Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular

dc.contributor.advisorPerdomo Arciniegas, Ana María
dc.contributor.advisorFontanilla Duque, Martha Raquel
dc.contributor.authorUrrego Orrego, Karen Yurany
dc.contributor.orcidUrrego Orrego, Karen Yurany [000000023762826X]spa
dc.contributor.researchgroupGrupo de Investigación en Medicina transfusional, tisular y celular (GYMTIC)spa
dc.date.accessioned2024-06-28T14:37:21Z
dc.date.available2024-06-28T14:37:21Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa sangre de cordón umbilical (SCU) es una fuente de progenitores hematopoyéticos (PH) usados como terapia en diversas patologías, principalmente de tipo hematológico. En Colombia, el grupo de investigación en medicina transfusional, tisular y celular (GIMTTYC) del Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), desarrolló un programa clínico de captación de donantes y de banqueo de células de SCU, así como servicios de búsqueda de compatibilidad, reserva y distribución de unidades, bajo estándares internacionales de terapia celular. Los procedimientos de congelación y descongelación de SCU se validan en cada banco con el fin de mantener viables las células que se usarán en el trasplante. La variación de las condiciones en estos procedimientos impacta la recuperación y viabilidad celular, que puede afectar la potencia terapéutica de los trasplantes. Con el fin de corroborar la funcionalidad de las células, antes y después de la descongelación de las unidades de SCU, se realizan pruebas de viabilidad celular por citometría de flujo y clonogenicidad. Por lo tanto, establecer las condiciones para mantener el número y la viabilidad celular después de la criopreservación, antes del trasplante es clave para garantizar la calidad de unidades en esta etapa. Para descongelar las unidades de SCU, estas se diluyen o lavan para disminuir el efecto citotóxico del crioprotector. Sin embargo, el GIMTTYC todavía requiere estandarizar el procedimiento de descongelación. En este trabajo se validó la implementación in situ de un protocolo pretrasplante de descongelación de unidades de SCU con la perspectiva de establecer herramientas que mejoren la recuperación y viabilidad celular pretrasplante. (Texto tomado de la fuente)spa
dc.description.abstractUmbilical cord blood (UCB) is a source of hematopoietic progenitors (HP), which are used as therapy in various pathologies, mainly hematological. In Colombia, the transfusion, tissue and cellular medicine research group (GIMTTYC) of the Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), developed a clinical program for donor recruitment and banking of SCU cells, as well as services of compatibility search, reservation and distribution of units, under international standards of cellular therapy. SCU freezing and thawing procedures are validated in each bank in order to maintain the viability of the cells to be used in transplantation. Varying conditions in these procedures impact cell recovery and viability, which can affect the therapeutic potency of transplants. In order to corroborate that the cells will be functional, before and after thawing of the SCU units, cell viability tests are performed by flow cytometry and clonogenicity. Therefore, establishing the conditions to maintain cell number and viability after cryopreservation prior to transplantation is key to ensure the quality of units at this stage. To thaw SCU units prior to transplantation, they are diluted or washed to decrease the cytotoxic effect of the cryoprotectant. However, in the GIMTTYC this process still requires standardization. This work validated the in situ implementation of a pretransplantation protocol for thawing SCU units with the perspective of establishing tools to improve pretransplantation cell recovery and viability.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaInvestigación en fisiología y patología de la hematopoyesis para el desarrollo y la innovación clínicaspa
dc.format.extentxviii, 90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86328
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAkel, S., Regan, D., Wall, D., Petz, L., & McCullough, J. (2014). Current thawing and infusion practice of cryopreserved cord blood: the impact on graft quality, recipient safety, and transplantation outcomes. Transfusion, 54(11), 2997–3009. https://doi.org/10.1111/TRF.12719spa
dc.relation.referencesAlberts Bruce, Johnson Alexander, Lewis Julian, Martin Raff, Keith Roberts, and P. W. (2002). Molecular Biology of the Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK21054/spa
dc.relation.referencesAndersen, M. R. (2023, June 6). Cell counters – the secrets of the world of cell counters. ChemoMetec. https://chemometec.com/the-ultimate-guide-to-cell-counters/spa
dc.relation.referencesArav, A. (2022). Cryopreservation by Directional Freezing and Vitrification Focusing on Large Tissues and Organs. Cells, 11(7). https://doi.org/10.3390/CELLS11071072spa
dc.relation.referencesAry, M., Aughlin, J. L., Uliet, J., Arker, B., Arbara, B., Ambach, B., Oc, M. N. K., Izzieri, A. A. R., Ohn, J., Agner, E. W., Tanton, S., Erson, L. G., Azarus, I. M. L., Itchell, M., Airo, C., Ladd, C., Tevens, E. S., Ablo, P., Ubinstein, R., … Urtzberg, K. (2001). Hematopoietic Engraftment and Survival in Adult Recipients of Umbilical-Cord Blood from Unrelated Donors. Https://Doi.Org/10.1056/NEJM200106143442402, 344(24), 1815–1822. https://doi.org/10.1056/NEJM200106143442402spa
dc.relation.referencesArrazola. (1994). Biología de la membrana celular. Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia, 14(4), 418–426. https://www.revistanefrologia.com/es-biologia-membrana-celular--articulo-X021169959400663Xspa
dc.relation.referencesAwan, M., Buriak, I., Fleck, R., Fuller, B., Goltsev, A., Kerby, J., Lowdell, M., Mericka, P., Petrenko, A., Petrenko, Y., Rogulska, O., Stolzing, A., & Stacey, G. N. (2020). Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative Medicine, 15(3), 1463–1491. https://doi.org/10.2217/RME-2019-0145/ASSET/IMAGES/LARGE/FIGURE1.JPEGspa
dc.relation.referencesBallen, K. K., Gluckman, E., & Broxmeyer, H. E. (2013). Umbilical cord blood transplantation: the first 25 years and beyond. Blood, 122(4), 491–498. https://doi.org/10.1182/BLOOD-2013-02-453175spa
dc.relation.referencesBallen, K. K., Verter, F., & Kurtzberg, J. (2015). Umbilical cord blood donation: Public or private? In Bone Marrow Transplantation (Vol. 50, Issue 10, pp. 1271–1278). Nature Publishing Group. https://doi.org/10.1038/bmt.2015.124spa
dc.relation.referencesBaust, J. G., Snyder, K. K., Van Buskirk, R., & Baust, J. M. (2017). Integrating Molecular Control to Improve Cryopreservation Outcome. Https://Home.Liebertpub.Com/Bio, 15(2), 134–141. https://doi.org/10.1089/BIO.2016.0119spa
dc.relation.referencesBerz, D., McCormack, E. M., Winer, E. S., Colvin, G. A., & Quesenberry, P. J. (2007). Cryopreservation of Hematopoietic Stem Cells. American Journal of Hematology, 82(6), 463. https://doi.org/10.1002/AJH.20707spa
dc.relation.referencesBhattacharya, S. (2016). A Review on Cryoprotectant and its Modern Implication in Cryonics | Semantic Scholar. https://www.semanticscholar.org/paper/A-Review-on-Cryoprotectant-and-its-Modern-in-Bhattacharya/6bf59e0acdb26b2a60c9bd549ef497f4b5e0762espa
dc.relation.referencesBissoyi, A., Nayak, B., Pramanik, K., & Sarangi, S. K. (2014). Targeting cryopreservation-induced cell death: a review. Biopreservation and Biobanking, 12(1), 23–34. https://doi.org/10.1089/BIO.2013.0032spa
dc.relation.referencesBojic, S., Murray, A., Bentley, B. L., Spindler, R., Pawlik, P., Cordeiro, J. L., Bauer, R., & de Magalhães, J. P. (2021). Winter is coming: the future of cryopreservation. BMC Biology 2021 19:1, 19(1), 1–20. https://doi.org/10.1186/S12915-021-00976-8spa
dc.relation.referencesBroxmeyer, H. E., Douglas, G. W., Hangoc, G., Cooper, S., Bard, J., English, D., Arny, M., Thomas, L., & Boyse, E. A. (1989). Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 86(10), 3828. https://doi.org/10.1073/PNAS.86.10.3828spa
dc.relation.referencesBuiles, N., Niño-Serna, L., & Combariza, J. F. (2023). Side effects after use of bedside thaw method in an umbilical cord blood stem cells for allogeneic transplantation in a children cohort: A single-center experience. Hematology/Oncology and Stem Cell Therapy, 17(1). https://doi.org/10.56875/2589-0646.1110spa
dc.relation.referencesCampos De Carvalho, E., Carolina, A., & Vieira Curcioli, J. (2010). Infusión de células madre hematopoyéticas: tipos, características, reacciones adversas y de transfusión y sus implicaciones para la enfermería1. Scielo.Br. Retrieved January 24, 2024, from https://www.scielo.br/j/rlae/a/zrStPfTGbcFPL9Y8SFSYvGf/?format=pdf&lang=esspa
dc.relation.referencesCaocci, G., Greco, M., & La Nasa, G. (2017). Bone Marrow Homing and Engraftment Defects of Human Hematopoietic Stem and Progenitor Cells. Mediterranean Journal of Hematology and Infectious Diseases, 9(1), 2017032. https://doi.org/10.4084/MJHID.2017.032spa
dc.relation.referencesCava, C. (2015). Comparación de dos soluciones de Lavado para el Trasplante de Progenitores Hematopoyéticos sin Dimetil Sulfóxido. PDF Descarga libre. https://digitum.um.es/digitum/bitstream/10201/47027/1/Catalina%20Cava%20Tesis%20Doctoral.pdfspa
dc.relation.referencesChang, T., & Zhao, G. (2021). Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. Advanced Science, 8(6), 2002425. https://doi.org/10.1002/ADVS.202002425spa
dc.relation.referencesCheng, H., Zheng, Z., & Cheng, T. (2020). New paradigms on hematopoietic stem cell differentiation. Protein and Cell, 11(1), 34–44. https://doi.org/10.1007/S13238-019-0633-0/FIGURES/4spa
dc.relation.referencesChow, R. Y. K., Li, Q., Chow, C., Guo, V., Dang, T., Rao, A., Zeng, T., Chow, D. T.-L., Wang, B., & Chow, M. (2017). Cord Blood Stem Cell Processing, Banking and Thawing. Umbilical Cord Blood Banking for Clinical Application and Regenerative Medicine. https://doi.org/10.5772/65033spa
dc.relation.referencesCloutier, M., Simard, C., Jobin, C., Fournier, D., & Néron, S. (2016). An alternative to dextran for the thawing of cord blood units. Transfusion, 56(7), 1786–1791. https://doi.org/10.1111/TRF.13633spa
dc.relation.referencesCooper, G. (2000). The Cell: A Molecular Approach - Structure of the Plasma Membrane. https://www.ncbi.nlm.nih.gov/books/NBK9898/spa
dc.relation.referencesDESOUTTER, J., OSSART, C., LACASSAGNE, M. N., REGNIER, A., MAROLLEAU, J. P., & HARRIVEL, V. (2019a). Cryopreservation and thawing of hematopoietic stem cell CD34-induced apoptosis through caspase pathway activation: Key role of granulocytes. Cytotherapy, 21(6), 612–618. https://doi.org/10.1016/J.JCYT.2019.04.004spa
dc.relation.referencesDESOUTTER, J., OSSART, C., LACASSAGNE, M. N., REGNIER, A., MAROLLEAU, J. P., & HARRIVEL, V. (2019b). Cryopreservation and thawing of hematopoietic stem cell CD34-induced apoptosis through caspase pathway activation: Key role of granulocytes. Cytotherapy, 21(6), 612–618. https://doi.org/10.1016/J.JCYT.2019.04.004spa
dc.relation.referencesDíaz, D. (2011). Terapia celular en el sistema nervioso central: recuperación estructural y funcional en un modelo murino de muerte neuronal selectiva. Core.ac.uk. Retrieved January 24, 2024, from https://core.ac.uk/download/pdf/9527374.pdfspa
dc.relation.referencesDjuwantono, T., Wirakusumah, F. F., Achmad, T. H., Sandra, F., Halim, D., & Faried, A. (2011). A comparison of cryopreservation methods: Slow-cooling vs. rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells. BMC Research Notes, 4, 371. https://doi.org/10.1186/1756-0500-4-371spa
dc.relation.referencesDuggleby, R. C., Querol, S., Davy, R. C., Fry, L. J., Gibson, D. A., Horton, R. B. V., Mahmood, S. N., Gomez, S. G., & Madrigal, J. A. (2012). Flow cytometry assessment of apoptotic CD34+ cells by annexin V labeling may improve prediction of cord blood potency for engraftment. Transfusion, 52(3), 549–559. https://doi.org/10.1111/J.1537-2995.2011.03305.Xspa
dc.relation.referencesElliott, G. D., Wang, S., & Fuller, B. J. (2017). Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76, 74–91. https://doi.org/10.1016/J.CRYOBIOL.2017.04.004spa
dc.relation.referencesElmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35(4), 495. https://doi.org/10.1080/01926230701320337spa
dc.relation.referencesFeher, J. (2012). Active Transport: Pumps and Exchangers. Quantitative Human Physiology, 134–140. https://doi.org/10.1016/B978-0-12-382163-8.00016-5spa
dc.relation.referencesFernández, M. L., & Reigada, R. (2014). Effects of dimethyl sulfoxide on lipid membrane electroporation. Journal of Physical Chemistry B, 118(31), 9306–9312. https://doi.org/10.1021/JP503502Sspa
dc.relation.referencesForrest, L. R., Krämer, R., & Ziegler, C. (2011). The structural basis of secondary active transport mechanisms. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(2), 167–188. https://doi.org/10.1016/J.BBABIO.2010.10.014spa
dc.relation.referencesFrallicciardi, J., Melcr, J., Siginou, P., Marrink, S. J., & Poolman, B. (2022). Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nature Communications, 13(1), 1–12. https://doi.org/10.1038/s41467-022-29272-xspa
dc.relation.referencesFry, L. J., Querol, S., Gomez, S. G., Mcardle, S., Rees, R., & Madrigal, J. A. (2015). Assessing the toxic effects of DMSO on cord blood to determine exposure time limits and the optimum concentration for cryopreservation. Vox Sanguinis, 109(2), 181–190. https://doi.org/10.1111/VOX.12267spa
dc.relation.referencesGalindo, C. C., Vanegas Lozano, D. M., Camacho Rodríguez, B., & Perdomo-Arciniegas, A. M. (2018a). Improved cord blood thawing procedure enhances the reproducibility and correlation between flow cytometry CD34+ cell viability and clonogenicity assays. Cytotherapy, 20(6), 891–894. https://doi.org/10.1016/J.JCYT.2018.03.033spa
dc.relation.referencesGalindo, C. C., Vanegas Lozano, D. M., Camacho Rodríguez, B., & Perdomo-Arciniegas, A. M. (2018b). Improved cord blood thawing procedure enhances the reproducibility and correlation between flow cytometry CD34+ cell viability and clonogenicity assays. Cytotherapy, 20(6), 891–894. https://doi.org/10.1016/j.jcyt.2018.03.033spa
dc.relation.referencesGarnacho-Montero, J., Fernández-Mondéjar, E., Ferrer-Roca, R., Herrera-Gutiérrez, M. E., Lorente, J. A., Ruiz-Santana, S., & Artigas, A. (2015). Cristaloides y coloides en la reanimación del paciente crítico. Medicina intensiva, 39(5), 303–315. https://doi.org/10.1016/j.medin.2014.12.007spa
dc.relation.referencesGolstein, P., & Kroemer, G. (2007). Cell death by necrosis: towards a molecular definition. Trends in Biochemical Sciences, 32(1), 37–43. https://doi.org/10.1016/J.TIBS.2006.11.001spa
dc.relation.referencesGonzález-Acero, L. X., Camacho-Rodríguez, B., & Perdomo-Arciniegas, A. M. (2019). Characterization of a novel HLA-C allele, HLA-C*01:166, in a Colombian Umbilical Cord Blood Bank Donor. In HLA (Vol. 94, Issue 4, pp. 386–387). Blackwell Publishing Ltd. https://doi.org/10.1111/tan.13611spa
dc.relation.referencesGorin, N. C. (2019). Bone Marrow Harvesting for HSCT. The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, 109–115. https://doi.org/10.1007/978-3-030-02278-5_14spa
dc.relation.referencesGupta, A. O., & Wagner, J. E. (2020). Umbilical Cord Blood Transplants: Current Status and Evolving Therapies. Frontiers in Pediatrics, 8, 629. https://doi.org/10.3389/FPED.2020.570282/BIBTEXspa
dc.relation.referencesGutensohn, K., Magens, M., Krüger, W., Kröger, N., & Kühnl, P. (2006). Comparison of flow cytometry vs. a haematology cell analyser-based method to guide the optimal time-point for peripheral blood stem cell apheresis. Vox Sanguinis, 90(1), 53–58. https://doi.org/10.1111/J.1423-0410.2005.00720.Xspa
dc.relation.referencesGuttridge, M. G., Soh, T. G., Belfield, H., Sidders, C., & Watt, S. M. (2014). Storage time affects umbilical cord blood viability. Transfusion, 54(5), 1278–1285. https://doi.org/10.1111/TRF.12481spa
dc.relation.referencesHall, J., Hall, M. (2021). Transport of Substances Through Cell Membranes - ClinicalKey. https://www.clinicalkey.com/#!/content/book/3-s2.0-B9780323597128000047spa
dc.relation.referencesHarris, D. T. (2016). Long-term frozen storage of stem cells: challenges and solutions. Journal of Biorepository Science for Applied Medicine, 4, 9–20. https://doi.org/10.2147/BSAM.S90142spa
dc.relation.referencesHeiblig, M., Elhamri, M., Thomas, X., Plesa, A., Raffoux, E., & Hayette, S. (2018). A phase 1 study of chemosensitization with plerixafor plus G-CSF in adults with relapsed acute myeloid leukemia. Leukemia Research, 72, 7–11. https://doi.org/10.1016/J.LEUKRES.2018.07.017spa
dc.relation.referencesHiggins, A. Z., & Karlsson, J. O. (2008). Coincidence error during measurement of cellular osmotic properties by the electrical sensing zone method. Cryo Letters, 29(6). https://pubmed.ncbi.nlm.nih.gov/19280049/spa
dc.relation.referencesHitomi, J., Christofferson, D. E., Ng, A., Yao, J., Degterev, A., Xavier, R. J., & Yuan, J. (2008). Identification of a Molecular Signaling Network that Regulates a Cellular Necrotic Cell Death Pathway. Cell, 135(7), 1311–1323. https://doi.org/10.1016/J.CELL.2008.10.044spa
dc.relation.referencesHordyjewska, A., Popiołek, Ł., & Horecka, A. (2015). Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology, 67(3), 387. https://doi.org/10.1007/S10616-014-9796-Yspa
dc.relation.referencesHunt, C. J. (2019). Technical Considerations in the Freezing, Low-Temperature Storage and Thawing of Stem Cells for Cellular Therapies. Transfusion Medicine and Hemotherapy, 46(3), 134–150. https://doi.org/10.1159/000497289spa
dc.relation.referencesHunt, C. J., Armitage, S. E., & Pegg, D. E. (2003). Cryopreservation of umbilical cord blood: 2. Tolerance of CD34+ cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology, 46(1), 76–87. https://doi.org/10.1016/S0011-2240(02)00181-5spa
dc.relation.referencesIkeda, K., Ohto, H., Okuyama, Y., Yamada-Fujiwara, M., Kanamori, H., Fujiwara, S. ichiro, Muroi, K., Mori, T., Kasama, K., Iseki, T., Nagamura-Inoue, T., Fujii, N., Ashida, T., Kameda, K., Kanda, J., Hirose, A., Takahashi, T., Nagai, K., Minakawa, K., & Tanosaki, R. (2018). Adverse Events Associated With Infusion of Hematopoietic Stem Cell Products: A Prospective and Multicenter Surveillance Study. Transfusion Medicine Reviews, 32(3), 186–194. https://doi.org/10.1016/J.TMRV.2018.05.005spa
dc.relation.referencesJahan, S. (2020). Impact of Storage and Cryoprotectants on the Function of Cord Blood Hematopoietic Stem Cells. https://doi.org/10.20381/RUOR-24519spa
dc.relation.referencesJahan, S., Kaushal, R., Pasha, R., & Pineault, N. (2021). Current and Future Perspectives for the Cryopreservation of Cord Blood Stem Cells. Transfusion Medicine Reviews, 35(2), 95–102. https://doi.org/10.1016/J.TMRV.2021.01.003spa
dc.relation.referencesJaime, J., Dorticós, E., Pavón, V., & Cortina, L. (2004). Trasplante de células progenitoras hematopoyéticas: tipos, fuentes e indicaciones. Rev Cubana de Hematología, Inmunología y Hemoterapia. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-02892004000200002spa
dc.relation.referencesJang, T. H., Park, S. C., Yang, J. H., Kim, J. Y., Seok, J. H., Park, U. S., Choi, C. W., Lee, S. R., & Han, J. (2017). Cryopreservation and its clinical applications. Integrative Medicine Research, 6(1), 12–18. https://doi.org/10.1016/J.IMR.2016.12.001spa
dc.relation.referencesJara-Segura, E., Jensen-Gamboa, E., & Clínico Jensen, L. (2018). Recuento de células CD34+ por citometría de flujo Count of CD34 + cells by flow cytometry. Rev. Colegio de Microb. Quim. Clin. de Costa Rica, 24(2), 2215–3713.spa
dc.relation.referencesJohnson, D., Hashaikeh, R., & Hilal, N. (2021). Basic principles of osmosis and osmotic pressure. Osmosis Engineering, 1–15. https://doi.org/10.1016/B978-0-12-821016-1.00011-5spa
dc.relation.referencesKaram Khaddour; Caroline K. Hana; Prerna Mewawalla. (2022). Hematopoietic Stem Cell Transplantation. In Abeloff’s Clinical Oncology. StatPearls Publishing. https://doi.org/10.1016/B978-0-323-47674-4.00028-1spa
dc.relation.referencesKim, A. R., Olsen, J. L., England, S. J., Huang, Y. S., Fegan, K. H., Delgadillo, L. F., McGrath, K. E., Kingsley, P. D., Waugh, R. E., & Palis, J. (2015). Bmi-1 Regulates Extensive Erythroid Self-Renewal. Stem Cell Reports, 4(6), 995. https://doi.org/10.1016/J.STEMCR.2015.05.003spa
dc.relation.referencesKim, K. M., Huh, J. Y., Hong, S. S., & Kang, M. S. (2015). Assessment of cell viability, early apoptosis, and hematopoietic potential in umbilical cord blood units after storage. Transfusion, 55(8), 2017–2022. https://doi.org/10.1111/TRF.13120spa
dc.relation.referencesKuang, S. Y. (2018). Tonicity and Osmolarity, Why Are They Confusing? The FASEB Journal, 31, 576.55-576.55. https://doi.org/10.1096/FASEBJ.31.1_SUPPLEMENT.576.55spa
dc.relation.referencesKurtzberg, J. (2017). A history of cord blood banking and transplantation. In Stem Cells Translational Medicine (Vol. 6, Issue 5, pp. 1309–1311). AlphaMed Press. https://doi.org/10.1002/sctm.17-0075spa
dc.relation.referencesKurtzberg, J., Cairo, M. S., Fraser, J. K., Baxter-Lowe, L. A., Cohen, G., Carter, S. L., & Kernan, N. A. (2005). Results of the Cord Blood Transplantation (COBLT) Study unrelated donor banking program. Transfusion, 45(6), 842–855. https://doi.org/10.1111/J.1537-2995.2005.04428.Xspa
dc.relation.referencesLaroche, V., McKenna, D. H., Moroff, G., Schierman, T., Kadidlo, D., & McCullough, J. (2005). Cell loss and recovery in umbilical cord blood processing: a comparison of postthaw and postwash samples. Transfusion, 45(12), 1909–1916. https://doi.org/10.1111/J.1537-2995.2005.00638.Xspa
dc.relation.referencesLaterra, J., Keep, R., Betz, L.A., Goldstein, G. W. (1999). Membrane Transport Processes. https://www.ncbi.nlm.nih.gov/books/NBK28227/spa
dc.relation.referencesLee, J. Y., & Hong, S. H. (2020). Hematopoietic Stem Cells and Their Roles in Tissue Regeneration. International Journal of Stem Cells, 13(1), 1. https://doi.org/10.15283/IJSC19127spa
dc.relation.referencesLiggett, L. A., & Sankaran, V. G. (2020). Unraveling Hematopoiesis through the Lens of Genomics. Cell, 182(6), 1384–1400. https://doi.org/10.1016/J.CELL.2020.08.030spa
dc.relation.referencesLocksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell, 104(4), 487–501. https://doi.org/10.1016/S0092-8674(01)00237-9spa
dc.relation.referencesLombard, J. (2014). Once upon a time the cell membranes: 175 years of cell boundary research. Biology Direct, 9(1), 1–35. https://doi.org/10.1186/S13062-014-0032-7/FIGURES/11spa
dc.relation.referencesLund, T. C., Boitano, A. E., Delaney, C. S., Shpall, E. J., & Wagner, J. E. (2014). Advances in umbilical cord blood manipulation—from niche to bedside. Nature Reviews Clinical Oncology 2014 12:3, 12(3), 163–174. https://doi.org/10.1038/nrclinonc.2014.215spa
dc.relation.referencesMadeleine K., A. (2020). Recherche uO Research: Improving the Engraftment Activities of Cryopreserved Human Umbilical Cord Blood Through the Development of Novel Glyco(peptide)-Based Aryl Ice Recrystallization Inhibitors [University of Ottawa]. https://doi.org/http://dx.doi.org/10.20381/ruor-25034spa
dc.relation.referencesMadsen, B. K., Hilscher, M., Zetner, D., & Rosenberg, J. (2018). Adverse reactions of dimethyl sulfoxide in humans: a systematic review. F1000Research, 7. https://doi.org/10.12688/F1000RESEARCH.16642.2spa
dc.relation.referencesMalard, F., Huang, X. J., & Sim, J. P. Y. (2020). Treatment and unmet needs in steroid-refractory acute graft-versus-host disease. Leukemia 2020 34:5, 34(5), 1229–1240. https://doi.org/10.1038/s41375-020-0804-2spa
dc.relation.referencesMayani, H., Wagner, J. E., & Broxmeyer, H. E. (2019). Cord blood research, banking, and transplantation: achievements, challenges, and perspectives. Bone Marrow Transplantation 2019 55:1, 55(1), 48–61. https://doi.org/10.1038/s41409-019-0546-9spa
dc.relation.referencesMazur, P. (1977). The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology, 14(3), 251–272. https://doi.org/10.1016/0011-2240(77)90175-4spa
dc.relation.referencesMedina, C. B., & Ravichandran, K. S. (2016). Do not let death do us part: “find-me” signals in communication between dying cells and the phagocytes. Cell Death and Differentiation, 23(6), 979–989. https://doi.org/10.1038/CDD.2016.13spa
dc.relation.referencesMegías, M., Molist, P., Pombal, M. (2019). Atlas de histología vegetal y animal. La célula. https://mmegias.webs.uvigo.es/5-celulas/3-propiedades1.phpspa
dc.relation.referencesMendoza, J. A., Dulin, P., & Warren, T. (2000). The Lower Hydrolysis of ATP by the Stress Protein GroEL Is a Major Factor Responsible for the Diminished Chaperon in Activity at Low Temperature. Cryobiology, 41(4), 319–323. https://doi.org/10.1006/CRYO.2000.2287spa
dc.relation.referencesMeneghel, J., Kilbride, P., & Morris, G. J. (2020). Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies—A Review. Frontiers in Medicine, 7, 824. https://doi.org/10.3389/FMED.2020.592242/BIBTEXspa
dc.relation.referencesMera Reina Claudia, R. L. A. R. C. S. (2007). Células Madre Hematopoyéticas. Retrieved June 26, 2022, from https://www.studocu.com/es-ar/document/universidad-de-buenos-aires/hematologia/mera-2007-celulas-madre-hematopoyeticas/29080539spa
dc.relation.referencesMitchell, R., Wagner, J. E., Brunstein, C. G., Cao, Q., McKenna, D. H., Lund, T. C., & Verneris, M. R. (2015). Impact of long-term cryopreservation on single umbilical cord blood transplantation outcomes. Biology of Blood and Marrow Transplantation, 21(1), 50–54. https://doi.org/10.1016/j.bbmt.2014.09.002spa
dc.relation.referencesNadig, R. R. (2009). Stem cell therapy – Hype or hope? A review. Journal of Conservative Dentistry : JCD, 12(4), 131. https://doi.org/10.4103/0972-0707.58329spa
dc.relation.referencesNavarrete, C. (2015). Cord blood banking: Operational and regulatory aspects. In Cord Blood Stem Cells Medicine (pp. 197–210). Elsevier Inc. https://doi.org/10.1016/B978-0-12-407785-0.00015-3spa
dc.relation.referencesNavarro (2016). RUNX1 en la hematopoyesis embrionaria humana. Programa Oficial de Doctorado en Biomedicina. Ugr.Es. Retrieved January 24, 2024, from https://digibug.ugr.es/bitstream/handle/10481/44168/2622690x.pdf?sequence=6&isAllowed=yspa
dc.relation.referencesNirmala, J. G., & Lopus, M. (2020). Cell death mechanisms in eukaryotes. Cell Biology and Toxicology, 36(2), 145–164. https://doi.org/10.1007/S10565-019-09496-2spa
dc.relation.referencesOanne, J., Urtzberg, K., Ary, M., Aughlin, L., Raham, I. L. G., Lay, C., Mith, S., Anice, J., Lson, F. O., Dward, E., Alperin, C. H., Armelita, C., Arrier, C., Ladd, C., Tevens, E. S., Ablo, P., & Ubinstein, R. (1996). Placental Blood as a Source of Hematopoietic Stem Cells for Transplantation into Unrelated Recipients. Https://Doi.Org/10.1056/NEJM199607183350303, 335(3), 157–166. https://doi.org/10.1056/NEJM199607183350303spa
dc.relation.referencesPasha, R., Elmoazzen, H., & Pineault, N. (2017). Development and testing of a stepwise thaw and dilute protocol for cryopreserved umbilical cord blood units. Transfusion, 57(7), 1744–1754. https://doi.org/10.1111/TRF.14136spa
dc.relation.referencesPedrosa de Lira de Morais, C. C., Dias Alves Pinto, J., Wagner de Souza, K., Izu, M., Fernando da Silva Bouzas, L., & Henrique Paraguassú-Braga, F. (2022). Validation of the single-platform ISHAGE protocol for enumeration of CD34+ hematopoietic stem cells in umbilical cord blood in a Brazilian center. Hematology, Transfusion and Cell Therapy, 44(1), 49–55. https://doi.org/10.1016/j.htct.2020.09.151spa
dc.relation.referencesPope, B., Hokin, B., & Grant, R. (2015). Effect of umbilical cord blood prefreeze variables on postthaw viability. Transfusion, 55(3), 629–635. https://doi.org/10.1111/TRF.12873spa
dc.relation.referencesPranke, P., Hendrikx, J., Alespeiti, G., Nardi, N., Rubinstein, P., Visser, J. (2006). (PDF) Comparative quantification of umbilical cord blood CD34+ and CD34+ bright cells using the ProCountTMBD and ISHAGE protocols | Jan Hendrikx - Academia.edu. https://www.academia.edu/7631730/Comparative_quantification_of_umbilical_cord_ blood_CD34_and_CD34_bright_cells_using_the_ProCount_BD_and_ISHAGE_proto colsspa
dc.relation.referencesPrice, T. H., Chatta, G. S. & Dale, D. C. (1996). Effect of Recombinant Granulocyte Colony-Stimulating Factor on Neutrophil Kinetics in Normal Young and Elderly Humans. Blood, 88(1), 335–340.spa
dc.relation.referencesProduct: Cord Blood Standards, 7th EditionSeventh Edition NetCord-FACT International Standards for Cord Blood Collection, Banking, and Release for Administration [Free Download]: FACT. (2019). https://www.factweb.org/forms/store/ProductFormPublic/seventh-edition-netcordfact-international-standards-for-cord-blood-collection-banking-and-release-foradministration-free-downloadspa
dc.relation.referencesQuerol, S., Gomez, S. G., Pagliuca, A., Torrabadella, M., & Madrigal, J. A. (2010). Quality rather than quantity: the cord blood bank dilemma. Bone Marrow Transplantation, 45(6), 970–978. https://doi.org/10.1038/BMT.2010.7spa
dc.relation.referencesRall, W. F., Wood, M. J., Kirby, C., & Whittingham, D. G. (1987). Development of mouse embryos cryopreserved by vitrification. Journal of Reproduction and Fertility, 80(2), 499–504. https://doi.org/10.1530/JRF.0.0800499spa
dc.relation.referencesRebulla, P., & Lecchi, L. (2011). Towards responsible cord blood banking models. Cell Proliferation, 44(SUPPL. 1), 30–34. https://doi.org/10.1111/j.13652184.2010.00720.xspa
dc.relation.referencesRegan, D. M., Wofford, J. D., & Wall, D. A. (2010). Comparison of cord blood thawing methods on cell recovery, potency, and infusion. Transfusion, 50(12), 2670–2675. https://doi.org/10.1111/J.1537-2995.2010.02803.Xspa
dc.relation.referencesReich-Slotky, R., Bachegowda, L. S., Ancharski, M., Mendeleyeva, L., Rubinstein, P., Rennert, H., Shore, T., Van Besien, K., & Cushing, M. (2015). How we handled the dextran shortage: an alternative washing or dilution solution for cord blood infusions. Transfusion, 55(6), 1147–1153. https://doi.org/10.1111/TRF.13015spa
dc.relation.referencesRifón, J. J. (2006). Trasplante de progenitores hemopoyéticos Transplant of hemopoietic progenitors. An. Sist. Sanit. Navar, 29(2).spa
dc.relation.referencesRiva, N. S., Ruhlmann, C., Iaizzo, R. S., López, C. A. M., & Martínez, A. G. (2018). Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation. JBRA Assisted Reproduction, 22(4), 331. https://doi.org/10.5935/1518-0557.20180060spa
dc.relation.referencesRodríguez, L. (2005). RECONSTITUCIÓN DE PRODUCTOS HEMATOPOYÉTICOS CRIOPRESERVADOS: - PDF Descargar libre. https://docplayer.es/6645871Reconstitucion-de-productos-hematopoyeticos-criopreservados.htmlspa
dc.relation.referencesRodriguez, L., Azqueta, C., Azzalin, S., Garcia, J., & Querol, S. (2004). Washing of cord blood grafts after thawing: high cell recovery using an automated and closed system*. Vox Sanguinis, 87(3), 165–172. https://doi.org/10.1111/J.14230410.2004.00550.Xspa
dc.relation.referencesRubinstein, P., Dobrila, L., Rosenfield, R. E., Adamson, J. W., Migliaccio, G., Migliaccio, A. R., Taylor, P. E., & Stevens, C. E. (1995). Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 10119–10122. https://doi.org/10.1073/pnas.92.22.10119spa
dc.relation.referencesRudloff, E., & Hopper, K. (2021). Crystalloid and Colloid Compositions and Their Impact. Frontiers in Veterinary Science, 8, 266. https://doi.org/10.3389/FVETS.2021.639848/BIBTEXspa
dc.relation.referencesSano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta, 1833(12), 3460–3470. https://doi.org/10.1016/J.BBAMCR.2013.06.028spa
dc.relation.referencesScaradavou, A., Avecilla, S. T., Tonon, J., Politikos, I., Horwitz, M. E., Kurtzberg, J., Milano, F., & Barker, J. N. (2020). Guidelines for Cord Blood Unit Thaw and Infusion. Biology of Blood and Marrow Transplantation, 26, 1780–1783. https://doi.org/10.1016/j.bbmt.2020.06.018spa
dc.relation.referencesSchepers, K., Campbell, T. B., & Passegué, E. (2015). Normal and Leukemic Stem Cell Niches: Insights and Therapeutic Opportunities. Cell Stem Cell, 16(3), 254–267. https://doi.org/10.1016/J.STEM.2015.02.014spa
dc.relation.referencesSchiewe, M. C., & Anderson, R. E. (2017). Vitrification: the pioneering past to current trends and perspectives of cryopreserving human embryos, gametes and reproductive tissue. Journal of Biorepository Science for Applied Medicine, 5, 57–68. https://doi.org/10.2147/BSAM.S139376spa
dc.relation.referencesSchwandt, S., Liedtke, S., & Kogler, G. (2017). The influence of temperature treatment before cryopreservation on the viability and potency of cryopreserved and thawed CD34+ and CD45+ cord blood cells. Cytotherapy, 19(8), 962–977. https://doi.org/10.1016/J.JCYT.2017.05.005spa
dc.relation.referencesSeita, J., & Weissman, I. L. (2010). Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(6), 640–653. https://doi.org/10.1002/WSBM.86spa
dc.relation.referencesShim, J. S., Cho, B., Kim, M., Park, G. S., Shin, J. C., Hwang, H. K., Kim, T. G., & Oh, I. H. (2006). Early apoptosis in CD34+ cells as a potential heterogeneity in quality of cryopreserved umbilical cord blood. British Journal of Haematology, 135(2), 210213. https://doi.org/10.1111/J.1365-2141.2006.06270.Xspa
dc.relation.referencesSlack, J. M. W. (2018). What is a stem cell? Wiley Interdisciplinary Reviews. Developmental Biology, 7(5). https://doi.org/10.1002/wdev.323spa
dc.relation.referencesStillwell, W. (2016). Membrane Transport. An Introduction to Biological Membranes, 423. https://doi.org/10.1016/B978-0-444-63772-7.00019-1spa
dc.relation.referencesStrong, A., Gračner, T., Chen, P., & Kapinos, K. (2018). On the Value of the Umbilical Cord Blood Supply. Value in Health, 21(9), 1077–1082. https://doi.org/10.1016/j.jval.2018.03.003spa
dc.relation.referencesSubczynski, W. K., Pasenkiewicz-Gierula, M., Widomska, J., Mainali, L., & Raguz, M. (2017). High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review. Cell Biochemistry and Biophysics, 75(3–4), 369–385. https://doi.org/10.1007/S12013-017-0792-7spa
dc.relation.referencesSutherland, D. R., Anderson, L., Keeney, M., Nayar, R., & Chin-Yee, I. (2009). The ISHAGE Guidelines for CD34+ Cell Determination by Flow Cytometry. Https://Home.Liebertpub.Com/Scd, 5(3), 213–226. https://doi.org/10.1089/SCD.1.1996.5.213spa
dc.relation.referencesToné, S., Sugimoto, K., Tanda, K., Suda, T., Uehira, K., Kanouchi, H., Samejima, K., Minatogawa, Y., & Earnshaw, W. C. (2007). Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Experimental Cell Research, 313(16), 3635–3644. https://doi.org/10.1016/J.YEXCR.2007.06.018spa
dc.relation.referencesTunçer, S., Gurbanov, R., Sheraj, I., Solel, E., Esenturk, O., & Banerjee, S. (2018). Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-33234-Zspa
dc.relation.referencesVanegas, D., Galindo, C. C., Páez-Gutiérrez, I. A., González-Acero, L. X., MedinaValderrama, P. T., Lozano, J. C., Camacho-Rodríguez, B., & Perdomo-Arciniegas, A. M. (2019). Human Leukocyte Antigen and Red Blood Cells Impact Umbilical Cord Blood CD34+ Cell Viability after Thawing. International Journal of Molecular Sciences, 20(19). https://doi.org/10.3390/IJMS20194875spa
dc.relation.referencesVanegas, D., Triviño, Lady, Galindo, C., Franco, L., Salguero, G., Camacho, B., & Perdomo-Arciniegas, A. M. (2017). A new strategy for umbilical cord blood collection developed at the first Colombian public cord blood bank increases total nucleated cell content. Transfusion, 57(9), 2225–2233. https://doi.org/10.1111/TRF.14190spa
dc.relation.referencesVujovic, P., Chirillo, M., & Silverthorn, D. U. (2018). Learning (by) osmosis: An approach to teaching osmolarity and tonicity. Advances in Physiology Education, 42(4), 626635. https://doi.org/10.1152/ADVAN.00094.2018/ASSET/IMAGES/LARGE/ZU100418326 30003.JPEGspa
dc.relation.referencesWagner, J. E., Eapen, M., Carter, S., Wang, Y., Schultz, K. R., Wall, D. A., Bunin, N., Delaney, C., Haut, P., Margolis, D., Peres, E., Verneris, M. R., Walters, M., Horowitz, M. M., & Kurtzberg, J. (2014). One-Unit versus Two-Unit Cord-Blood Transplantation for Hematologic Cancers. New England Journal of Medicine, 371(18), 1685–1694. https://doi.org/10.1056/NEJMoa1405584spa
dc.relation.referencesWaller-Wise, R. (2011). Umbilical Cord Blood: Information for Childbirth Educators. The Journal of Perinatal Education, 20(1), 54–60. https://doi.org/10.1891/10581243.20.1.54spa
dc.relation.referencesWeng, L., & Beauchesne, P. R. (2020). Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. Cryobiology, 94, 9–17. https://doi.org/10.1016/J.CRYOBIOL.2020.03.012spa
dc.relation.referencesWhaley, D., Damyar, K., Witek, R. P., Mendoza, A., Alexander, M., & Lakey, J. R. T. (2021). Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transplantation, 30. https://doi.org/10.1177/0963689721999617spa
dc.relation.referencesWong, J. (2008). Centrifugal recovery of embryonic stem cells for regenerative medicine bioprocessing. https://discovery.ucl.ac.uk/id/eprint/16358/1/16358.pdfspa
dc.relation.referencesWoods, E. J., Thirumala, S., Badhe-Buchanan, S. S., Clarke, D., & Mathew, A. J. (2016). Off the shelf cellular therapeutics: Factors to consider during cryopreservation and storage of human cells for clinical use. In Cytotherapy (Vol. 18, Issue 6, pp. 697711). Elsevier Inc. https://doi.org/10.1016/j.jcyt.2016.03.295spa
dc.relation.referencesWu, L. K., Tokarew, J. M., Chaytor, J. L., Von Moos, E., Li, Y., Palii, C., Ben, R. N., & Allan, D. S. (2011). Carbohydrate-mediated inhibition of ice recrystallization in cryopreserved human umbilical cord blood. Carbohydrate Research, 346(1), 86–93. https://doi.org/10.1016/J.CARRES.2010.10.016spa
dc.relation.referencesYang, H., Acker, J. P., Cabuhat, M., & McGann, L. E. (2003). Effects of incubation temperature and time after thawing on viability assessment of peripheral hematopoietic progenitor cells cryopreserved for transplantation. Bone Marrow Transplantation, 32(10), 1021–1026. https://doi.org/10.1038/SJ.BMT.1704247spa
dc.relation.referencesYoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., & Tohyama, M. (2001). Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. The Journal of Biological Chemistry, 276(17), 1393513940. https://doi.org/10.1074/JBC.M010677200spa
dc.relation.referencesZakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: Past, present, and future. Stem Cell Research and Therapy, 10(1), 1–22. https://doi.org/10.1186/S13287-019-1165-5/FIGURES/8spa
dc.relation.referencesZinno, F., Landi, F., Aureli, V., Caniglia, M., Pinto, R. M., Rana, I., Balduino, G., Miele, M. J., Picardi, A., Arcese, W., & Isacchi, G. (2010). Pre-transplant manipulation processing of umbilical cord blood units: Efficacy of Rubinstein’s thawing technique used in 40 transplantation procedures. Transfusion and Apheresis Science, 43(2), 173–178. https://doi.org/10.1016/J.TRANSCI.2010.07.005spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsAcondicionamiento Pretrasplantespa
dc.subject.decsTransplantation Conditioningeng
dc.subject.decsBiotecnologíaspa
dc.subject.decsBiotechnologyeng
dc.subject.decsCongelaciónspa
dc.subject.decsFreezingeng
dc.subject.decsCordón Umbilicalspa
dc.subject.decsUmbilical Cordeng
dc.subject.proposalSangre de cordón umbilicalspa
dc.subject.proposalTrasplante de progenitores hematopoyéticosspa
dc.subject.proposalCriopreservaciónspa
dc.subject.proposalDiluciónspa
dc.subject.proposalLavadospa
dc.subject.proposalApoptosisspa
dc.subject.proposalNecrosisspa
dc.subject.proposalUmbilical cord bloodeng
dc.subject.proposalHematopoietic stem cell transplantationeng
dc.subject.proposalCryopreservationeng
dc.subject.proposalDilutioneng
dc.subject.proposalWashingeng
dc.subject.proposalApoptosiseng
dc.subject.proposalNecrosiseng
dc.titleOptimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celularspa
dc.title.translatedPretransplantation procedure optimization of umbilical cord blood units thawing: prevention of cell deatheng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleINVESTIGACIÓN ORIENTADA A LA IMPLEMENTACIÓN DE BUENAS PRÁCTICAS PARA LA APLICACIÓN CLÍNICA DE TERAPIAS CELULARES. MODELO: TPH EN BOGOTÁspa
oaire.fundernameFondo de Ciencia, Tecnología e Innovación del Sistema General de Regalías, código BPIN2016000100035spa
oaire.fundernameFondo Financiero Distrital de Salud (Convenio 0182 de 2018)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022383727.2024.pdf
Tamaño:
2.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: