Evaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-A

dc.contributor.advisorCuervo Prado, Paola Andrea
dc.contributor.authorLozano Oviedo, John Jair
dc.contributor.researchgroupGrupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach)spa
dc.date.accessioned2022-08-31T20:56:47Z
dc.date.available2022-08-31T20:56:47Z
dc.date.issued2022-08-28
dc.descriptionilustraciones, diagramas, gráficas, tablasspa
dc.description.abstractEl presente estudio pretende aportar nuevas metodologías para la síntesis de núcleos pirazolopiridínicos, tetrahidropirazoloquinolinicos y tetrahidropirazoloisoquinolinicos, por medio de estrategias multicomponentes que involucran 5-aminopirazoles, cetonas cíclicas y olefinas ricas en electrones, empleando calentamiento convencional e inducido por microondas, en donde la exploración sintética condujo a una metodología novedosa que permite la obtención regioselectiva de las estructuras isómericas estudiadas. Por otra parte, esta investigación busca aportar moléculas bioactivas que puedan emplearse para el tratamiento de algunos trastornos del sistema nervioso central que involucran al receptor GABA-A, por lo tanto, se realizó una evaluación in silico de los prototipos propuestos que incluye una indagación de las propiedades farmacocinéticas, farmacodinámicas y afinidad por el receptor, exhibiendo un comportamiento promisorio como potenciales moduladores alostéricos del receptor GABA-A.spa
dc.description.abstractThe present study aims to provide new methodologies for the synthesis of pyrazolopyridine, tetrahydropyrazoloquinoline and tetrahydropyrazoloisoquinoline nuclei, through multicomponent strategies involving 5-aminopyrazoles, cyclic ketones and electron-rich olefins, using conventional and microwave-induced heating, where synthetic exploration led to a novel methodology that allows regioselective obtaining of the isomeric structures studied. On the other hand, this research seeks to provide bioactive molecules that can be used for the treatment of some disorders of the central nervous system that involve the GABA-A receptor, therefore, an in silico evaluation of the proposed prototypes was carried out, which includes an investigation of pharmacokinetic and pharmacodynamic properties and affinity for the receptor, exhibiting promising behavior as potential allosteric modulators of the GABA-A receptoreng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extent143 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82230
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesOlsen, R. W.; Sieghart, W. International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric Acid A Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update. Pharmacol. Rev. 2008, 60 (3), 243–260. https://doi.org/10.1124/pr.108.00505.spa
dc.relation.referencesMedel, J.; Cortijo, L.; Gasca, E.; Tepetlan, P.; Pérez, A.; Ramos, F. Receptor GABAA: Implicaciones Farmacológicas a Nivel Central. Arch. neurociencias (México, D.F.) 2011, 16 (1), 40–45.spa
dc.relation.referencesPhulera, S.; Zhu, H.; Yu, J.; Claxton, D. P.; Yoder, N.; Yoshioka, C.; Gouaux, E. Cryo-EM Structure of the Benzodiazepine-Sensitive Α1β1γ2S Tri-Heteromeric GABAA Receptor in Complex with GABA. Elife 2018, 7. https://doi.org/10.7554/eLife.39383.spa
dc.relation.referencesCedillo Ildefonso, B. Generalidades de La Neurobiología de La Ansiedad. Rev. Electrónica Psicol. Iztacala 2017, 20 (1), 239.spa
dc.relation.referencesBotto, A.; Acuña, J.; Jiménez, J. P. La Depresión Como Un Diagnóstico Complejo: Implicancias Para El Desarrollo de Recomendaciones Clínicas. Rev. Med. Chil. 2014, 142 (10), 1297–1305. https://doi.org/10.4067/S0034-98872014001000010.spa
dc.relation.referencesSullivan, P. F.; Neale, M. C.; Kendler, K. S. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. Am. J. Psychiatry 2000, 157 (10), 1552–1562. https://doi.org/10.1176/APPI.AJP.157.10.1552.spa
dc.relation.referencesCaspi, A.; Sugden, K.; Moffitt, T. E.; Taylor, A.; Craig, I. W.; Harrington, H. L.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science (80-. ). 2003, 301 (5631), 386–389. https://doi.org/10.1126/SCIENCE.1083968.spa
dc.relation.referencesDiaz Villa, B. A.; González González, C. Actualidades En Neurobiología de La Depresión. Rev Lationam Psiquitría 2012, 11 (3), 106–115.spa
dc.relation.referencesHeim, C.; Nemeroff, C. B. The Role of Childhood Trauma in the Neurobiology of Mood and Anxiety Disorders: Preclinical and Clinical Studies. Biol. Psychiatry 2001, 49 (12), 1023–1039. https://doi.org/10.1016/S0006-3223(01)01157-X.spa
dc.relation.referencesGavernet, L. Introducción a La Química Medicinal; Editorial de la Universidad Nacional de La Plata (EDULP): Ciudad de la plata, 2021. https://doi.org/10.35537/10915/114312.spa
dc.relation.referencesMedina-Franco, J. L.; Fernán-Dezde Gortari, E.; Jesús Naveja, J. Avances En El Diseño de Fármacos Asistido Por Computadora. Educ. Química 2015, 26 (3), 180–186. https://doi.org/10.1016/J.EQ.2015.05.002.spa
dc.relation.referencesSaldívar-González, F.; Prieto-Martínez, F. D.; Medina-Franco, J. L. Descubrimiento y Desarrollo de Fármacos: Un Enfoque Computacional. Educ. Química 2017, 28 (1), 51–58. https://doi.org/10.1016/J.EQ.2016.06.002.spa
dc.relation.referencesRojas, W. M.; Oviedo, K. N. Acoplamiento Inverso Y Mapeo De Farmacóforo Como Herramientas Para Encontrar Nuevos Blancos Farmacológicos De Compuestos Naturales. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2012, 36 (140), 411–420.spa
dc.relation.referencesClaudio Viegas-Junior; Eliezer J. Barreiro; Carlos Alberto Manssour Fraga. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14 (17), 1829–1852. https://doi.org/10.2174/092986707781058805.spa
dc.relation.referencesUmar, T.; Shalini, S.; Raza, M. K.; Gusain, S.; Kumar, J.; Seth, P.; Tiwari, M.; Hoda, N. A Multifunctional Therapeutic Approach: Synthesis, Biological Evaluation, Crystal Structure and Molecular Docking of Diversified 1H-Pyrazolo[3,4-b]Pyridine Derivatives against Alzheimer’s Disease. Eur. J. Med. Chem. 2019, 175, 2–19. https://doi.org/10.1016/j.ejmech.2019.04.038.spa
dc.relation.referencesAnsari, A.; Ali, A.; Asif, M.; Shamsuzzaman. Review: Biologically Active Pyrazole Derivatives. New J. Chem. 2016, 41 (1), 16–41. https://doi.org/10.1039/c6nj03181a.spa
dc.relation.referencesKarrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules. MDPI AG 2018. https://doi.org/10.3390/molecules23010134.spa
dc.relation.referencesTripathi, A. C.; Upadhyay, S.; Paliwal, S.; Saraf, S. K. Derivatives of 4,5-Dihydro (1H) Pyrazoles as Possible MAO-A Inhibitors in Depression and Anxiety Disorders: Synthesis, Biological Evaluation and Molecular Modeling Studies. Med. Chem. Res. 2018, 27 (5), 1485–1503. https://doi.org/10.1007/s00044-018-2167-z.spa
dc.relation.referencesFaisal, M.; Saeed, A.; Hussain, S.; Dar, P.; Larik, F. A. Recent Developments in Synthetic Chemistry and Biological Activities of Pyrazole Derivatives. J. Chem. Sci. 2019, 131 (8). https://doi.org/10.1007/s12039-019-1646-1.spa
dc.relation.referencesYadav, J. S.; Purushothama Rao, P.; Sreenu, D.; Rao, R. S.; Naveen Kumar, V.; Nagaiah, K.; Prasad, A. R. Sulfamic Acid: An Efficient, Cost-Effective and Recyclable Solid Acid Catalyst for the Friedlander Quinoline Synthesis. Tetrahedron Lett. 2005, 46 (42), 7249–7253. https://doi.org/10.1016/j.tetlet.2005.08.042.spa
dc.relation.referencesGervasini, G.; Carrillo, J.; Benitez, J. Importancia Del Citocromo P-450 En Terapéutica Farmacológica. 2022.spa
dc.relation.referencesRitchie, T. J.; Ertl, P.; Lewis, R. The Graphical Representation of ADME-Related Molecule Properties for Medicinal Chemists. Drug Discov. Today 2011, 16 (1–2), 65–72. https://doi.org/10.1016/j.drudis.2010.11.002.spa
dc.relation.referencesBrenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I. H.; Frearson, J.; Wyatt, P. G. Lessons Learnt from Assembling Screening Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3 (3), 435–444. https://doi.org/10.1002/cmdc.200700139.spa
dc.relation.referencesSmith, G. B.; Olsen, R. W. Functional Domains of GABAA Receptors. Trends Pharmacol. Sci. 1995, 16 (5), 162–168. https://doi.org/10.1016/S0165-6147(00)89009-4.spa
dc.relation.referencesNitro bioisosteres. | News | Cambridge MedChem Consulting https://www.cambridgemedchemconsulting.com/news/index_files/e257c4796cad57a277e5b735ea47bf96-136.html (accessed May 4, 2022).spa
dc.relation.referencesHügel, H. Microwave Multicomponent Synthesis. Molecules 2009, 14 (12), 4936–4972. https://doi.org/10.3390/molecules14124936.spa
dc.relation.referencesAlegre, J. V.; Marqués, E.; Herrera, R. P. Introduction. In Multicomponent Reactions; John Wiley & Sons, Inc: Hoboken, NJ, 2015; pp 1–15. https://doi.org/10.1002/9781118863992.ch1.spa
dc.relation.referencesSharma, A.; Appukkuttan, P.; Van der Eycken, E. Microwave-Assisted Synthesis of Medium-Sized Heterocycles. Chem. Commun. 2012, 48 (11), 1623–1637. https://doi.org/10.1039/c1cc15238f.spa
dc.relation.referencesAlcázar, J.; de M. Muñoz, J. Microwave-Assisted Continuous Flow Organic Synthesis (MACOS). In Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Vol. 2, pp 1173–1204. https://doi.org/10.1002/9783527651313.ch25.spa
dc.relation.referencesPerreux, L.; Loupy, A. Nonthermal Effects of Microwaves in Organic Synthesis. Microwaves Org. Synth. Second Ed. 2008, 1, 134–218. https://doi.org/10.1002/9783527619559.ch4.spa
dc.relation.referencesKappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley Blackwell, 2006; Vol. 25. https://doi.org/10.1002/3527606556.spa
dc.relation.referencesParada, C.; Morán, E. Microwave-Assisted Synthesis and Magnetic Study of Nanosized Ni/NiO Materials. Chem. Mater. 2006, 18 (11), 2719–2725. https://doi.org/10.1021/cm0511365.spa
dc.relation.referencesLeadbeater, N. E. Organic Synthesis Using Microwave Heating. In Comprehensive Organic Synthesis: Second Edition; Elsevier Ltd., 2014; Vol. 9, pp 234–286. https://doi.org/10.1016/B978-0-08-097742-3.00920-4.spa
dc.relation.referencesKappe, C. O.; Pieber, B.; Dallinger, D. Microwave Effects in Organic Synthesis: Myth or Reality? Angew. Chemie Int. Ed. 2013, 52 (4), 1088–1094. https://doi.org/10.1002/anie.201204103.spa
dc.relation.referencesPerreux, L.; Loupy, A.; Petit, A. Nonthermal Effects of Microwaves in Organic Synthesis. In Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Vol. 1, pp 127–207. https://doi.org/10.1002/9783527651313.ch4.spa
dc.relation.referencesCorey, E. . (harvard university); Li, J. Name Reactions in Heterocyclic Chemistry; Li, J., Ed.; 2004.spa
dc.relation.referencespaquette, L. Fundamentos de Química Heterocíclica; Universidad estatal de Ohio, Ed.; Limusa Noriega, 2000.spa
dc.relation.referencesLager, E.; Nilsson, J.; Østergaard Nielsen, E.; Nielsen, M.; Liljefors, T.; Sterner, O. Affinity of 3-Acyl Substituted 4-Quinolones at the Benzodiazepine Site of GABAA Receptors. Bioorg. Med. Chem. 2008, 16 (14), 6936–6948. https://doi.org/10.1016/j.bmc.2008.05.049.spa
dc.relation.referencesShi, F.; Zhang, J.; Tu, S.; Jia, R.; Zhang, Y.; Jiang, B.; Jiang, H. An Efficient Synthesis of New Class of Pyrazolo[3,4- b ]Pyridine-6-One Derivatives by a Novel Cascade Reaction. J. Heterocycl. Chem. 2007, 44 (5), 1013–1017. https://doi.org/10.1002/jhet.5570440506.spa
dc.relation.referencesChen, Z.; Shi, Y.; Shen, Q.; Xu, H.; Zhang, F. Facile and Efficient Synthesis of Pyrazoloisoquinoline and Pyrazolopyridine Derivatives Using Recoverable Carbonaceous Material as Solid Acid Catalyst. Tetrahedron Lett. 2015, 56 (33), 4749–4752. https://doi.org/10.1016/j.tetlet.2015.06.044.spa
dc.relation.referencesShi, C.-L.; Chen, H.; Shi, D.-Q. An Efficient One-Pot Synthesis of Pyrazolo[3,4-b]Pyridinone Derivatives Catalyzed by L-Proline. J. Heterocycl. Chem. 2011, 48 (2), 351–354. https://doi.org/10.1002/jhet.573.spa
dc.relation.referencesOrlov, V. D.; Kiroga, K.; Kolos, N. N. Synthesis of Aromatic Pyrazolo[4,5-b]Pyridine Derivatives. Chem. Heterocycl. Compd. 1988 239 1987, 23 (9), 997–1001. https://doi.org/10.1007/BF00475369.spa
dc.relation.referencesDaniela Ahumada, C.; Segovia-Paccini, A.; Navas, G. R. S. Los 5-Aminopirazoles Como Bloque de Construcción de Compuestos Heterocíclicos Fusionados. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2019, 43 (168), 531–538. https://doi.org/10.18257/RACCEFYN.762.spa
dc.relation.referencesGálvez, J.; Quiroga, J.; Insuasty, B.; Abonia, R. Microwave-Assisted and Iodine Mediated Synthesis of 5-n-Alkyl-Cycloalkane[d]-Pyrazolo[3,4-b]Pyridines from 5-Aminopyrazoles and Cyclic Ketones. Tetrahedron Lett. 2014, 55 (12), 1998–2002. https://doi.org/10.1016/j.tetlet.2014.02.015.spa
dc.relation.referencesChu, X. Q.; Wang, S. Y.; Ji, S. J. Recyclable NaHSO<inf>4</Inf> Catalyzed Alkylation of Tert-Enamides with Indoles or Amines in Water: Facile Construction of Pharmaceutically Analogous Bis-Alkaloid Scaffolds. RSC Adv. 2013, 3 (22), 8380–8387. https://doi.org/10.1039/c3ra40833g.spa
dc.relation.referencesZiyaei Halimehjani, A.; Goudarzi, M.; Lotfi Nosood, Y. Alkylation of Aromatic Amines by Tert-Enamides: Direct Access to Protected Aminals. Synth. Commun. 2017, 47 (21), 2022–2029. https://doi.org/10.1080/00397911.2017.1363241.spa
dc.relation.referencesZaytsev, V. P.; Zubkov, F. I.; Toze, F. A. A.; Orlova, D. N.; Eliseeva, M. N.; Grudinin, D. G.; Nikitina, E. V.; Varlamov, A. V. 5-Amido- and 5-Amino-Substituted Epoxyisoindolo[2,1-a]Tetrahydroquinolines and 10-Carboxylic Acids: Their Synthesis and Reactivity. J. Heterocycl. Chem. 2013, 50 (SUPPL.1). https://doi.org/10.1002/jhet.1024.spa
dc.relation.referencesKhadem, S.; Udachin, K. A.; Enright, G. D.; Prakesch, M.; Arya, P. One-Pot Construction of Isoindolo[2,1-a]Quinoline System. Tetrahedron Lett. 2009, 50 (48), 6661–6664. https://doi.org/10.1016/j.tetlet.2009.09.075.spa
dc.relation.referencesDagousset, G.; Drouet, F.; Masson, G.; Zhu, J. Chiral Brønsted Acid-Catalyzed Enantioselective Multicomponent Mannich Reaction: Synthesis of Anti-1,3-Diamines Using Enecarbamates as Nucleophiles. Org. Lett. 2009, 11 (23), 5546–5549. https://doi.org/10.1021/ol9023985spa
dc.relation.referencesTerada, M.; Sorimachi, K. Enantioselective Friedel-Crafts Reaction of Electron-Rich Alkenes Catalyzed by Chiral Brønsted Acid. J. Am. Chem. Soc. 2007, 129 (2), 292–293. https://doi.org/10.1021/ja0678166.spa
dc.relation.referencesHalimehjani, A. Z.; Dadras, A.; Ramezani, M.; Shamiri, E. V.; Hooshmand, S. E.; Hashemi, M. M. Synthesis of Dithiocarbamates by Markovnikov Addition Reaction in PEG and Their Application in Amidoalkylation of Naphthols and Indoles. J. Braz. Chem. Soc. 2015, 26 (7), 1500–1508. https://doi.org/10.5935/0103-5053.20150119.spa
dc.relation.referencesHalimehjani, A.; Goudarzi, M.; Nosood, Y. Alkylation of Aromatic Amines by Tert-Enamides: Direct Access to Protected Aminals. Synth. Commun. 2017, 47 (21), 2022–2029. https://doi.org/10.1080/00397911.2017.1363241.spa
dc.relation.referencesTamaddon, F.; Khoobi, M.; Keshavarz, E. (P2O5/SiO2): A Useful Heterogeneous Alternative for the Ritter Reaction. Tetrahedron Lett. 2007, 48 (21), 3643–3646. https://doi.org/10.1016/J.TETLET.2007.03.134.spa
dc.relation.referencesReddy, P. N.; Reddy, B. V. S.; Padmaja, P. Current Organic Synthesis Current Organic Synthesis SCIENCE BENTHAM Send Orders for Reprints to Reprints@benthamscience.Ae Emerging Role of Green Oxidant I 2 /DMSO in Organic Synthesis. Curr. Org. Synth. 2018, 15, 815–838. https://doi.org/10.2174/1570179415666180530121312.spa
dc.relation.referencesBecerra-Rivas, C.; Cuervo-Prado, P.; Orozco-Lopez, F. Efficient Catalyst-Free Tricomponent Synthesis of New Spiro[Cyclohexane-1,4′-Pyrazolo[3,4- e ][1, 4]Thiazepin]-7′(6′ H )-Ones. Synth. Commun. 2019, 49 (3), 367–376. https://doi.org/10.1080/00397911.2018.1554143.spa
dc.relation.referencesBreugst, M.; von der Heiden, D. Mechanisms in Iodine Catalysis. Chem. - A Eur. J. 2018, 24 (37), 9187–9199. https://doi.org/10.1002/chem.201706136.spa
dc.relation.referencesYang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. AdmetSAR 2.0: Web-Service for Prediction and Optimization of Chemical ADMET Properties. Bioinformatics 2019, 35 (6), 1067–1069. https://doi.org/10.1093/BIOINFORMATICS/BTY70spa
dc.relation.referencesDaina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7. https://doi.org/10.1038/SREP42717.spa
dc.relation.referencesMorris, G. M.; Ruth, H.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30 (16), 2785. https://doi.org/10.1002/JCC.21256.spa
dc.relation.referencesAllen, W. J.; Balius, T. E.; Mukherjee, S.; Brozell, S. R.; Moustakas, D. T.; Lang, P. T.; Case, D. A.; Kuntz, I. D.; Rizzo, R. C. DOCK 6: Impact of New Features and Current Docking Performance. J. Comput. Chem. 2015, 36 (15), 1132–1156. https://doi.org/10.1002/JCC.23905.spa
dc.relation.referencesLADIN, J. J. H.; Fabian Orozco López. DISEÑO, SÍNTESIS Y CARACTERIZACIÓN DE COMPUESTOS ESPIROTIAZAHETEROCÍCLICOS CON POTENCIAL ACTIVIDAD SOBRE SISTEMA NERVIOSO CENTRAL (SNC), Universidad Nacional de Colombia, 2019.spa
dc.relation.referencesBamoniri, A.; Mirjalili, B. B. F.; Jafari, A. A.; Abasaltian, F. Synthesis of 1,3,5-Tri-Substituted Pyrazoles Promoted by P2O5.SiO2. Iran. J. Catal. 2012, 2 (2), 75–78. https://doi.org/10.31857/s042485702109005x.spa
dc.rightsDerechos reservados al autor, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.otherCompuestos heterocíclicosspa
dc.subject.otherHeterocyclic Compoundseng
dc.subject.otherQuímica orgánica-Síntesisspa
dc.subject.otherOrganic compounds-Synthesiseng
dc.subject.proposalin silicospa
dc.subject.proposalpirazolopiridinasspa
dc.subject.proposalmicroondasspa
dc.subject.proposalreceptor GABA-Aspa
dc.subject.proposalsíntesisspa
dc.subject.proposal5-aminopirazolesspa
dc.subject.proposalolefinas ricas en electronesspa
dc.subject.proposal5-aminopyrazoleseng
dc.subject.proposalPyrazolopyridineeng
dc.subject.proposalElectron-rich olefinseng
dc.subject.proposalMulticomponenteng
dc.subject.proposalMicrowave reactioneng
dc.subject.proposalGABA-A receptoreng
dc.titleEvaluación in silico y síntesis asistida por microondas de compuestos heterocíclicos con núcleo pirazolopiridínico como potenciales moduladores alostéricos de receptores GABA-Aspa
dc.title.translatedIn silico evaluation and microwave-assisted synthesis of heterocyclic compounds with pyrazolopyridinic nucleus as potential allosteric modulators of GABA-A receptorseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033757076.2022.pdf
Tamaño:
5.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: