Efectos de la separación materna sobre el consumo de glutamato monosódico y la memoria espacial en ratas macho

dc.contributor.advisorDueñas Gómez, Zulma Janethspa
dc.contributor.authorSierra Murgeitio, Carlos Andrésspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupNeurofisiología Comportamentalspa
dc.date.accessioned2020-09-03T05:00:53Zspa
dc.date.available2020-09-03T05:00:53Zspa
dc.date.issued2020-08-28spa
dc.description.abstractSeres humanos y roedores, como la mayoría de los mamíferos, comparten en las primeras etapas de vida un vínculo dado por la relación madre-hijo, que permite la supervivencia y buen desarrollo del neonato. Se ha demostrado que la disrupción de este vínculo genera efectos negativos en la vida posterior de las crías a corto, mediano y largo plazo, alterando la respuesta neuroendocrina y comportamental. Utilizando un modelo animal de separación materna, se mostró que crías que habían sido separadas de su madre por períodos cortos durante la lactancia, en la adolescencia incrementaban su consumo de edulcorantes y comida altamente palatable. Por su parte el glutamato monosódico (GMS) es un aditivo alimentario ampliamente utilizado para potenciar y mejorar la aceptación los alimentos, además de estar relacionado con neurotoxicidad y consecuencias a largo plazo en modelos animales. El objetivo de este estudio fue determinar si la separación materna durante la lactancia (SMDL) influye en el consumo de glutamato monosódico (GMS) y si estos dos factores producen cambios en el aprendizaje, la memoria espacial y el peso de ratas macho separadas; comparadas con su grupo control. El protocolo de SMDL se realizó a partir del día postnatal 1 al 21 separando las crías 180 minutos en la mañana y 180 en la tarde, durante la fase de oscuridad. El grupo control correspondió a los animales que no se sometieron al protocolo de separación materna y se manipularon únicamente para el cambio respectivo de cama. El día postnatal 30 los animales previamente asignados comenzaron tratamiento con GMS. Se manejaron en total 4 grupos de trabajo distribuidos así: Grupo control: machos sin GMS y sin separación materna (n=7): machos con SMDL y GMS (n=12), machos sin SMDL y con GMS (n=11) y finalmente machos con SMDL y sin GMS (n=10). Durante un mes los grupos con GMS tenían dos botellas con agua, una de ellas con GMS. Se realizaban cambios de la solucion cada 1.5 días. Se registró el consumo de GMS cada 24 horas, el peso corporal cada 3 días y al día 60 las ratas fueron expuestas a la prueba del laberinto de Barnes. Se encontró que los animales sometidos al paradigma de SMDL, se generó un aumento de peso corporal cuando se comparó con sus controles (p 0.05), No se encontraron diferencias en el consumo de la solución que contenía GMS, para ningún grupo evaluado. Adicionalmente en las pruebas aprendizaje y recobro no se encontraron diferencias significativas para los individuos que se expusieron a SMDL. Los resultados indican que el estrés temprano podría estar asociado con cambios importantes en los patrones de ingesta alimentaria y que la adición de GMS únicamente se pudo relacionar con cambios en el peso corporal, sin tener efectos en la actividad cognitiva.spa
dc.description.abstractHumans and rodents, like most mammals, share in the early stages of life a bond given by the mother-child relationship, where it has been shown that disruption generates negative effects on the later life of the offspring in the short, medium and long term, altering the neuroendocrine and behavioral response. Monosodium glutamate (GMS) is a food additive widely used to enhance and improve food acceptance, in addition, it has been related to neurotoxicity and long-term consequences in animal models. The objective of this study was to determine if maternal separation during breastfeeding (MSDB) influences the consumption of MSG and whether these two factors produce changes in learning, spatial memory, weight and water intake of separate male rats; compared to their control group. The MSDB protocol was performed from day 1 to 21 of life for a period of 360 minutes daily: 180 in the morning and 180 in the afternoon, during the dark phase. The control group was the animals that did not undergo the maternal separation protocol, nor did them receive GMS. On the postnatal day 30 the animals previously assigned started treatment with MSG. Four work groups were managed: Control group: males without GMS and without maternal separation (n = 7): males with MSDB and GMS (n = 12), males without MSDB and with MSG (n = 11), and finally males with MSDB and without MSG (n = 10). During one month, the GMS groups were awarded two bottles with the same amount of water, one containing the GMS and the other just water, which was changed every 2 days. GMS every 24 hours, body weight every 3 days, and finally day 60 rats were exposed to the widely valid Barnes maze. It was found that animals subjected to the MSDB paradigm, an increase in the consumption of MSG, possibly related to an increase in weight found in the same experimental group. Additionally, in the learning and retrieval tests, significant differences were not found for individuals who were exposed to the MSDB paradigm, tending to perform worse in spatial memory tests when compared to their respective controls. The results indicate that early stress may be associated with changes in eating patterns, and the adition of MSG only can be ralated with changes in the body weight, show no effects in the cognitive activityspa
dc.description.additionalLínea de Investigación: Estrés Crónicospa
dc.description.degreelevelMaestríaspa
dc.description.sponsorshipHERMESspa
dc.format.extent151spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78370
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Medicina - Maestría en Fisiologíaspa
dc.relation.references4. Aisa, B., Elizalde, N., Tordera, R., Lasheras, B., Del Río, J. and Ramírez, M. (2009). Effects of neonatal stress on markers of synaptic plasticity in the hippocampus: Implications for spatial memory. Hippocampus, 19(12), pp.1222-1231.spa
dc.relation.references5. Arborelius, L. and Eklund, M. (2007). Both long and brief maternal separation produces persistent changes in tissue levels of brain monoamines in middle-aged female rats. Neuroscience, 145(2), pp.738-750.spa
dc.relation.references6 .Aya-Ramos, L., Contreras-Vargas, C., Rico, J. and Dueñas, Z. (2017). Early maternal separation induces preference for sucrose and aspartame associated with increased blood glucose and hyperactivity. Food & Function, 8(7), pp.2592-2600.spa
dc.relation.references7 .Aya. L., Dueñas Z (2015) Efecto de la separación maternal durante la lactancia en ratas, sobre el consumo de edulcorantes, el peso corporal y la locomoción. Tesis de maestría. Universidad Nacional de Colombia, sede Bogotá.spa
dc.relation.references8 .Bach, M., Hawkins, R., Osman, M., Kandel, E. and Mayford, M. (1995). Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal ltp in the range of the frequency. Cell, 81(6), pp.905-915.spa
dc.relation.references9. Banqueri, M., Méndez, M., & Arias, J. (2017). Spatial memory-related brain activity in normally reared and different maternal separation models in rats. Physiology & Behavior, 181, 80-85. http://dx.doi.org/10.1016/j.physbeh.2017.09.007spa
dc.relation.references10. Barnes, C. (1979). Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat. Journal of Comparative and Physiological Psychology, 93(1), pp.74-104.spa
dc.relation.references10. Barnes, C., Nadel, L. and Honig, W. (1980). Spatial memory deficit in senescent rats. Canadian Journal of Psychology/Revue canadienne de psychologie, 34(1), pp.29-39.spa
dc.relation.references11. Bautista, E. and Dueñas, Z. (2012). Maternal separation during breastfeeding induces changes in the number of cells immunolabeled to GFAP. Psychology & Neuroscience, 5(2), pp.207-213.spa
dc.relation.references12. Bischof, H. (2007). Behavioral and neuronal aspects of developmental sensitive periods. NeuroReport, 18(5), pp.461-465.spa
dc.relation.references13. Boccia, M. and Pedersen, C. (2001). Brief vs. long maternal separations in infancy: contrasting relationships with adult maternal behavior and lactation levels of aggression and anxiety. Psychoneuroendocrinology, 26(7), pp.657-672.spa
dc.relation.references14 .Boonnate, P., Waraasawapati, S., Hipkaeo, W., Pethlert, S., Sharma, A., Selmi, C., Prasongwattana, V. and Cha’on, U. (2015). Monosodium Glutamate Dietary Consumption Decreases Pancreatic β-Cell Mass in Adult Wistar Rats. PLOS ONE, 10(6), p.e0131595.spa
dc.relation.references15. Bowlby J. Maternal care and mental health 2 Ed, Northvale NJ, London, Jarson Aronson, 1995.spa
dc.relation.references16 .Buwalda, B., Blom, W., Koolhaas, J. and van Dijk, G. (2001). Behavioral and physiological responses to stress are affected by high-fat feeding in male rats. Physiology & Behavior, 73(3), pp.371-377.spa
dc.relation.references17. Caicedo M, Dueñas Z. (2015) Efectos del estrés inducido por separación materna durante la lactancia. Evaluación de probables mecanismos involucrados en la expresión diferencial asociada al género. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.spa
dc.relation.references18. Caicedo.M., Dueñas Z., & Torner L. (2017). Global Effects of Early Life Stress on Neurons and Glial Cells. Current Pharmaceutical Design, 23(39), 6042-6049. http://dx.doi.org/10.2174/1381612823666170224111641spa
dc.relation.references19. Cárdenas, F. P., Lamprea, M. R., & Morato, S. (2005). XPloRat v.3.5. Beta Para Windows. Universidade de São Paulo, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Ribeirão Preto, Brasil. Available via DIALOG. <http://www.oocities.org/xplorat/>. Accessed 27 Feb 2018.spa
dc.relation.references20. Champagne, F., Francis, D., Mar, A., & Meaney, M. (2003). Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiology & Behavior, 79(3), 359-371.spa
dc.relation.references21. Collison, K., Makhoul, N., Inglis, A., Al-Johi, M., Zaidi, M., Maqbool, Z., Saleh, S., Bakheet, R., Mondreal, R., Al-Rabiah, R., Shoukri, M., Milgram, N. and Al-Mohanna, F. (2010). Dietary trans-fat combined with monosodium glutamate induces dyslipidemia and impairs spatial memory. Physiology & Behavior, 99(3), pp.334-342.spa
dc.relation.references22. Conrad, C. (2010). A critical review of chronic stress effects on spatial learning and memory. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(5), pp.742-755.spa
dc.relation.references23. Conrad, C., McLaughlin, K., Huynh, T., El-Ashmawy, M. and Sparks, M. (2012). Chronic stress and a cyclic regimen of estradiol administration separately facilitate spatial memory: Relationship with hippocampal CA1 spine density and dendritic complexity. Behavioral Neuroscience, 126(1), pp.142-156.spa
dc.relation.references24. Contini, M., Fabro, A., Millen, N., Benmelej, A. and Mahieu, S. (2017). Adverse effects in kidney function, antioxidant systems and histopathology in rats receiving monosodium glutamate diet. Experimental and Toxicologic Pathology.spa
dc.relation.references25. Corsini, N., Kettler, L., Danthiir, V., & Wilson, C. (2018). Parental feeding practices to manage snack food intake: Associations with energy intake regulation in young children. Appetite, 123, 233-240. http://dx.doi.org/10.1016/j.appet.2017.12.024spa
dc.relation.references26. Cotrell C y Selk R J, Prenatal Stress, Glucocorticoids and the programing of adult disease. 2009, Behavioral Frontiers in neurosciene, Frontiers.spa
dc.relation.references27. C.W Nogeira, Suzan G. Rosa a , Juliana T. Da Rocha a , Bibiana M. Gai a , Cristiani F. Bortolatto a , Marta Maria M.F. Duarte b (2014).Monosodium glutamate, a food additive, induces depressive-like and anxiogenic-like behaviors in young rats , Elsevier, Life sciences journal..spa
dc.relation.references28. De Kloet, C., Vermetten, E., Geuze, E., Kavelaars, A., Heijnen, C. and Westenberg, H. (2006). Assessment of HPA-axis function in posttraumatic stress disorder: Pharmacological and non-pharmacological challenge tests, a review. Journal of Psychiatric Research, 40(6), pp.550-567.spa
dc.relation.references29. De Kloet, E., Oitzl, M. and Joëls, M. (1999). Stress and cognition: are corticosteroids good or bad guys?.Trends in Neurosciences, 22(10), pp.422-426.spa
dc.relation.references30. De Souza, J., da Silva, M., de Matos, R., do Amaral Almeida, L., Beltrão, L., & de Souza, F. et al. (2018). Pre-weaning maternal separation increases eating later in life in male and female offspring, but increases brainstem dopamine receptor 1a and 2a only in males. Appetite, 123, 114-119. http://dx.doi.org/10.1016/j.appet.2017.12.004spa
dc.relation.references31. Dief, A., Kamha, E., Baraka, A. and Elshorbagy, A. (2014). Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: A potential role for cyclic AMP protein kinase. NeuroToxicology, 42, pp.76-82.spa
dc.relation.references32. Dixit, S., Rani, P., Anand, A., Khatri, K., Chauhan, R., & Bharihoke, V. (2013). To study the effect of monosodium glutamate on histomorphometry of cortex of kidney in adult albino rats. Renal Failure, 36(2), 266-270. http://dx.doi.org/10.3109/0886022x.2013.846865spa
dc.relation.references33. Dueñas, Z., Caicedo-Mera, J. and Torner, L. (2018). Global Effects of Early Life Stress on Neurons and Glial Cells. Current Pharmaceutical Design, 23(39), pp.6042-6049.spa
dc.relation.references34. EL TIEMPO. Al año nacen cerca de 159.000 bebés de madres adolescentes. 22 deseptiembre de 2014spa
dc.relation.references35 .EL TIEMPO. Dos niños por día son abandonados en Bogotá. 18 de noviembre de 2013spa
dc.relation.references36. https://www.efsa.europa.eu/en/press/news/170712spa
dc.relation.references36 .http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/es/spa
dc.relation.references37. Farombi, E.O.; Onyema, O.O. (2006) Monosodium Glutamate Induced Oxidative Damage and Genotoxicity in the Rat: Modulatory Role of Vitamin C, Vitamin E and Quercetin; Human and Experimental Toxicology 25(5), 251–259spa
dc.relation.references38. Foran, L., Blackburn, K. and Kulesza, R. (2017). Auditory hindbrain atrophy and anomalous calcium binding protein expression after neonatal exposure to monosodium glutamate. Neuroscience, 344, pp.406-417.spa
dc.relation.references39. Fowler, S. (2016). Low-calorie sweetener uses and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans. Physiology & Behavior, 164, pp.517-523.spa
dc.relation.references40. Fuentes, I., Walker, N., Pierce, A., Holt, B., Di Silvestro, E., & Christianson, J. (2016). Neonatal maternal separation increases susceptibility to experimental colitis and acute stress exposure in male mice. IBRO Reports, 1, 10-18. http://dx.doi.org/10.1016/j.ibror.2016.07.001spa
dc.relation.references41. González-Burgos, I., Velázquez-Zamora, D. and Beas-Zárate, C. (2009). Damage and plasticity in adult rat hippocampal trisynaptic circuit neurons after neonatal exposure to glutamate excitotoxicity. International Journal of Developmental Neuroscience, 27(8), pp.741-745.spa
dc.relation.references42. Grønli, J., Fiske, E., Murison, R., Bjorvatn, B., Sørensen, E., Ursin, R. and Portas, C. (2007). Extracellular levels of serotonin and GABA in the hippocampus after chronic mild stress in rats. A microdialysis study in an animal model of depression. Behavioural Brain Research, 181(1), pp.42-51.spa
dc.relation.references43. Harlow, H. F., Harlow, M. K., Dodsworth, R. O., & Arling, G. L. Maternal Behavior of Rhesus Monkeys Deprived of Mothering and Peer Associations in Infancy. Proceedings of the American Philosophical Society. 1966; 110(1), 58-66.spa
dc.relation.references44 .Harrison, F., Reiserer, R., Tomarken, A. & McDonald, M. (2006). Spatial and nonspatial escape strategies in the Barnes maze. Learning & Memory, 13(6), 809-819spa
dc.relation.references45. Henao M, Martín L, Caicedo JC, Dueñas Z. Efecto de la Separación Materna Durante la Lactancia sobre el comportamiento Motor Espontáneo y la memoria de reconocimiento deobjetos en ratas Wistar. Poster. Neuroscience; 2014spa
dc.relation.references46. Hata, K., Kubota, M., Shimizu, M., Moriwaki, H., Kuno, T., & Tanaka, T. et al. (2012). Monosodium glutamate-induced diabetic mice are susceptible to azoxymethane-induced colon tumorigenesis. Carcinogenesis, 33(3), 702-707.spa
dc.relation.references47. Hermanussen, Μ. & Tresguerres, J. (2003). Does High Glutamate Intake Cause Obesity? Journal Of Pediatric Endocrinology And Metabolism, 16(7).spa
dc.relation.references48. Hermanussen, M. & Tresguerres, J. (2003). Does the thrifty phenotype result from chronic glutamate intoxication? A hypothesis. Journal of Perinatal Medicine, 31(6).spa
dc.relation.references49. Hermanussen, M., García, A., Sunder, M., Voigt, M., Salazar, V., & Tresguerres, J. (2005). Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite. European Journal of Clinical Nutrition, 60(1), 25-31.spa
dc.relation.references50. Hui, J., Feng, G., Zheng, C., Jin, H., & Jia, N. (2017). Maternal separation exacerbates Alzheimer’s disease-like behavioral and pathological changes in adult APPswe/PS1dE9 mice. Behavioural Brain Research, 318, 18-23.spa
dc.relation.references51. ICBF. Guías alimentarias para la población colombiana mayor de dos años. Bases técnicas. Instituto Colombiano de Bienestar Familiar. 1998spa
dc.relation.references52. Instituto Colombiano de Bienestar Familiar. Alarmantes cifras de maltrato infantil. 2013spa
dc.relation.references53. Instituto Colombiano de Bienestar Familiar. Encuesta Nacional de la Situación Nutricional en Colombia 2005 – ENSIN. Bogotá; 2005.spa
dc.relation.references54. Instituto Colombiano de Bienestar Familiar. Encuesta Nacional de la Situación Nutricional en Colombia 2010 – ENSIN, Bogotá; 2010spa
dc.relation.references55.Insawang, T.; Selmi, C.; Cha’on, U.; Pethlert, S.; Yongvanit, P.; Areejitranusorn, P.; Prasongwattana, V. Monosodium Glutamate (MSG) (2012) Intake Is Associated with the Prevalence of Metabolic Syndrome in a Rural Thai Population. Nutrition & Metabolism.spa
dc.relation.references55. Instituto Colombiano de Bienestar Familiar. Encuesta Nacional de la Situación Nutricional en Colombia 2010 – ENSIN, Bogotá; 2015spa
dc.relation.references56. Izquierdo, I. and Medina, J. (1997). Memory Formation: The Sequence of Biochemical Events in the Hippocampus and Its Connection to Activity in Other Brain Structures. Neurobiology of Learning and Memory, 68(3), pp.285-316.spa
dc.relation.references57. Jahng, J. (2011). An animal model of eating disorders associated with stressful experience in early life. Hormones and Behavior, 59(2), pp.213-220.spa
dc.relation.references57. Jubaidi, F., Mathialagan, R., Noor, M., Taib, I. and Budin, S. (2019). Monosodium glutamate daily oral supplementation: study of its effects on male reproductive system on rat model. Systems Biology in Reproductive Medicine, 65(3), pp.194-204.spa
dc.relation.references58. Juruena, M. (2014). Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy & Behavior, 38, pp.148-159.spa
dc.relation.references59. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2013). Principles of neural science. New York: McGraw-Hill, Health Professions Division.spa
dc.relation.references60 .Kazmi, Z., Fatima, I., Perveen, S., & Malik, S. (2017). Monosodium glutamate: Review on clinical reports. International Journal Of Food Properties, 1-9. http://dx.doi.org/10.1080/10942912.2017.1295260spa
dc.relation.references61. Keeley, R., Bye, C., Trow, J. and McDonald, R. (2015). Strain and sex differences in brain and behaviour of adult rats: Learning and memory, anxiety and volumetric estimates. Behavioural Brain Research, 288, pp.118-131.spa
dc.relation.references62. Krause, E., De Kloet, A., Flak, J., Smeltzer, M., Solomon, M., & Evanson, N. et al. (2011). Hydration state controls stress responsiveness and social behavior. Appetite, 57, S24. doi: 10.1016/j.appet.2011.05.202spa
dc.relation.references62.Kritzer, M., Brewer, A., Montalmant, F., Davenport, M. and Robinson, J. (2007). Effects of gonadectomy on performance in operant tasks measuring prefrontal cortical function in adult male rats. Hormones and Behavior, 51(2), pp.183-194.spa
dc.relation.references63. Kondoh, T. and Torii, K. (2008). MSG intake suppresses weight gain, fat deposition, and plasma leptin levels in male Sprague–Dawley rats. Physiology & Behavior, 95(1-2), pp.135-144.spa
dc.relation.references64. Lajud, N., Roque, A., Cajero, M., Gutiérrez-Ospina, G. and Torner, L. (2012). Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology, 37(3), pp.410-420.spa
dc.relation.references65. Lehmann, J., Pryce, C., Bettschen, D. and Feldon, J. (1999). The Maternal Separation Paradigm and Adult Emotionality and Cognition in Male and Female WistarRats.Pharmacology Biochemistry and Behavior, 64(4), pp.705-715.spa
dc.relation.references66. León Rodríguez DA, Dueñas Z (2013) Maternal Separation during Breastfeeding Induces Gender-Dependent Changes in Anxiety and the GABA-AReceptor Alpha-Subunit in Adult Wistar Rats. PLoS ONE 8(6): e68010. doi:10.1371/journal.pone.0068010spa
dc.relation.references67. Levine, S. (1967). Maternal and Environmental Influences on the Adrenocortical Response to Stress in Weanling Rats.Science, 156(3772), pp.258-260.spa
dc.relation.references68. Levine, S. and Thoman, E. (1969).Physiological and behavioral consequences of postnatal maternal stress in rats.Physiology& Behavior, 4(2), pp.139-142.spa
dc.relation.references69. Levine, S. Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology. 2005; 30, 939–946.spa
dc.relation.references70. León G. D, Dueñas Z 2012, efectos de la separación materna temprana sobre el desempeño en el laberinto en cruz elevado en ratas adultas. Acta Biológica colombiana, N 17, pp.129 -142, 2012spa
dc.relation.references71. Liu, C., Hao, S., Zhu, M., Wang, Y., Zhang, T., & Yang, Z. (2018). Maternal Separation Induces Different Autophagic Responses in the Hippocampus and Prefrontal Cortex of Adult Rats. Neuroscience, 374, 287-249 http://dx.doi.org/10.1016/j.neuroscience.2018.01.043spa
dc.relation.references72. López-Pérez, S., Vergara, P., Ventura-Valenzuela, J., Ureña-Guerrero, M., Segovia, J. and Beas-Zárate, C. (2005). Modification of dopaminergic markers expression in the striatum by neonatal exposure to glutamate during development.International Journal of Developmental Neuroscience, 23(4), pp.335-342.spa
dc.relation.references73. Ludmer, J., Jamieson, B., Gonzalez, A., Levitan, R., Kennedy, J., & Villani, V. et al. (2017). Maternal DRD2, SLC6A3, and OXTR genotypes as potential moderators of the relation between maternal history of care and maternal cortisol secretion in the context of mother-infant separation. Biological Psychology, 129, 154-164. http://dx.doi.org/10.1016/j.biopsycho.2017.09.004spa
dc.relation.references74. Maghami, S., Zardooz, H., Khodagholi, F., Binayi, F., Ranjbar Saber, R., Hedayati, M., Sahraei, H. and Ansari, M. (2018). Maternal separation blunted spatial memory formation independent of peripheral and hippocampal insulin content in young adult male rats. PLOS ONE, 13(10), p.e0204731.spa
dc.relation.references74. Maras PM, Baram TZ, (2015), Early life stress: Rodent models, Lessons and Challenges. Chapter 12 in Neuroendocrinology of stress, first edition. Edited by John A Russell and Michael J Shimptom. Wiley books. Pp. 265-286.spa
dc.relation.references75. Madl, T., Chen, K., Montaldi, D. and Trappl, R. (2015). Computational cognitive models of spatial memory in navigation space: A review. Neural Networks, 65, pp.18-43.spa
dc.relation.references76. Mahieu, S., Klug, M., Millen, N., Fabro, A., Benmelej, A., & Contini, M. (2016). Monosodium glutamate intake affect the function of the kidney through NMDA receptor. Life Sciences, 149, 114-119. doi: 10.1016/j.lfs.2016.02.023spa
dc.relation.references76. Maniam, J., & Morris, M. (2008). Palatable, high fat diet ameliorates anxiety-like behavior induced by maternal separation in male rats. Appetite, 51(2), 383. http://dx.doi.org/10.1016/j.appet.2008.04.156spa
dc.relation.references77. Maniam, J., & Morris, M. (2010). Long-term postpartum anxiety and depression-like behavior in mother rats subjected to maternal separation are ameliorated by palatable high fat diet. Behavioural Brain Research, 208(1), 72-79. http://dx.doi.org/10.1016/j.bbr.2009.11.005spa
dc.relation.references78. Matthews, K. and Robbins, T. (2003). Early experience as a determinant of adult behavioural responses to reward: the effects of repeated maternal separation in the rat. Neuroscience &Biobehavioral Reviews, 27(1-2), pp.45-55.spa
dc.relation.references79. McEwen, B. (2000). Allostasis and Allostatic Load Implications for Neuropsychopharmacology.Neuropsychopharmacology, 22(2), pp.108-124.spa
dc.relation.references80. Meaney, M., Diorio, J., Francis, D., Widdowson, J., LaPlante, P., Caldji, C., Sharma, S., Seckl, J. and Plotsky, P. (1996). Early Environmental Regulation of Forebrain Glucocorticoid Receptor Gene Expression: Implications for Adrenocortical Responses to Stress; pp. 61&ndash;72. Developmental Neuroscience, 18(1-2), pp.61-72.spa
dc.relation.references81. Miyatake, Y., Shiuchi, T., Mawatari, K., Toda, S., Taniguchi, Y., Futami, A., Sato, F., Kuroda, M., Sebe, M., Tsutsumi, R., Harada, N., Minokoshi, Y., Kitamura, T., Gotoh, K., Ueno, M., Nakaya, Y. and Sakaue, H. (2017). Intracerebroventricular injection of ghrelin decreases wheel running activity in rats. Peptides, 87, pp.12-19.spa
dc.relation.references82. Mueller, B. and Bale, T. (2007). Early prenatal stress impact on coping strategies and learning performance is sex dependent. Physiology & Behavior, 91(1), pp.55-65.spa
dc.relation.references83. Noll J. G, Shalev I (2018) The Biology of Early Life Stress. Springer International Publishing AG, part of Springer Nature.Online ISBN 978-3-319-72589-5.spa
dc.relation.references84.Oliva, L., Aranda, T., Caviola, G., Fernández-Bernal, A., Alemany, M., Fernández-López, J., & Remesar, X. (2017). In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet. Peerj, 5, e3697. doi: 10.7717/peerj.3697spa
dc.relation.references85. Olney, J. W. Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science 164:719–721; 1969.spa
dc.relation.references86. Olney, J. and HO, O. (1970). Brain Damage in Infant Mice following Oral Intake of Glutamate, Aspartate or Cysteine.Nature, 227(5258), pp.609-611.spa
dc.relation.references87. Olney, J. W. Brain damage and oral intake of certain amino acids. Adv. Exp. Med. Biol. 69:497–506; 1976spa
dc.relation.references88. Olton, D. (1977). Spatial Memory.Sci Am, 236(6), pp.82-98.spa
dc.relation.references89. Olton, D. (1988). Aging and spatial cognition. Neurobiology of Aging, 9, pp.569-570.spa
dc.relation.references88. Ortiz- Montero P, Vernot J. P, Múnera G A .2011.Estrés agudo en ratas y su efecto en la adquisición, consolidación y extinción de la memoria espacial: papel de la proteína quinasa erk1/2 y de las proteínas fosfatasas pp1 y pp2b en el hipocampo. (Trabajo de grado) Universidad Nacional de Colombia, Facultad de medicina, sede Bogotá, 2011.spa
dc.relation.references89. Park, E., Kim, J., Lee, J. and Jahng, J. (2014). Increased depression-like behaviors with dysfunctions in the stress axis and the reward center by free access to highly palatable food. Neuroscience, 262, pp.31-39.spa
dc.relation.references90. Pepino, M., Finkbeiner, S., Beauchamp, G. and Mennella, J. (2010). Obese Women Have Lower Monosodium Glutamate Taste Sensitivity and Prefer Higher Concentrations Than Do Normal-weight Women. Obesity, 18(5), pp.959-965. https://doi.org/10.1038/oby.2009.493spa
dc.relation.references91. Plotsky, P. and Meaney, M. (1993). Early, postnatal experience alters hypothalamic corticotrophin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Molecular Brain Research, 18(3), pp.195-200.spa
dc.relation.references92. Plotsky, P., Owens, M. and Nemeroff, C. (1998).Psychoneuroendocrinology of Depression.Psychiatric Clinics of North America, 21(2), pp.293-307.spa
dc.relation.references93. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., McNamara, J. O., Williams, S. M. & White L.E (Eds.). (2018). Neuroscience (6th ed.). Sunderland, MA, US: Sinauer Associates.spa
dc.relation.references94. Ramírez R .Dueñas, Z, (2009). Estudio Comparativo: Efectos De La Separación Tempana Sobre El Aprendizaje Y La Extinción De Una Tarea De Memoria Espacial En Ratas Wistar. Tesis de grado. Programa de psicología, p.p 27,30-49spa
dc.relation.references95. Raone, A., Cassanelli, A., Scheggi, S., Rauggi, R., Danielli, B. and De Montis, M. (2007). Hypothalamus–pituitary–adrenal modifications consequent to chronic stress exposure in an experimental model of depression in rats.Neuroscience, 146(4), pp.1734-1742.spa
dc.relation.references96. Reynoso-Robles, R., Ponce-Macotela, M., Rosas-López, L. E., & Ramos-Morales, A. (2015). The invasive- potential of Giardia intestinalis in an in vivo model. Scientific Reports, 1 - 8.spa
dc.relation.references97. Rivera-Cervantes, M., Flores-Soto, M., Chaparro-Huerta, V., Reyes-Gómez, J., Feria-Velasco, A., Schliebs, R. and Beas-Zárate, C. (2009). Changes in hippocampal NMDA-R subunit composition induced by exposure of neonatal rats to l-glutamate. International Journal of Developmental Neuroscience, 27(2), pp.197-204.spa
dc.relation.references98. Riveros-Barrera, I., & Dueñas, Z. (2015). La separación materna durante la lactancia altera los niveles basales neuroendocrinos en ratas adolescentes y adultas. Biomédica, 36(1). http://dx.doi.org/10.7705/biomedica.v36i1.2830spa
dc.relation.references99. Romeo, R., Mueller, A., Sisti, H., Ogawa, S., McEwen, B. and Brake, W. (2003). Anxiety and fear behaviors in adult male and female C57BL/6 mice are modulated by maternal separation. Hormones and Behavior, 43(5), pp.561-567.spa
dc.relation.references100. Roozendaal, B. (2002). Stress and Memory: Opposing Effects of Glucocorticoids on Memory Consolidation and Memory Retrieval, Neurobiology of Learning and Memory, 78(3), pp.578-595.spa
dc.relation.references101. Roozendaal, B. & McGaugh, J. (1997). Glucocorticoid receptor agonist and antagonist administration into the basolateral but not central amygdala modulates memory storage. Neurobiology of Learning and Memory, 67(2), 176-179.spa
dc.relation.references102. Rosenfeld, P., Gutierrez, Y., Martin, A., Mallett, H., Alleva, E. and Levine, S. (1991). Maternal regulation of the adrenocortical response in preweanling rats. Physiology& Behavior, 50(4), pp.661-671.spa
dc.relation.references103. Ryu, V., Lee, J., Yoo, S., Gu, X., Moon, Y., & Jahng, J. (2008). Sustained hyperphagia in adolescent rats that experienced neonatal maternal separation. International Journal Of Obesity, 32(9), 1355-1362. http://dx.doi.org/10.1038/ijo.2008.108spa
dc.relation.references104. Sasagawa, T., Horii-Hayashi, N., Okuda, A., Hashimoto, T., Azuma, C., & Nishi, M. (2017). Long-term effects of maternal separation coupled with social isolation on reward seeking and changes in dopamine D1 receptor expression in the nucleus accumbens via DNA methylation in mice. Neuroscience Letters.spa
dc.relation.references105. Shah, S., Yoon, G., Kim, H. and Kim, M. (2015). Vitamin C Neuroprotection Against Dose-Dependent Glutamate-Induced Neurodegeneration in the Postnatal Brain. Neurochemical Research, 40(5), pp.875-884.spa
dc.relation.references106. Sharma A, Wongkham C, Prasongwattana V, Boonnate P, Thanan R, Reungjui S, et al. (2014) Proteomic Analysis of Kidney in Rats Chronically Exposed to Monosodium Glutamate. PLoS ONE 9(12): e116233.spa
dc.relation.references107. Shin, S., Han, S., Woo, R., Jang, S., & Min, S. (2016). Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation. Neuroscience, 316, 221-231.spa
dc.relation.references108-Shi, Z., Luscombe-Marsh, N., Wittert, G., & Taylor, A. (2010). Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults – response by Shi et al. British Journal Of Nutrition, 104(11), 1730-1730. doi: 10.1017/s000711451000276xspa
dc.relation.references109. Spencer, R., Kim, P., Kalman, B. and Cole, M. (1998).Evidence for Mineralocorticoid Receptor Facilitation of Glucocorticoid Receptor-Dependent Regulation of Hypothalamic-Pituitary-Adrenal Axis Activity 1.Endocrinology, 139(6), pp.2718-2726.spa
dc.relation.references110. Spencer, R. & Deak, T. (2016). A users guide to HPA axis research. Physiology & Behavior. http://dx.doi.org/10.1016/j.physbeh.2016.11.014spa
dc.relation.references111. Suchecki, D., Rosenfeld, P. and Levine, S. (1993). Maternal regulation of the hypothalamic-pituitary-adrenal axis in the infant rat: the roles of feeding and stroking. Developmental Brain Research, 75(2), pp.185-192.spa
dc.relation.references112. Tawfik, M.S.; Al-Badr, N. (2012) Adverse Effects of Monosodium Glutamate on Liver and Kidney Functions in Adult Rats and Potential Protective Effect of Vitamins C and E. Food and Nutrition Sciences, 3, 651–659.spa
dc.relation.references112. Thomas, A., Caporale, N., Wu, C., & Wilbrecht, L. (2016). Early maternal separation impacts cognitive flexibility at the age of first independence in mice. Developmental Cognitive Neuroscience, 18, 49-56. http://dx.doi.org/10.1016/j.dcn.2015.09.005spa
dc.relation.references113. Tretter, L. (2004). Generation of Reactive Oxygen Species in the Reaction Catalyzed by -Ketoglutarate Dehydrogenase. Journal of Neuroscience, 24(36), pp.7771-7778.spa
dc.relation.references114. truthinlabeling. History of Invention and Use of MSG. n.d. http://www.truthinlabeling.org/IVhistoryOfUse.htspa
dc.relation.references115. Tsankova, N., Renthal, W., Kumar, A., & Nestler, E. (2007). Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 8(5), 355-367.spa
dc.relation.references116. Tsuda, M. and Ogawa, S. (2010). Adverse early life experiences alter the development of social interactive behaviors in adult C57BL/6J female mice. Neuroscience Research, 68, p.e413.spa
dc.relation.references17. Uneyama, H., Niijima, A., San Gabriel, A. and Torii, K. (2006). Luminal amino acid sensing in the rat gastric mucosa.AJP: Gastrointestinal and Liver Physiology, 291(6), pp.G1163-G1170.spa
dc.relation.references118. Vargas-López, V., Lamprea, M. and Múnera, A. (2011). Characterizing spatial extinction in an abbreviated version of the Barnes maze. Behavioural Processes, 86(1), pp.30-38.spa
dc.relation.references119. WAM, d., & BO, M. (2016). The Cognitive Function Of Wistar Rats Subjected To Cafeteria Diet And To Chronic Stress. Journal Of Obesity & Eating Disorders, 2(1). doi: 10.21767/2471-8203.100012spa
dc.relation.references119. Wassum, K., & Izquierdo, A. (2015). The basolateral amygdala in reward learning and addiction. Neuroscience & Biobehavioral Reviews, 57, 271-283. http://dx.doi.org/10.1016/j.neubiorev.2015.08.017spa
dc.relation.references120. Windmueller, H., & Spaeth, A. (2009). UPTAKE AND METABOLISM OF PLASMA GLUTAMINE BY THE SMALL INTESTINE. Nutrition Reviews, 48(8), 310-312. doi: 10.1111/j.1753-4887.1990.tb02968.xspa
dc.relation.references120.Williams, M., Blankenmeyer, T., Schaefer, T., Brown, C., Gudelsky, G. and Vorhees, C. (2003). Long-term effects of neonatal methamphetamine exposure in rats on spatial learning in the Barnes maze and on cliff avoidance, corticosterone release, and neurotoxicity in adulthood. Developmental Brain Research, 147(1-2), pp.163-175.spa
dc.relation.references121. Willner, P., Towell, A., Sampson, D., Sophokleous, S. and Muscat, R. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology, 93(3).spa
dc.relation.references122. World Health Organization. Infant and young child feeding: model chapter for textbooks for medical students and allied health professionals. Ginebra: WHO Press; 2009spa
dc.relation.references123. Windmueller, H.G.; Spaeth, A.E. (1980) Respiratory Fuels and Nitrogen Metabolism in Vivo in Small Intestine of Fed Rats. Quantitative Importance of Glutamine, Glutamate, and Aspartate. Journal of Biological Chemistry, 255, 107–112.vspa
dc.relation.references124. Yehuda, S., Carasso, R. and Mostofsky, D. (1991). The facilitative effects of α-MSH and melanin on learning, thermoregulation, and pain in neonatal MSG-treated rats. Peptides, 12(3), pp.465-469.spa
dc.relation.references125. Yoo, S., Ryu, V., Park, E., Kim, B., Kang, D., Lee, J., & Jahng, J. (2011). The arcuate NPY, POMC, and CART expressions responding to food deprivation are exaggerated in young female rats that experienced neonatal maternal separation. Neuropeptides, 45(5), 343-349. doi: 10.1016/j.npep.2011.07.005spa
dc.relation.references125. Zar, J.H., 1974. Multiple comparisons. In: McElroy, W.O., Swanson, C.D. (Eds.), Biostatistical Analysis. Prentice Hall, New York, pp. 120–131spa
dc.relation.references126.Zeeni, N., Bassil, M., Fromentin, G., Chaumontet, C., Darcel, N., Tome, D., & Daher, C. (2015). Environmental enrichment and cafeteria diet attenuate the response to chronic variable stress in rats. Physiology & Behavior, 139, 41-49. doi: 10.1016/j.physbeh.2014.11.003spa
dc.relation.references127.Zeeni, N., Daher, C., Fromentin, G., Tome, D., Darcel, N., & Chaumontet, C. (2012). A cafeteria diet modifies the response to chronic variable stress in rats. Stress, 16(2), 211-219. doi: 10.3109/10253890.2012.708952spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.ddc590 - Animalesspa
dc.subject.ddc155 - Psicología diferencial y del desarrollospa
dc.subject.proposalseparación maternaspa
dc.subject.proposalmaternal separationeng
dc.subject.proposalglutamato monosódicospa
dc.subject.proposalmonosodium glutamateeng
dc.subject.proposalestrés tempranospa
dc.subject.proposalearly stresseng
dc.subject.proposalmemoria espacialspa
dc.subject.proposalspatial memoryeng
dc.subject.proposallaberinto de Barnesspa
dc.subject.proposalBarnes Mazeeng
dc.titleEfectos de la separación materna sobre el consumo de glutamato monosódico y la memoria espacial en ratas machospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
17690433.2020.pdf.pdf
Tamaño:
1.64 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: