Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular
dc.contributor.advisor | Perdomo Arciniegas, Ana María | |
dc.contributor.advisor | Fontanilla Duque, Martha Raquel | |
dc.contributor.author | Urrego Orrego, Karen Yurany | |
dc.contributor.orcid | Urrego Orrego, Karen Yurany [000000023762826X] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Medicina transfusional, tisular y celular (GYMTIC) | spa |
dc.date.accessioned | 2024-06-28T14:37:21Z | |
dc.date.available | 2024-06-28T14:37:21Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | La sangre de cordón umbilical (SCU) es una fuente de progenitores hematopoyéticos (PH) usados como terapia en diversas patologías, principalmente de tipo hematológico. En Colombia, el grupo de investigación en medicina transfusional, tisular y celular (GIMTTYC) del Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), desarrolló un programa clínico de captación de donantes y de banqueo de células de SCU, así como servicios de búsqueda de compatibilidad, reserva y distribución de unidades, bajo estándares internacionales de terapia celular. Los procedimientos de congelación y descongelación de SCU se validan en cada banco con el fin de mantener viables las células que se usarán en el trasplante. La variación de las condiciones en estos procedimientos impacta la recuperación y viabilidad celular, que puede afectar la potencia terapéutica de los trasplantes. Con el fin de corroborar la funcionalidad de las células, antes y después de la descongelación de las unidades de SCU, se realizan pruebas de viabilidad celular por citometría de flujo y clonogenicidad. Por lo tanto, establecer las condiciones para mantener el número y la viabilidad celular después de la criopreservación, antes del trasplante es clave para garantizar la calidad de unidades en esta etapa. Para descongelar las unidades de SCU, estas se diluyen o lavan para disminuir el efecto citotóxico del crioprotector. Sin embargo, el GIMTTYC todavía requiere estandarizar el procedimiento de descongelación. En este trabajo se validó la implementación in situ de un protocolo pretrasplante de descongelación de unidades de SCU con la perspectiva de establecer herramientas que mejoren la recuperación y viabilidad celular pretrasplante. (Texto tomado de la fuente) | spa |
dc.description.abstract | Umbilical cord blood (UCB) is a source of hematopoietic progenitors (HP), which are used as therapy in various pathologies, mainly hematological. In Colombia, the transfusion, tissue and cellular medicine research group (GIMTTYC) of the Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), developed a clinical program for donor recruitment and banking of SCU cells, as well as services of compatibility search, reservation and distribution of units, under international standards of cellular therapy. SCU freezing and thawing procedures are validated in each bank in order to maintain the viability of the cells to be used in transplantation. Varying conditions in these procedures impact cell recovery and viability, which can affect the therapeutic potency of transplants. In order to corroborate that the cells will be functional, before and after thawing of the SCU units, cell viability tests are performed by flow cytometry and clonogenicity. Therefore, establishing the conditions to maintain cell number and viability after cryopreservation prior to transplantation is key to ensure the quality of units at this stage. To thaw SCU units prior to transplantation, they are diluted or washed to decrease the cytotoxic effect of the cryoprotectant. However, in the GIMTTYC this process still requires standardization. This work validated the in situ implementation of a pretransplantation protocol for thawing SCU units with the perspective of establishing tools to improve pretransplantation cell recovery and viability. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Bioquímica | spa |
dc.description.researcharea | Investigación en fisiología y patología de la hematopoyesis para el desarrollo y la innovación clínica | spa |
dc.format.extent | xviii, 90 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86328 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | spa |
dc.relation.references | Akel, S., Regan, D., Wall, D., Petz, L., & McCullough, J. (2014). Current thawing and infusion practice of cryopreserved cord blood: the impact on graft quality, recipient safety, and transplantation outcomes. Transfusion, 54(11), 2997–3009. https://doi.org/10.1111/TRF.12719 | spa |
dc.relation.references | Alberts Bruce, Johnson Alexander, Lewis Julian, Martin Raff, Keith Roberts, and P. W. (2002). Molecular Biology of the Cell - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK21054/ | spa |
dc.relation.references | Andersen, M. R. (2023, June 6). Cell counters – the secrets of the world of cell counters. ChemoMetec. https://chemometec.com/the-ultimate-guide-to-cell-counters/ | spa |
dc.relation.references | Arav, A. (2022). Cryopreservation by Directional Freezing and Vitrification Focusing on Large Tissues and Organs. Cells, 11(7). https://doi.org/10.3390/CELLS11071072 | spa |
dc.relation.references | Ary, M., Aughlin, J. L., Uliet, J., Arker, B., Arbara, B., Ambach, B., Oc, M. N. K., Izzieri, A. A. R., Ohn, J., Agner, E. W., Tanton, S., Erson, L. G., Azarus, I. M. L., Itchell, M., Airo, C., Ladd, C., Tevens, E. S., Ablo, P., Ubinstein, R., … Urtzberg, K. (2001). Hematopoietic Engraftment and Survival in Adult Recipients of Umbilical-Cord Blood from Unrelated Donors. Https://Doi.Org/10.1056/NEJM200106143442402, 344(24), 1815–1822. https://doi.org/10.1056/NEJM200106143442402 | spa |
dc.relation.references | Arrazola. (1994). Biología de la membrana celular. Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia, 14(4), 418–426. https://www.revistanefrologia.com/es-biologia-membrana-celular--articulo-X021169959400663X | spa |
dc.relation.references | Awan, M., Buriak, I., Fleck, R., Fuller, B., Goltsev, A., Kerby, J., Lowdell, M., Mericka, P., Petrenko, A., Petrenko, Y., Rogulska, O., Stolzing, A., & Stacey, G. N. (2020). Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative Medicine, 15(3), 1463–1491. https://doi.org/10.2217/RME-2019-0145/ASSET/IMAGES/LARGE/FIGURE1.JPEG | spa |
dc.relation.references | Ballen, K. K., Gluckman, E., & Broxmeyer, H. E. (2013). Umbilical cord blood transplantation: the first 25 years and beyond. Blood, 122(4), 491–498. https://doi.org/10.1182/BLOOD-2013-02-453175 | spa |
dc.relation.references | Ballen, K. K., Verter, F., & Kurtzberg, J. (2015). Umbilical cord blood donation: Public or private? In Bone Marrow Transplantation (Vol. 50, Issue 10, pp. 1271–1278). Nature Publishing Group. https://doi.org/10.1038/bmt.2015.124 | spa |
dc.relation.references | Baust, J. G., Snyder, K. K., Van Buskirk, R., & Baust, J. M. (2017). Integrating Molecular Control to Improve Cryopreservation Outcome. Https://Home.Liebertpub.Com/Bio, 15(2), 134–141. https://doi.org/10.1089/BIO.2016.0119 | spa |
dc.relation.references | Berz, D., McCormack, E. M., Winer, E. S., Colvin, G. A., & Quesenberry, P. J. (2007). Cryopreservation of Hematopoietic Stem Cells. American Journal of Hematology, 82(6), 463. https://doi.org/10.1002/AJH.20707 | spa |
dc.relation.references | Bhattacharya, S. (2016). A Review on Cryoprotectant and its Modern Implication in Cryonics | Semantic Scholar. https://www.semanticscholar.org/paper/A-Review-on-Cryoprotectant-and-its-Modern-in-Bhattacharya/6bf59e0acdb26b2a60c9bd549ef497f4b5e0762e | spa |
dc.relation.references | Bissoyi, A., Nayak, B., Pramanik, K., & Sarangi, S. K. (2014). Targeting cryopreservation-induced cell death: a review. Biopreservation and Biobanking, 12(1), 23–34. https://doi.org/10.1089/BIO.2013.0032 | spa |
dc.relation.references | Bojic, S., Murray, A., Bentley, B. L., Spindler, R., Pawlik, P., Cordeiro, J. L., Bauer, R., & de Magalhães, J. P. (2021). Winter is coming: the future of cryopreservation. BMC Biology 2021 19:1, 19(1), 1–20. https://doi.org/10.1186/S12915-021-00976-8 | spa |
dc.relation.references | Broxmeyer, H. E., Douglas, G. W., Hangoc, G., Cooper, S., Bard, J., English, D., Arny, M., Thomas, L., & Boyse, E. A. (1989). Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 86(10), 3828. https://doi.org/10.1073/PNAS.86.10.3828 | spa |
dc.relation.references | Builes, N., Niño-Serna, L., & Combariza, J. F. (2023). Side effects after use of bedside thaw method in an umbilical cord blood stem cells for allogeneic transplantation in a children cohort: A single-center experience. Hematology/Oncology and Stem Cell Therapy, 17(1). https://doi.org/10.56875/2589-0646.1110 | spa |
dc.relation.references | Campos De Carvalho, E., Carolina, A., & Vieira Curcioli, J. (2010). Infusión de células madre hematopoyéticas: tipos, características, reacciones adversas y de transfusión y sus implicaciones para la enfermería1. Scielo.Br. Retrieved January 24, 2024, from https://www.scielo.br/j/rlae/a/zrStPfTGbcFPL9Y8SFSYvGf/?format=pdf&lang=es | spa |
dc.relation.references | Caocci, G., Greco, M., & La Nasa, G. (2017). Bone Marrow Homing and Engraftment Defects of Human Hematopoietic Stem and Progenitor Cells. Mediterranean Journal of Hematology and Infectious Diseases, 9(1), 2017032. https://doi.org/10.4084/MJHID.2017.032 | spa |
dc.relation.references | Cava, C. (2015). Comparación de dos soluciones de Lavado para el Trasplante de Progenitores Hematopoyéticos sin Dimetil Sulfóxido. PDF Descarga libre. https://digitum.um.es/digitum/bitstream/10201/47027/1/Catalina%20Cava%20Tesis%20Doctoral.pdf | spa |
dc.relation.references | Chang, T., & Zhao, G. (2021). Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. Advanced Science, 8(6), 2002425. https://doi.org/10.1002/ADVS.202002425 | spa |
dc.relation.references | Cheng, H., Zheng, Z., & Cheng, T. (2020). New paradigms on hematopoietic stem cell differentiation. Protein and Cell, 11(1), 34–44. https://doi.org/10.1007/S13238-019-0633-0/FIGURES/4 | spa |
dc.relation.references | Chow, R. Y. K., Li, Q., Chow, C., Guo, V., Dang, T., Rao, A., Zeng, T., Chow, D. T.-L., Wang, B., & Chow, M. (2017). Cord Blood Stem Cell Processing, Banking and Thawing. Umbilical Cord Blood Banking for Clinical Application and Regenerative Medicine. https://doi.org/10.5772/65033 | spa |
dc.relation.references | Cloutier, M., Simard, C., Jobin, C., Fournier, D., & Néron, S. (2016). An alternative to dextran for the thawing of cord blood units. Transfusion, 56(7), 1786–1791. https://doi.org/10.1111/TRF.13633 | spa |
dc.relation.references | Cooper, G. (2000). The Cell: A Molecular Approach - Structure of the Plasma Membrane. https://www.ncbi.nlm.nih.gov/books/NBK9898/ | spa |
dc.relation.references | DESOUTTER, J., OSSART, C., LACASSAGNE, M. N., REGNIER, A., MAROLLEAU, J. P., & HARRIVEL, V. (2019a). Cryopreservation and thawing of hematopoietic stem cell CD34-induced apoptosis through caspase pathway activation: Key role of granulocytes. Cytotherapy, 21(6), 612–618. https://doi.org/10.1016/J.JCYT.2019.04.004 | spa |
dc.relation.references | DESOUTTER, J., OSSART, C., LACASSAGNE, M. N., REGNIER, A., MAROLLEAU, J. P., & HARRIVEL, V. (2019b). Cryopreservation and thawing of hematopoietic stem cell CD34-induced apoptosis through caspase pathway activation: Key role of granulocytes. Cytotherapy, 21(6), 612–618. https://doi.org/10.1016/J.JCYT.2019.04.004 | spa |
dc.relation.references | Díaz, D. (2011). Terapia celular en el sistema nervioso central: recuperación estructural y funcional en un modelo murino de muerte neuronal selectiva. Core.ac.uk. Retrieved January 24, 2024, from https://core.ac.uk/download/pdf/9527374.pdf | spa |
dc.relation.references | Djuwantono, T., Wirakusumah, F. F., Achmad, T. H., Sandra, F., Halim, D., & Faried, A. (2011). A comparison of cryopreservation methods: Slow-cooling vs. rapid-cooling based on cell viability, oxidative stress, apoptosis, and CD34+ enumeration of human umbilical cord blood mononucleated cells. BMC Research Notes, 4, 371. https://doi.org/10.1186/1756-0500-4-371 | spa |
dc.relation.references | Duggleby, R. C., Querol, S., Davy, R. C., Fry, L. J., Gibson, D. A., Horton, R. B. V., Mahmood, S. N., Gomez, S. G., & Madrigal, J. A. (2012). Flow cytometry assessment of apoptotic CD34+ cells by annexin V labeling may improve prediction of cord blood potency for engraftment. Transfusion, 52(3), 549–559. https://doi.org/10.1111/J.1537-2995.2011.03305.X | spa |
dc.relation.references | Elliott, G. D., Wang, S., & Fuller, B. J. (2017). Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology, 76, 74–91. https://doi.org/10.1016/J.CRYOBIOL.2017.04.004 | spa |
dc.relation.references | Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 35(4), 495. https://doi.org/10.1080/01926230701320337 | spa |
dc.relation.references | Feher, J. (2012). Active Transport: Pumps and Exchangers. Quantitative Human Physiology, 134–140. https://doi.org/10.1016/B978-0-12-382163-8.00016-5 | spa |
dc.relation.references | Fernández, M. L., & Reigada, R. (2014). Effects of dimethyl sulfoxide on lipid membrane electroporation. Journal of Physical Chemistry B, 118(31), 9306–9312. https://doi.org/10.1021/JP503502S | spa |
dc.relation.references | Forrest, L. R., Krämer, R., & Ziegler, C. (2011). The structural basis of secondary active transport mechanisms. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(2), 167–188. https://doi.org/10.1016/J.BBABIO.2010.10.014 | spa |
dc.relation.references | Frallicciardi, J., Melcr, J., Siginou, P., Marrink, S. J., & Poolman, B. (2022). Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nature Communications, 13(1), 1–12. https://doi.org/10.1038/s41467-022-29272-x | spa |
dc.relation.references | Fry, L. J., Querol, S., Gomez, S. G., Mcardle, S., Rees, R., & Madrigal, J. A. (2015). Assessing the toxic effects of DMSO on cord blood to determine exposure time limits and the optimum concentration for cryopreservation. Vox Sanguinis, 109(2), 181–190. https://doi.org/10.1111/VOX.12267 | spa |
dc.relation.references | Galindo, C. C., Vanegas Lozano, D. M., Camacho Rodríguez, B., & Perdomo-Arciniegas, A. M. (2018a). Improved cord blood thawing procedure enhances the reproducibility and correlation between flow cytometry CD34+ cell viability and clonogenicity assays. Cytotherapy, 20(6), 891–894. https://doi.org/10.1016/J.JCYT.2018.03.033 | spa |
dc.relation.references | Galindo, C. C., Vanegas Lozano, D. M., Camacho Rodríguez, B., & Perdomo-Arciniegas, A. M. (2018b). Improved cord blood thawing procedure enhances the reproducibility and correlation between flow cytometry CD34+ cell viability and clonogenicity assays. Cytotherapy, 20(6), 891–894. https://doi.org/10.1016/j.jcyt.2018.03.033 | spa |
dc.relation.references | Garnacho-Montero, J., Fernández-Mondéjar, E., Ferrer-Roca, R., Herrera-Gutiérrez, M. E., Lorente, J. A., Ruiz-Santana, S., & Artigas, A. (2015). Cristaloides y coloides en la reanimación del paciente crítico. Medicina intensiva, 39(5), 303–315. https://doi.org/10.1016/j.medin.2014.12.007 | spa |
dc.relation.references | Golstein, P., & Kroemer, G. (2007). Cell death by necrosis: towards a molecular definition. Trends in Biochemical Sciences, 32(1), 37–43. https://doi.org/10.1016/J.TIBS.2006.11.001 | spa |
dc.relation.references | González-Acero, L. X., Camacho-Rodríguez, B., & Perdomo-Arciniegas, A. M. (2019). Characterization of a novel HLA-C allele, HLA-C*01:166, in a Colombian Umbilical Cord Blood Bank Donor. In HLA (Vol. 94, Issue 4, pp. 386–387). Blackwell Publishing Ltd. https://doi.org/10.1111/tan.13611 | spa |
dc.relation.references | Gorin, N. C. (2019). Bone Marrow Harvesting for HSCT. The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, 109–115. https://doi.org/10.1007/978-3-030-02278-5_14 | spa |
dc.relation.references | Gupta, A. O., & Wagner, J. E. (2020). Umbilical Cord Blood Transplants: Current Status and Evolving Therapies. Frontiers in Pediatrics, 8, 629. https://doi.org/10.3389/FPED.2020.570282/BIBTEX | spa |
dc.relation.references | Gutensohn, K., Magens, M., Krüger, W., Kröger, N., & Kühnl, P. (2006). Comparison of flow cytometry vs. a haematology cell analyser-based method to guide the optimal time-point for peripheral blood stem cell apheresis. Vox Sanguinis, 90(1), 53–58. https://doi.org/10.1111/J.1423-0410.2005.00720.X | spa |
dc.relation.references | Guttridge, M. G., Soh, T. G., Belfield, H., Sidders, C., & Watt, S. M. (2014). Storage time affects umbilical cord blood viability. Transfusion, 54(5), 1278–1285. https://doi.org/10.1111/TRF.12481 | spa |
dc.relation.references | Hall, J., Hall, M. (2021). Transport of Substances Through Cell Membranes - ClinicalKey. https://www.clinicalkey.com/#!/content/book/3-s2.0-B9780323597128000047 | spa |
dc.relation.references | Harris, D. T. (2016). Long-term frozen storage of stem cells: challenges and solutions. Journal of Biorepository Science for Applied Medicine, 4, 9–20. https://doi.org/10.2147/BSAM.S90142 | spa |
dc.relation.references | Heiblig, M., Elhamri, M., Thomas, X., Plesa, A., Raffoux, E., & Hayette, S. (2018). A phase 1 study of chemosensitization with plerixafor plus G-CSF in adults with relapsed acute myeloid leukemia. Leukemia Research, 72, 7–11. https://doi.org/10.1016/J.LEUKRES.2018.07.017 | spa |
dc.relation.references | Higgins, A. Z., & Karlsson, J. O. (2008). Coincidence error during measurement of cellular osmotic properties by the electrical sensing zone method. Cryo Letters, 29(6). https://pubmed.ncbi.nlm.nih.gov/19280049/ | spa |
dc.relation.references | Hitomi, J., Christofferson, D. E., Ng, A., Yao, J., Degterev, A., Xavier, R. J., & Yuan, J. (2008). Identification of a Molecular Signaling Network that Regulates a Cellular Necrotic Cell Death Pathway. Cell, 135(7), 1311–1323. https://doi.org/10.1016/J.CELL.2008.10.044 | spa |
dc.relation.references | Hordyjewska, A., Popiołek, Ł., & Horecka, A. (2015). Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology, 67(3), 387. https://doi.org/10.1007/S10616-014-9796-Y | spa |
dc.relation.references | Hunt, C. J. (2019). Technical Considerations in the Freezing, Low-Temperature Storage and Thawing of Stem Cells for Cellular Therapies. Transfusion Medicine and Hemotherapy, 46(3), 134–150. https://doi.org/10.1159/000497289 | spa |
dc.relation.references | Hunt, C. J., Armitage, S. E., & Pegg, D. E. (2003). Cryopreservation of umbilical cord blood: 2. Tolerance of CD34+ cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology, 46(1), 76–87. https://doi.org/10.1016/S0011-2240(02)00181-5 | spa |
dc.relation.references | Ikeda, K., Ohto, H., Okuyama, Y., Yamada-Fujiwara, M., Kanamori, H., Fujiwara, S. ichiro, Muroi, K., Mori, T., Kasama, K., Iseki, T., Nagamura-Inoue, T., Fujii, N., Ashida, T., Kameda, K., Kanda, J., Hirose, A., Takahashi, T., Nagai, K., Minakawa, K., & Tanosaki, R. (2018). Adverse Events Associated With Infusion of Hematopoietic Stem Cell Products: A Prospective and Multicenter Surveillance Study. Transfusion Medicine Reviews, 32(3), 186–194. https://doi.org/10.1016/J.TMRV.2018.05.005 | spa |
dc.relation.references | Jahan, S. (2020). Impact of Storage and Cryoprotectants on the Function of Cord Blood Hematopoietic Stem Cells. https://doi.org/10.20381/RUOR-24519 | spa |
dc.relation.references | Jahan, S., Kaushal, R., Pasha, R., & Pineault, N. (2021). Current and Future Perspectives for the Cryopreservation of Cord Blood Stem Cells. Transfusion Medicine Reviews, 35(2), 95–102. https://doi.org/10.1016/J.TMRV.2021.01.003 | spa |
dc.relation.references | Jaime, J., Dorticós, E., Pavón, V., & Cortina, L. (2004). Trasplante de células progenitoras hematopoyéticas: tipos, fuentes e indicaciones. Rev Cubana de Hematología, Inmunología y Hemoterapia. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-02892004000200002 | spa |
dc.relation.references | Jang, T. H., Park, S. C., Yang, J. H., Kim, J. Y., Seok, J. H., Park, U. S., Choi, C. W., Lee, S. R., & Han, J. (2017). Cryopreservation and its clinical applications. Integrative Medicine Research, 6(1), 12–18. https://doi.org/10.1016/J.IMR.2016.12.001 | spa |
dc.relation.references | Jara-Segura, E., Jensen-Gamboa, E., & Clínico Jensen, L. (2018). Recuento de células CD34+ por citometría de flujo Count of CD34 + cells by flow cytometry. Rev. Colegio de Microb. Quim. Clin. de Costa Rica, 24(2), 2215–3713. | spa |
dc.relation.references | Johnson, D., Hashaikeh, R., & Hilal, N. (2021). Basic principles of osmosis and osmotic pressure. Osmosis Engineering, 1–15. https://doi.org/10.1016/B978-0-12-821016-1.00011-5 | spa |
dc.relation.references | Karam Khaddour; Caroline K. Hana; Prerna Mewawalla. (2022). Hematopoietic Stem Cell Transplantation. In Abeloff’s Clinical Oncology. StatPearls Publishing. https://doi.org/10.1016/B978-0-323-47674-4.00028-1 | spa |
dc.relation.references | Kim, A. R., Olsen, J. L., England, S. J., Huang, Y. S., Fegan, K. H., Delgadillo, L. F., McGrath, K. E., Kingsley, P. D., Waugh, R. E., & Palis, J. (2015). Bmi-1 Regulates Extensive Erythroid Self-Renewal. Stem Cell Reports, 4(6), 995. https://doi.org/10.1016/J.STEMCR.2015.05.003 | spa |
dc.relation.references | Kim, K. M., Huh, J. Y., Hong, S. S., & Kang, M. S. (2015). Assessment of cell viability, early apoptosis, and hematopoietic potential in umbilical cord blood units after storage. Transfusion, 55(8), 2017–2022. https://doi.org/10.1111/TRF.13120 | spa |
dc.relation.references | Kuang, S. Y. (2018). Tonicity and Osmolarity, Why Are They Confusing? The FASEB Journal, 31, 576.55-576.55. https://doi.org/10.1096/FASEBJ.31.1_SUPPLEMENT.576.55 | spa |
dc.relation.references | Kurtzberg, J. (2017). A history of cord blood banking and transplantation. In Stem Cells Translational Medicine (Vol. 6, Issue 5, pp. 1309–1311). AlphaMed Press. https://doi.org/10.1002/sctm.17-0075 | spa |
dc.relation.references | Kurtzberg, J., Cairo, M. S., Fraser, J. K., Baxter-Lowe, L. A., Cohen, G., Carter, S. L., & Kernan, N. A. (2005). Results of the Cord Blood Transplantation (COBLT) Study unrelated donor banking program. Transfusion, 45(6), 842–855. https://doi.org/10.1111/J.1537-2995.2005.04428.X | spa |
dc.relation.references | Laroche, V., McKenna, D. H., Moroff, G., Schierman, T., Kadidlo, D., & McCullough, J. (2005). Cell loss and recovery in umbilical cord blood processing: a comparison of postthaw and postwash samples. Transfusion, 45(12), 1909–1916. https://doi.org/10.1111/J.1537-2995.2005.00638.X | spa |
dc.relation.references | Laterra, J., Keep, R., Betz, L.A., Goldstein, G. W. (1999). Membrane Transport Processes. https://www.ncbi.nlm.nih.gov/books/NBK28227/ | spa |
dc.relation.references | Lee, J. Y., & Hong, S. H. (2020). Hematopoietic Stem Cells and Their Roles in Tissue Regeneration. International Journal of Stem Cells, 13(1), 1. https://doi.org/10.15283/IJSC19127 | spa |
dc.relation.references | Liggett, L. A., & Sankaran, V. G. (2020). Unraveling Hematopoiesis through the Lens of Genomics. Cell, 182(6), 1384–1400. https://doi.org/10.1016/J.CELL.2020.08.030 | spa |
dc.relation.references | Locksley, R. M., Killeen, N., & Lenardo, M. J. (2001). The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell, 104(4), 487–501. https://doi.org/10.1016/S0092-8674(01)00237-9 | spa |
dc.relation.references | Lombard, J. (2014). Once upon a time the cell membranes: 175 years of cell boundary research. Biology Direct, 9(1), 1–35. https://doi.org/10.1186/S13062-014-0032-7/FIGURES/11 | spa |
dc.relation.references | Lund, T. C., Boitano, A. E., Delaney, C. S., Shpall, E. J., & Wagner, J. E. (2014). Advances in umbilical cord blood manipulation—from niche to bedside. Nature Reviews Clinical Oncology 2014 12:3, 12(3), 163–174. https://doi.org/10.1038/nrclinonc.2014.215 | spa |
dc.relation.references | Madeleine K., A. (2020). Recherche uO Research: Improving the Engraftment Activities of Cryopreserved Human Umbilical Cord Blood Through the Development of Novel Glyco(peptide)-Based Aryl Ice Recrystallization Inhibitors [University of Ottawa]. https://doi.org/http://dx.doi.org/10.20381/ruor-25034 | spa |
dc.relation.references | Madsen, B. K., Hilscher, M., Zetner, D., & Rosenberg, J. (2018). Adverse reactions of dimethyl sulfoxide in humans: a systematic review. F1000Research, 7. https://doi.org/10.12688/F1000RESEARCH.16642.2 | spa |
dc.relation.references | Malard, F., Huang, X. J., & Sim, J. P. Y. (2020). Treatment and unmet needs in steroid-refractory acute graft-versus-host disease. Leukemia 2020 34:5, 34(5), 1229–1240. https://doi.org/10.1038/s41375-020-0804-2 | spa |
dc.relation.references | Mayani, H., Wagner, J. E., & Broxmeyer, H. E. (2019). Cord blood research, banking, and transplantation: achievements, challenges, and perspectives. Bone Marrow Transplantation 2019 55:1, 55(1), 48–61. https://doi.org/10.1038/s41409-019-0546-9 | spa |
dc.relation.references | Mazur, P. (1977). The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology, 14(3), 251–272. https://doi.org/10.1016/0011-2240(77)90175-4 | spa |
dc.relation.references | Medina, C. B., & Ravichandran, K. S. (2016). Do not let death do us part: “find-me” signals in communication between dying cells and the phagocytes. Cell Death and Differentiation, 23(6), 979–989. https://doi.org/10.1038/CDD.2016.13 | spa |
dc.relation.references | Megías, M., Molist, P., Pombal, M. (2019). Atlas de histología vegetal y animal. La célula. https://mmegias.webs.uvigo.es/5-celulas/3-propiedades1.php | spa |
dc.relation.references | Mendoza, J. A., Dulin, P., & Warren, T. (2000). The Lower Hydrolysis of ATP by the Stress Protein GroEL Is a Major Factor Responsible for the Diminished Chaperon in Activity at Low Temperature. Cryobiology, 41(4), 319–323. https://doi.org/10.1006/CRYO.2000.2287 | spa |
dc.relation.references | Meneghel, J., Kilbride, P., & Morris, G. J. (2020). Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies—A Review. Frontiers in Medicine, 7, 824. https://doi.org/10.3389/FMED.2020.592242/BIBTEX | spa |
dc.relation.references | Mera Reina Claudia, R. L. A. R. C. S. (2007). Células Madre Hematopoyéticas. Retrieved June 26, 2022, from https://www.studocu.com/es-ar/document/universidad-de-buenos-aires/hematologia/mera-2007-celulas-madre-hematopoyeticas/29080539 | spa |
dc.relation.references | Mitchell, R., Wagner, J. E., Brunstein, C. G., Cao, Q., McKenna, D. H., Lund, T. C., & Verneris, M. R. (2015). Impact of long-term cryopreservation on single umbilical cord blood transplantation outcomes. Biology of Blood and Marrow Transplantation, 21(1), 50–54. https://doi.org/10.1016/j.bbmt.2014.09.002 | spa |
dc.relation.references | Nadig, R. R. (2009). Stem cell therapy – Hype or hope? A review. Journal of Conservative Dentistry : JCD, 12(4), 131. https://doi.org/10.4103/0972-0707.58329 | spa |
dc.relation.references | Navarrete, C. (2015). Cord blood banking: Operational and regulatory aspects. In Cord Blood Stem Cells Medicine (pp. 197–210). Elsevier Inc. https://doi.org/10.1016/B978-0-12-407785-0.00015-3 | spa |
dc.relation.references | Navarro (2016). RUNX1 en la hematopoyesis embrionaria humana. Programa Oficial de Doctorado en Biomedicina. Ugr.Es. Retrieved January 24, 2024, from https://digibug.ugr.es/bitstream/handle/10481/44168/2622690x.pdf?sequence=6&isAllowed=y | spa |
dc.relation.references | Nirmala, J. G., & Lopus, M. (2020). Cell death mechanisms in eukaryotes. Cell Biology and Toxicology, 36(2), 145–164. https://doi.org/10.1007/S10565-019-09496-2 | spa |
dc.relation.references | Oanne, J., Urtzberg, K., Ary, M., Aughlin, L., Raham, I. L. G., Lay, C., Mith, S., Anice, J., Lson, F. O., Dward, E., Alperin, C. H., Armelita, C., Arrier, C., Ladd, C., Tevens, E. S., Ablo, P., & Ubinstein, R. (1996). Placental Blood as a Source of Hematopoietic Stem Cells for Transplantation into Unrelated Recipients. Https://Doi.Org/10.1056/NEJM199607183350303, 335(3), 157–166. https://doi.org/10.1056/NEJM199607183350303 | spa |
dc.relation.references | Pasha, R., Elmoazzen, H., & Pineault, N. (2017). Development and testing of a stepwise thaw and dilute protocol for cryopreserved umbilical cord blood units. Transfusion, 57(7), 1744–1754. https://doi.org/10.1111/TRF.14136 | spa |
dc.relation.references | Pedrosa de Lira de Morais, C. C., Dias Alves Pinto, J., Wagner de Souza, K., Izu, M., Fernando da Silva Bouzas, L., & Henrique Paraguassú-Braga, F. (2022). Validation of the single-platform ISHAGE protocol for enumeration of CD34+ hematopoietic stem cells in umbilical cord blood in a Brazilian center. Hematology, Transfusion and Cell Therapy, 44(1), 49–55. https://doi.org/10.1016/j.htct.2020.09.151 | spa |
dc.relation.references | Pope, B., Hokin, B., & Grant, R. (2015). Effect of umbilical cord blood prefreeze variables on postthaw viability. Transfusion, 55(3), 629–635. https://doi.org/10.1111/TRF.12873 | spa |
dc.relation.references | Pranke, P., Hendrikx, J., Alespeiti, G., Nardi, N., Rubinstein, P., Visser, J. (2006). (PDF) Comparative quantification of umbilical cord blood CD34+ and CD34+ bright cells using the ProCountTMBD and ISHAGE protocols | Jan Hendrikx - Academia.edu. https://www.academia.edu/7631730/Comparative_quantification_of_umbilical_cord_ blood_CD34_and_CD34_bright_cells_using_the_ProCount_BD_and_ISHAGE_proto cols | spa |
dc.relation.references | Price, T. H., Chatta, G. S. & Dale, D. C. (1996). Effect of Recombinant Granulocyte Colony-Stimulating Factor on Neutrophil Kinetics in Normal Young and Elderly Humans. Blood, 88(1), 335–340. | spa |
dc.relation.references | Product: Cord Blood Standards, 7th EditionSeventh Edition NetCord-FACT International Standards for Cord Blood Collection, Banking, and Release for Administration [Free Download]: FACT. (2019). https://www.factweb.org/forms/store/ProductFormPublic/seventh-edition-netcordfact-international-standards-for-cord-blood-collection-banking-and-release-foradministration-free-download | spa |
dc.relation.references | Querol, S., Gomez, S. G., Pagliuca, A., Torrabadella, M., & Madrigal, J. A. (2010). Quality rather than quantity: the cord blood bank dilemma. Bone Marrow Transplantation, 45(6), 970–978. https://doi.org/10.1038/BMT.2010.7 | spa |
dc.relation.references | Rall, W. F., Wood, M. J., Kirby, C., & Whittingham, D. G. (1987). Development of mouse embryos cryopreserved by vitrification. Journal of Reproduction and Fertility, 80(2), 499–504. https://doi.org/10.1530/JRF.0.0800499 | spa |
dc.relation.references | Rebulla, P., & Lecchi, L. (2011). Towards responsible cord blood banking models. Cell Proliferation, 44(SUPPL. 1), 30–34. https://doi.org/10.1111/j.13652184.2010.00720.x | spa |
dc.relation.references | Regan, D. M., Wofford, J. D., & Wall, D. A. (2010). Comparison of cord blood thawing methods on cell recovery, potency, and infusion. Transfusion, 50(12), 2670–2675. https://doi.org/10.1111/J.1537-2995.2010.02803.X | spa |
dc.relation.references | Reich-Slotky, R., Bachegowda, L. S., Ancharski, M., Mendeleyeva, L., Rubinstein, P., Rennert, H., Shore, T., Van Besien, K., & Cushing, M. (2015). How we handled the dextran shortage: an alternative washing or dilution solution for cord blood infusions. Transfusion, 55(6), 1147–1153. https://doi.org/10.1111/TRF.13015 | spa |
dc.relation.references | Rifón, J. J. (2006). Trasplante de progenitores hemopoyéticos Transplant of hemopoietic progenitors. An. Sist. Sanit. Navar, 29(2). | spa |
dc.relation.references | Riva, N. S., Ruhlmann, C., Iaizzo, R. S., López, C. A. M., & Martínez, A. G. (2018). Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation. JBRA Assisted Reproduction, 22(4), 331. https://doi.org/10.5935/1518-0557.20180060 | spa |
dc.relation.references | Rodríguez, L. (2005). RECONSTITUCIÓN DE PRODUCTOS HEMATOPOYÉTICOS CRIOPRESERVADOS: - PDF Descargar libre. https://docplayer.es/6645871Reconstitucion-de-productos-hematopoyeticos-criopreservados.html | spa |
dc.relation.references | Rodriguez, L., Azqueta, C., Azzalin, S., Garcia, J., & Querol, S. (2004). Washing of cord blood grafts after thawing: high cell recovery using an automated and closed system*. Vox Sanguinis, 87(3), 165–172. https://doi.org/10.1111/J.14230410.2004.00550.X | spa |
dc.relation.references | Rubinstein, P., Dobrila, L., Rosenfield, R. E., Adamson, J. W., Migliaccio, G., Migliaccio, A. R., Taylor, P. E., & Stevens, C. E. (1995). Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 10119–10122. https://doi.org/10.1073/pnas.92.22.10119 | spa |
dc.relation.references | Rudloff, E., & Hopper, K. (2021). Crystalloid and Colloid Compositions and Their Impact. Frontiers in Veterinary Science, 8, 266. https://doi.org/10.3389/FVETS.2021.639848/BIBTEX | spa |
dc.relation.references | Sano, R., & Reed, J. C. (2013). ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta, 1833(12), 3460–3470. https://doi.org/10.1016/J.BBAMCR.2013.06.028 | spa |
dc.relation.references | Scaradavou, A., Avecilla, S. T., Tonon, J., Politikos, I., Horwitz, M. E., Kurtzberg, J., Milano, F., & Barker, J. N. (2020). Guidelines for Cord Blood Unit Thaw and Infusion. Biology of Blood and Marrow Transplantation, 26, 1780–1783. https://doi.org/10.1016/j.bbmt.2020.06.018 | spa |
dc.relation.references | Schepers, K., Campbell, T. B., & Passegué, E. (2015). Normal and Leukemic Stem Cell Niches: Insights and Therapeutic Opportunities. Cell Stem Cell, 16(3), 254–267. https://doi.org/10.1016/J.STEM.2015.02.014 | spa |
dc.relation.references | Schiewe, M. C., & Anderson, R. E. (2017). Vitrification: the pioneering past to current trends and perspectives of cryopreserving human embryos, gametes and reproductive tissue. Journal of Biorepository Science for Applied Medicine, 5, 57–68. https://doi.org/10.2147/BSAM.S139376 | spa |
dc.relation.references | Schwandt, S., Liedtke, S., & Kogler, G. (2017). The influence of temperature treatment before cryopreservation on the viability and potency of cryopreserved and thawed CD34+ and CD45+ cord blood cells. Cytotherapy, 19(8), 962–977. https://doi.org/10.1016/J.JCYT.2017.05.005 | spa |
dc.relation.references | Seita, J., & Weissman, I. L. (2010). Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(6), 640–653. https://doi.org/10.1002/WSBM.86 | spa |
dc.relation.references | Shim, J. S., Cho, B., Kim, M., Park, G. S., Shin, J. C., Hwang, H. K., Kim, T. G., & Oh, I. H. (2006). Early apoptosis in CD34+ cells as a potential heterogeneity in quality of cryopreserved umbilical cord blood. British Journal of Haematology, 135(2), 210213. https://doi.org/10.1111/J.1365-2141.2006.06270.X | spa |
dc.relation.references | Slack, J. M. W. (2018). What is a stem cell? Wiley Interdisciplinary Reviews. Developmental Biology, 7(5). https://doi.org/10.1002/wdev.323 | spa |
dc.relation.references | Stillwell, W. (2016). Membrane Transport. An Introduction to Biological Membranes, 423. https://doi.org/10.1016/B978-0-444-63772-7.00019-1 | spa |
dc.relation.references | Strong, A., Gračner, T., Chen, P., & Kapinos, K. (2018). On the Value of the Umbilical Cord Blood Supply. Value in Health, 21(9), 1077–1082. https://doi.org/10.1016/j.jval.2018.03.003 | spa |
dc.relation.references | Subczynski, W. K., Pasenkiewicz-Gierula, M., Widomska, J., Mainali, L., & Raguz, M. (2017). High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review. Cell Biochemistry and Biophysics, 75(3–4), 369–385. https://doi.org/10.1007/S12013-017-0792-7 | spa |
dc.relation.references | Sutherland, D. R., Anderson, L., Keeney, M., Nayar, R., & Chin-Yee, I. (2009). The ISHAGE Guidelines for CD34+ Cell Determination by Flow Cytometry. Https://Home.Liebertpub.Com/Scd, 5(3), 213–226. https://doi.org/10.1089/SCD.1.1996.5.213 | spa |
dc.relation.references | Toné, S., Sugimoto, K., Tanda, K., Suda, T., Uehira, K., Kanouchi, H., Samejima, K., Minatogawa, Y., & Earnshaw, W. C. (2007). Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Experimental Cell Research, 313(16), 3635–3644. https://doi.org/10.1016/J.YEXCR.2007.06.018 | spa |
dc.relation.references | Tunçer, S., Gurbanov, R., Sheraj, I., Solel, E., Esenturk, O., & Banerjee, S. (2018). Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Scientific Reports, 8(1). https://doi.org/10.1038/S41598-018-33234-Z | spa |
dc.relation.references | Vanegas, D., Galindo, C. C., Páez-Gutiérrez, I. A., González-Acero, L. X., MedinaValderrama, P. T., Lozano, J. C., Camacho-Rodríguez, B., & Perdomo-Arciniegas, A. M. (2019). Human Leukocyte Antigen and Red Blood Cells Impact Umbilical Cord Blood CD34+ Cell Viability after Thawing. International Journal of Molecular Sciences, 20(19). https://doi.org/10.3390/IJMS20194875 | spa |
dc.relation.references | Vanegas, D., Triviño, Lady, Galindo, C., Franco, L., Salguero, G., Camacho, B., & Perdomo-Arciniegas, A. M. (2017). A new strategy for umbilical cord blood collection developed at the first Colombian public cord blood bank increases total nucleated cell content. Transfusion, 57(9), 2225–2233. https://doi.org/10.1111/TRF.14190 | spa |
dc.relation.references | Vujovic, P., Chirillo, M., & Silverthorn, D. U. (2018). Learning (by) osmosis: An approach to teaching osmolarity and tonicity. Advances in Physiology Education, 42(4), 626635. https://doi.org/10.1152/ADVAN.00094.2018/ASSET/IMAGES/LARGE/ZU100418326 30003.JPEG | spa |
dc.relation.references | Wagner, J. E., Eapen, M., Carter, S., Wang, Y., Schultz, K. R., Wall, D. A., Bunin, N., Delaney, C., Haut, P., Margolis, D., Peres, E., Verneris, M. R., Walters, M., Horowitz, M. M., & Kurtzberg, J. (2014). One-Unit versus Two-Unit Cord-Blood Transplantation for Hematologic Cancers. New England Journal of Medicine, 371(18), 1685–1694. https://doi.org/10.1056/NEJMoa1405584 | spa |
dc.relation.references | Waller-Wise, R. (2011). Umbilical Cord Blood: Information for Childbirth Educators. The Journal of Perinatal Education, 20(1), 54–60. https://doi.org/10.1891/10581243.20.1.54 | spa |
dc.relation.references | Weng, L., & Beauchesne, P. R. (2020). Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. Cryobiology, 94, 9–17. https://doi.org/10.1016/J.CRYOBIOL.2020.03.012 | spa |
dc.relation.references | Whaley, D., Damyar, K., Witek, R. P., Mendoza, A., Alexander, M., & Lakey, J. R. T. (2021). Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transplantation, 30. https://doi.org/10.1177/0963689721999617 | spa |
dc.relation.references | Wong, J. (2008). Centrifugal recovery of embryonic stem cells for regenerative medicine bioprocessing. https://discovery.ucl.ac.uk/id/eprint/16358/1/16358.pdf | spa |
dc.relation.references | Woods, E. J., Thirumala, S., Badhe-Buchanan, S. S., Clarke, D., & Mathew, A. J. (2016). Off the shelf cellular therapeutics: Factors to consider during cryopreservation and storage of human cells for clinical use. In Cytotherapy (Vol. 18, Issue 6, pp. 697711). Elsevier Inc. https://doi.org/10.1016/j.jcyt.2016.03.295 | spa |
dc.relation.references | Wu, L. K., Tokarew, J. M., Chaytor, J. L., Von Moos, E., Li, Y., Palii, C., Ben, R. N., & Allan, D. S. (2011). Carbohydrate-mediated inhibition of ice recrystallization in cryopreserved human umbilical cord blood. Carbohydrate Research, 346(1), 86–93. https://doi.org/10.1016/J.CARRES.2010.10.016 | spa |
dc.relation.references | Yang, H., Acker, J. P., Cabuhat, M., & McGann, L. E. (2003). Effects of incubation temperature and time after thawing on viability assessment of peripheral hematopoietic progenitor cells cryopreserved for transplantation. Bone Marrow Transplantation, 32(10), 1021–1026. https://doi.org/10.1038/SJ.BMT.1704247 | spa |
dc.relation.references | Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., & Tohyama, M. (2001). Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. The Journal of Biological Chemistry, 276(17), 1393513940. https://doi.org/10.1074/JBC.M010677200 | spa |
dc.relation.references | Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: Past, present, and future. Stem Cell Research and Therapy, 10(1), 1–22. https://doi.org/10.1186/S13287-019-1165-5/FIGURES/8 | spa |
dc.relation.references | Zinno, F., Landi, F., Aureli, V., Caniglia, M., Pinto, R. M., Rana, I., Balduino, G., Miele, M. J., Picardi, A., Arcese, W., & Isacchi, G. (2010). Pre-transplant manipulation processing of umbilical cord blood units: Efficacy of Rubinstein’s thawing technique used in 40 transplantation procedures. Transfusion and Apheresis Science, 43(2), 173–178. https://doi.org/10.1016/J.TRANSCI.2010.07.005 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::612 - Fisiología humana | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.decs | Acondicionamiento Pretrasplante | spa |
dc.subject.decs | Transplantation Conditioning | eng |
dc.subject.decs | Biotecnología | spa |
dc.subject.decs | Biotechnology | eng |
dc.subject.decs | Congelación | spa |
dc.subject.decs | Freezing | eng |
dc.subject.decs | Cordón Umbilical | spa |
dc.subject.decs | Umbilical Cord | eng |
dc.subject.proposal | Sangre de cordón umbilical | spa |
dc.subject.proposal | Trasplante de progenitores hematopoyéticos | spa |
dc.subject.proposal | Criopreservación | spa |
dc.subject.proposal | Dilución | spa |
dc.subject.proposal | Lavado | spa |
dc.subject.proposal | Apoptosis | spa |
dc.subject.proposal | Necrosis | spa |
dc.subject.proposal | Umbilical cord blood | eng |
dc.subject.proposal | Hematopoietic stem cell transplantation | eng |
dc.subject.proposal | Cryopreservation | eng |
dc.subject.proposal | Dilution | eng |
dc.subject.proposal | Washing | eng |
dc.subject.proposal | Apoptosis | eng |
dc.subject.proposal | Necrosis | eng |
dc.title | Optimización del procedimiento pretrasplante de descongelación de unidades de sangre de cordón umbilical: prevención en muerte celular | spa |
dc.title.translated | Pretransplantation procedure optimization of umbilical cord blood units thawing: prevention of cell death | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | INVESTIGACIÓN ORIENTADA A LA IMPLEMENTACIÓN DE BUENAS PRÁCTICAS PARA LA APLICACIÓN CLÍNICA DE TERAPIAS CELULARES. MODELO: TPH EN BOGOTÁ | spa |
oaire.fundername | Fondo de Ciencia, Tecnología e Innovación del Sistema General de Regalías, código BPIN2016000100035 | spa |
oaire.fundername | Fondo Financiero Distrital de Salud (Convenio 0182 de 2018) | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022383727.2024.pdf
- Tamaño:
- 2.82 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Bioquímica
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: