifugation on the survival of spermatozoa and the structure of motile sperm cell subpopulations in refrigerated Catalonian donkey semen. Theriogenology, 72(8), 1017–1022. https://doi.org/10.1016/j.theriogenology.2009.06.012spa
dc.relation.referencesMirshokraei, P., Hassanpour, H., Mehdizadeh, A., & Akhavan Taheri, M. (2011). Pentoxifylline induces capacitation and acrosome reaction and improves quality of motility in canine ejaculated spermatozoa. Research in Veterinary Science, 91(2), 281–284. https://doi.org/10.1016/J.RVSC.2011.01.002spa
dc.relation.referencesMolina, L. C. P., Luque, G. M., Balestrini, P. A., Marín-Briggiler, C. I., Romarowski, A., & Buffone, M. G. (2018). Molecular basis of human sperm capacitation. Frontiers in Cell and Developmental Biology, 6(July), 1–23. https://doi.org/10.3389/fcell.2018.00072spa
dc.relation.referencesMontoya, J. D., Rojano, B. A., & Betancur, G. R. (2017). Efecto de la suplementación del diluyente sobre la calidad del semen de asno a la descongelación. Archivos de Zootecnia.spa
dc.relation.referencesNannou, T. K., Jouhara, H., Trembley, J., & Herrmann, J. (2016). Cryopreservation: Methods, equipment and critical concerns. Refrigeration Science and Technology, 22-25-June, 247–258. https://doi.org/10.18462/IIR.ICCRT.2016.0020spa
dc.relation.referencesNassar, A., Mahony, M., Blackmore, P., Morshedi, M., Ozgur, K., & Oehninger, S. (1998). Increase of intracellular calcium is not a cause of pentoxifylline- induced hyperactivated motility or acrosome reaction in human sperm. Fertility and Sterility, 69(4), 748–754. https://doi.org/10.1016/S0015-0282(98)00013-2spa
dc.relation.referencesNaz, R. K., & Rajesh, P. B. (2004). Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction. Reproductive Biology and Endocrinology, 2, 1–12. https://doi.org/10.1186/1477-7827-2-75spa
dc.relation.referencesNegri, P., Grechi, E., Tomasi, A., Fabbri, E., & Capuzzo, A. (1996). Effectiveness of pentoxifylline in semen preparation for intrauterine insemination. Human Reproduction, 11(6), 1236–1239. https://doi.org/10.1093/oxfordjournals.humrep.a019363spa
dc.relation.referencesNguyen, V. K., Somfai, T., Salamone, D., Thu Huong, V. T., Le Thi Nguyen, H., Huu, Q. X., Hoang, A. T., Phan, H. T., Thi Pham, Y. K., & Pham, L. D. (2021). Optimization of donor cell cycle synchrony, maturation media and embryo culture system for somatic cell nuclear transfer in the critically endangered Vietnamese Ỉ pig. Theriogenology, 166, 21–28. https://doi.org/10.1016/J.THERIOGENOLOGY.2021.02.008spa
dc.relation.referencesNouri, H., Towhidi, A., Zhandi, M., & Sadeghi, R. (2013). The Effects of Centrifuged Egg Yolk Used with INRA Plus Soybean Lecithin Extender on Semen Quality to Freeze Miniature Caspian Horse Semen. Journal of Equine Veterinary Science, 33(12), 1050–1053. https://doi.org/https://doi.org/10.1016/j.jevs.2013.03.184spa
dc.relation.referencesO’Connell, M., McClure, N., & Lewis, S. E. M. (2002). The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Human Reproduction, 17(3), 704–709. https://doi.org/10.1093/humrep/17.3.704spa
dc.relation.referencesOkazaki, T., Yoshida, S., Teshima, H., & Shimada, M. (2011). The addition of calcium ion chelator, EGTA to thawing solution improves fertilizing ability in frozen-thawed boar sperm. Animal Science Journal = Nihon Chikusan Gakkaiho, 82(3), 412–419. https://doi.org/10.1111/j.1740-0929.2010.00856.xspa
dc.relation.referencesOliveira, J. V. de, Oliveira, P. V. de L. F., Melo e Oña, C. M., Guasti, P. N., Monteiro, G. A., Sancler da Silva, Y. F. R., Papa, P. de M., Alvarenga, M. A., Dell’Aqua Junior, J. A., & Papa, F. O. (2016). Strategies to improve the fertility of fresh and frozen donkey semen. Theriogenology, 85(7), 1267–1273. https://doi.org/10.1016/j.theriogenology.2015.12.010spa
dc.relation.referencesOrrego, M. T., Melian, S. I., Montenegro, J., Cimato, A. N., Cisale, H., & Piehl, L. L. (2019). Boar sperm protein tyrosine phosphorylation in the presence of egg yolk soluble and low density lipoprotein fractions during cooling. Theriogenology, 123, 151–158. https://doi.org/10.1016/j.theriogenology.2018.09.031spa
dc.relation.referencesOrtgies, F., Klewitz, J., Görgens, A., Martinsson, G., & Sieme, H. (2012). Effect of procaine, pentoxifylline and trolox on capacitation and hyperactivation of stallion spermatozoa. Andrologia, 44(SUPPL.1), 130–138. https://doi.org/10.1111/j.1439-0272.2010.01150.xspa
dc.relation.referencesOsycka-Salut, C. E., Castellano, L., Fornes, D., Beltrame, J. S., Alonso, C. A. I., Jawerbaum, A., Franchi, A., Díaz, E. S., & Perez Martinez, S. (2017). Fibronectin From Oviductal Cells Fluctuates During the Estrous Cycle and Contributes to Sperm–Oviduct Interaction in Cattle. Journal of Cellular Biochemistry, 118(11), 4095–4108. https://doi.org/10.1002/jcb.26067spa
dc.relation.referencesOsycka-Salut, C. E., Martínez-León, E., Gervasi, M. G., Castellano, L., Davio, C., Chiarante, N., Franchi, A. M., Ribeiro, M. L., Díaz, E. S., & Perez-Martinez, S. (2020). Fibronectin induces capacitation-associated events through the endocannabinoid system in bull sperm. Theriogenology, 153, 91–101. https://doi.org/10.1016/j.theriogenology.2020.04.031spa
dc.relation.referencesPanzani, D., Rota, A., Tesi, M., Fanelli, D., & Camillo, F. (2018). Update on Donkey Embryo Transfer and Cryopreservation. Journal of Equine Veterinary Science, 65, 50–54. https://doi.org/10.1016/J.JEVS.2017.11.012spa
dc.relation.referencesPatrat, C., Serres, C., & Jouannet, P. (2000). The acrosome reaction in human spermatozoa. Biology of the Cell, 92(3–4), 255–266. https://doi.org/10.1016/s0248-4900(00)01072-8spa
dc.relation.referencesPeña-Alfaro, C. E., Barros, L. O., Carneiro, G. F., Gastal, M. O., & Gastal, E. L. (2014). Embryo transfer in Pega donkeys (Equus asinus) in Brazil. Journal of Equine Veterinary Science, 34(1), 185. https://doi.org/10.1016/J.JEVS.2013.10.135spa
dc.relation.referencesPerez-Osorio, J., Mello, F. G., Juliani, G., Lagares, M., Lago, L., & Henry, M. (2008). Effect on post-thaw viability of equine sperm using stepwise addition of dimethyl formamide and varying cooling and freezing procedures. Animal Reproduction, 5(3–4), 103–109.spa
dc.relation.referencesPizarro, E., Restrepo, G., Echeverry, J., & Rojano, B. (2013). Effect of seminal plasma on the redox state of cryopreserved stallion semen. Revista MVZ Córdoba, 18, 3672–3680.spa
dc.relation.referencesQuaresma, M., Martins, A. M. F., Rodrigues, J. B., Colaço, J., & Payan-Carreira, R. (2014). Pedigree and herd characterization of a donkey breed vulnerable to extinction. Animal, 8(3), 354–359. https://doi.org/10.1017/S1751731113002218spa
dc.relation.referencesRathi, R., Colenbrander, B., Bevers, M. M., & Gadella, B. M. (2001). Evaluation of in vitro capacitation of stallion spermatozoa. Biology of Reproduction, 65(2), 462–470. https://doi.org/10.1095/biolreprod65.2.462spa
dc.relation.referencesRestrepo, G., Cantero Naclares, J. M., & Montoya Paez, J. D. (2016). Efecto De La Centrifugación Sobre La Integridad Y La Funcionalidad De Espermatozoides Equinos. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 14(1), 119. https://doi.org/10.18684/bsaa(14)119-125spa
dc.relation.referencesRestrepo, G., Pérez, Daniel., Acosta, Mariano., Camacho, C., & Pérez, J. (2017). Freezing of Equine Semen Under Two Schemes of Addition of Dimethylformamide. Revista de Investigaciones Veterinarias Del Peru, 28(4), 918–927. https://doi.org/10.15381/rivep.v28i4.13884spa
dc.relation.referencesRestrepo, G., Zapata Acosta, K., & Rojano, B. (2015). Evaluación de la capacidad antioxidante total del plasma seminal equino. Zootecnia Tropical, 33(1), 79–87.spa
dc.relation.referencesRibeiro-Peres, A., Munita-Barbosa, L., Yumi-Kanazawa, M., Mello-Martins, M. I., & Ferreira De Souza, F. (2014). Criopreservación de espermatozoides bovinos extraídos de la cola del epidídimo utilizando los métodos convencional y automatizado. Archivos de Medicina Veterinaria, 46(1), 31–38. https://doi.org/10.4067/S0301-732X2014000100005spa
dc.relation.referencesRodriguez, P. C., Satorre, M. M., & Beconi, M. T. (2012). Effect of two intracellular calcium modulators on sperm motility and heparin-induced capacitation in cryopreserved bovine spermatozoa. Animal Reproduction Science, 131(3–4), 135–142. https://doi.org/10.1016/j.anireprosci.2012.03.015spa
dc.relation.referencesRodríguez-Villamil, P., Mentz, D., Ongaratto, F. L., Aguiar, L. H., Rodrigues, J. L., Bertolini, M., & Moura, A. A. (2020). Assessment of binder of sperm protein 1 (BSP1) and heparin effects on in vitro capacitation and fertilization of bovine ejaculated and epididymal sperm. Zygote, 28(6), 489–494. https://doi.org/10.1017/S0967199420000374spa
dc.relation.referencesRossel, S., Marshall, F., Peters, J., Pilgram, T., Adams, M. D., & O’Connor, D. (2008). Domestication of the donkey: Timing, processes, and indicators. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 3715–3720. https://doi.org/10.1073/pnas.0709692105spa
dc.relation.referencesRota, A., Sabatini, C., Przybył, A., Ciaramelli, A., Panzani, D., & Camillo, F. (2019). Post-thaw Addition of Caffeine and/or Pentoxifylline Affect Differently Motility of Horse and Donkey-Cryopreserved Spermatozoa. Journal of Equine Veterinary Science, 75, 41–47. https://doi.org/10.1016/j.jevs.2019.01.003spa
dc.relation.referencesSabatini, C., Mari, G., Mislei, B., Love, C. C., Panzani, D., Camillo, F., & Rota, A. (2014). Effect of Post-Thaw Addition of Seminal Plasma on Motility, Viability and Chromatin Integrity of Cryopreserved Donkey Jack (Equus asinus) Spermatozoa. Reproduction in Domestic Animals, 49(6), 989–994. https://doi.org/https://doi.org/10.1111/rda.12419spa
dc.relation.referencesSati, L., Cayli, S., Delpiano, E., Sakkas, D., & Huszar, G. (2014). The pattern of tyrosine phosphorylation in human sperm in response to binding to zona pellucida or hyaluronic acid. Reproductive Sciences, 21(5), 573–581. https://doi.org/10.1177/1933719113504467spa
dc.relation.referencesShahsavari, M. H., Moghaddam, G., Kia, H. D., & Rodrigues, A. P. R. (2019). Effects of new synthetic cryoprotectant agents on histological characteristics of various classes of vitrified bovine pre-antral follicles. Veterinary Research Forum, 10(1), 9–16. https://doi.org/10.30466/vrf.2019.34306spa
dc.relation.referencesShen, L., Chen, H., Zhu, Q., Wang, Y., Wang, S., Qian, J., Wang, Y., & Qu, H. (2016). Identification of bioactive ingredients with immuno-enhancement and anti-oxidative effects from Fufang-Ejiao-Syrup by LC-MSn combined with bioassays. Journal of Pharmaceutical and Biomedical Analysis, 117, 363–371. https://doi.org/10.1016/j.jpba.2015.09.024spa
dc.relation.referencesSinha, B., Semmler, J., Eisenhut, T., Eigler, A., & Endres, S. (1995). Enhanced tumor necrosis factor suppression and cyclic adenosine monophosphate accumulation by combination of phosphodiesterase inhibitors and prostanoids. European Journal of Immunology, 25(1), 147–153. https://doi.org/https://doi.org/10.1002/eji.1830250125spa
dc.relation.referencesSjunnesson, Y. (2020). In vitro fertilisation in domestic mammals—a brief overview. Upsala Journal of Medical Sciences, 125(2), 68–76. https://doi.org/10.1080/03009734.2019.1697911spa
dc.relation.referencesSlanina, T., Miškeje, M., Tirpák, F., Błaszczyk, M., Formicki, G., & Massányi, P. (2018). Caffeine strongly improves motility parameters of Turkey spermatozoa with no effect on cell viability. Acta Veterinaria Hungarica, 66(1), 137–150. https://doi.org/10.1556/004.2018.013spa
dc.relation.referencesSmits, K., Hoogewijs, M., Woelders, H., Daels, P., & Van Soom, A. (2012). Breeding or assisted reproduction? Relevance of the horse model applied to the conservation of endangered equids. Reproduction in Domestic Animals, 47(SUPPL.4), 239–248. https://doi.org/10.1111/j.1439-0531.2012.02082.xspa
dc.relation.referencesSoni, Y., Talluri, T. R., Kumar, A., Ravi, S. K., Mehta, J. S., & Tripathi, B. N. (2019). Effects of different concentration and combinations of cryoprotectants on sperm quality, functional integrity in three Indian horse breeds. Cryobiology, 86(August 2018), 52–57. https://doi.org/10.1016/j.cryobiol.2018.12.005spa
dc.relation.referencesStanic, P., Sonicki, Z., & Suchanek, E. (2002). Effect of pentoxifylline on motility and membrane integrity of cryopreserved human spermatozoa. International Journal of Andrology, 25(3), 186–190. https://doi.org/10.1046/j.1365-2605.2002.00348.xspa
dc.relation.referencesStephens, T. D., Brooks, R. M., Carrington, J. L., Cheng, L., Carrington, A. C., Porr, C. A., & Splan, R. K. (2013). Effects of pentoxifylline, caffeine, and taurine on post-thaw motility and longevity of equine frozen semen. Journal of Equine Veterinary Science, 33(8), 615–621. https://doi.org/10.1016/j.jevs.2012.10.004spa
dc.relation.referencesStrohmeyer, N., Bharadwaj, M., Costell, M., Fässler, R., & Müller, D. J. (2017). Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second. Nature Materials, 16(12), 1262–1270. https://doi.org/10.1038/nmat5023spa
dc.relation.referencesTalukdar, D., Ahmed, K., Deori, S., & Das, G. C. (2015). Heparin-induced in vitro capacitation changes of swamp buffalo spermatozoa. Turkish Journal of Veterinary and Animal Sciences, 39(5), 629–633. https://doi.org/10.3906/vet-1501-16spa
dc.relation.referencesTash, J. S., & Means, A. R. (1982). Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium. Biology of Reproduction, 26(4), 745–763. https://doi.org/10.1095/biolreprod26.4.745spa
dc.relation.referencesThe Donkey Sanctuary. (2017). Bajo la Piel: El comercio emergente de las pieles de burro y sus consecuencias para el bienestar y la subsistencia de estos animales.spa
dc.relation.referencesThomas, A. D., Meyers, S. A., & Ball, B. A. (2006). Capacitation-like changes in equine spermatozoa following cryopreservation. Theriogenology, 65(8), 1531–1550. https://doi.org/10.1016/j.theriogenology.2005.08.022spa
dc.relation.referencesTurley, E. A., Noble, P. W., & Bourguignon, L. Y. W. (2002). Signaling properties of hyaluronan receptors. In Journal of Biological Chemistry (Vol. 277, Issue 7, pp. 4589–4592). https://doi.org/10.1074/jbc.R100038200spa
dc.relation.referencesÚsuga, A., Rojano, B. A., & Restrepo, G. (2018). Efecto de los componentes del plasma seminal en la calidad del semen equino. Revista CES Medicina Veterinaria y Zootecnia, 13, 281.spa
dc.relation.referencesVarela, E., Rojas, M., & Restrepo, G. (2020). Membrane stability and mitochondrial activity of bovine sperm frozen with low-density lipoproteins and trehalose. Reproduction in Domestic Animals = Zuchthygiene, 55(2), 146–153. https://doi.org/10.1111/rda.13599spa
dc.relation.referencesVerma, A. S., Agrahari, S., Rastogi, S., & Singh, A. (2011). Biotechnology in the realm of history. In Journal of Pharmacy and Bioallied Sciences (Vol. 3, Issue 3, pp. 321–323). Wolters Kluwer -- Medknow Publications. https://doi.org/10.4103/0975-7406.84430spa
dc.relation.referencesVidament, M., Vincent, P., Martin, F. X., Magistrini, M., & Blesbois, E. (2009). Differences in ability of jennies and mares to conceive with cooled and frozen semen containing glycerol or not. Animal Reproduction Science, 112(1–2), 22–35. https://doi.org/10.1016/j.anireprosci.2008.03.016spa
dc.relation.referencesVisconti, P. E. (2009). Understanding the molecular basis of sperm capacitation through kinase design. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 106, Issue 3, pp. 667–668). National Academy of Sciences. https://doi.org/10.1073/pnas.0811895106spa
dc.relation.referencesWarren, L. K. (2009). Feeding the Stallion. Agri-Facts, January, 1–4.spa
dc.relation.referencesWhite, I. G. (1993). Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reproduction, Fertility, and Development, 5(6), 639–658. https://doi.org/10.1071/rd9930639spa
dc.relation.referencesYilmaz, O., Boztepe, S., & Ertugrul, M. (2012). Domesticated Donkeys – Part II: Types and Breeds. Canadian Journal of Animal Science, 2012(April).spa
dc.relation.referencesYovich, J. L. (1993). Pentoxifylline: actions and applications in assisted reproduction. Human Reproduction, 8(11), 1786–1791. https://doi.org/10.1093/oxfordjournals.humrep.a137935spa
dc.relation.referencesZamzami, N., Susin, S. A., Marchetti, P., Hirsch, T., Gómez-Monterrey, I., Castedo, M., & Kroemer, G. (1996). Mitochondrial control of nuclear apoptosis. Journal of Experimental Medicine, 183(4), 1533–1544. https://doi.org/10.1084/jem.183.4.1533spa
dc.relation.referencesZhao, Q., Tao, C., Pan, J., Wei, Q., Zhu, Z., Wang, L., Liu, M., Huang, J., Yu, F., Chen, X., Zhang, L., & Li, J. (2021). Equine chorionic gonadotropin pretreatment 15 days before fixed-time artificial insemination improves the reproductive performance of replacement gilts. Animal, 15(12), 100406. https://doi.org/10.1016/J.ANIMAL.2021.100406spa
dc.relation.referencesZheng, C., Jian-tao, Z., Hai-feng, L., & Hong-bin, W. (2016). Laparoscopic Embryo Transfer in Pigs: Knowledge for Surgical Procedures. Journal of Northeast Agricultural University (English Edition), 23(2), 52–58. https://doi.org/10.1016/S1006-8104(16)30047-2spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc590 - Animalesspa
dc.subject.lembConservación de semen
dc.subject.lembAnimales - Conducta sexual
dc.subject.proposalPentoxifilinaspa
dc.subject.proposalBiotecnologíaspa
dc.subject.proposalBiotechnologyeng
dc.subject.proposalPentoxifyllineeng
dc.titleEvaluación de inductores de la capacitación espermática en semen criopreservado de asnos (equus asinus)spa
dc.title.translatedEvaluation of spermatic capacity inducers in criopreserved semen of donkeys (Equus asinus)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Burros Luis Mendoza Arenas.pdf
Tamaño:
589.9 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: