Algunos constituyentes químicos y actividad biológica de Phlegmariurus hippurideus (Lycopodiaceae)

dc.contributor.advisorMayorga Wandurraga, Humberto
dc.contributor.authorHuertas Beltrán, Jhonhatan Andrés
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001555691
dc.contributor.orcidHuertas Beltrán, Jonathan Andrés [0000-0002-3191-6615]
dc.contributor.researchgroupProductos Naturales Vegetales Bioactivos y Quimica Ecoiogicaspa
dc.coverage.temporalColombiaspa
dc.date.accessioned2025-09-03T19:24:28Z
dc.date.available2025-09-03T19:24:28Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, gráficos, fotografíasspa
dc.description.abstractPhlegmariurus hippurideus (Lycopodiaceae) es una especie silvestre de los bosques altoandinos, distribuida en Colombia y otros países de Latinoamérica, cuya composición fitoquímica y potencial farmacológico permanecen inexplorados. Estudios previos en otras especies de Lycopodiaceae han reportado extractos con propiedades antiinflamatorias, neuroprotectoras y aplicaciones en el tratamiento de reumatismo y lesiones traumáticas. Además, se han identificado metabolitos bioactivos, como triterpenos del tipo serrateno, —con actividad citotóxica y quimiopreventiva prometedora contra el cáncer— y alcaloides con efectos antioxidantes, antidepresivos e inhibidores de la acetilcolinesterasa, relevantes para el abordaje de enfermedades neurodegenerativas. Este estudio tuvo como objetivo contribuir al conocimiento científico de la familia Lycopodiaceae mediante el estudio fitoquímico y de bioactividad de la planta silvestre P. hippurideus. Para ello, se empleó un enfoque bioguiado utilizando el ensayo de letalidad frente a Artemia salina para dirigir el aislamiento de compuestos bioactivos. El extracto etanólico se fraccionó mediante cromatografía en columna, y los compuestos purificados se caracterizaron mediante técnicas espectroscópicas de RMN (1D y 2D). La toxicidad de los extractos y fracciones se cuantificó determinando la concentración letal media (CL50). Como resultado, se aislaron nueve triterpenos, siete de ellos previamente descritos: 3-O-acetiltohogenol (Ph1), acetato de 3-serratenediol (Ph2), α-onocerina (Ph3), serratenediol (Ph4), 21-episerratenediol 3-acetato (Ph5), licoflegmarina (Ph6) y tohogenol (Ph7), junto con dos nuevos serratanos denominados hippuridano A (Ph8) e hippuridano B (Ph9). La fracción más tóxica (C-IV), de la cual se derivaron estos compuestos, exhibió una CL50 de 7.83 µg/mL, sugiriendo que los triterpenos aislados podrían ser responsables de la actividad biológica observada (Texto tomado de la fuente). Esta investigación constituye el primer reporte sobre la composición química de P. hippurideus, incluyendo la identificación de dos triterpenos inéditos. Los resultados evidencian una marcada toxicidad en los extractos y fracciones, así como un potencial citotóxico asociado a sus metabolitos. El estudio aporta al conocimiento de la familia Lycopodiaceae en Colombia, destacando la relevancia de la biodiversidad nacional mediante el primer análisis de bioactividad en P. hippurideus, la purificación de algunos de sus triterpenos y su elucidación estructural. Estos compuestos representan candidatos promisorios para futuras investigaciones orientadas a evaluar su aplicabilidad en la salud humana.spa
dc.description.abstractPhlegmariurus hippurideus (Lycopodiaceae) is a wild species native to high-Andean forests, distributed in Colombia and other Latin American countries, whose phytochemical composition and pharmacological potential remain unexplored. Previous studies on other Lycopodiaceae species have reported extracts with anti-inflammatory and neuroprotective properties, as well as applications in the treatment of rheumatism and traumatic injuries. Additionally, bioactive metabolites have been identified, including serratene-type triterpenoids—which exhibit promising cytotoxic and chemopreventive activity against cancer—and alkaloids with antioxidant, antidepressant, and acetylcholinesterase inhibitory effects, relevant for addressing neurodegenerative diseases. This study aimed to contribute to the scientific knowledge of the Lycopodiaceae family through phytochemical and bioactivity analyses of the wild plant P. hippurideus. A bioguided approach was employed using the Artemia salina lethality assay to direct the isolation of bioactive compounds. The ethanolic extract was fractionated by column chromatography, and the purified compounds were characterized using NMR spectroscopy (1D and 2D). The toxicity of the extracts and fractions was quantified by determining the median lethal concentration (LC50). As a result, nine triterpenoids were isolated, seven of which were previously known: 3-O-acetyltohogenol (Ph1), 3-serratenediol acetate (Ph2), α-onocerin (Ph3), serratenediol (Ph4), 21-episerratenediol 3-acetate (Ph5), lycoflegmarinine (Ph6), and tohogenol (Ph7), along with two new serratane-type triterpenoids named hippuridane A (Ph8) and hippuridane B (Ph9). The most toxic fraction (C-IV), from which these compounds were derived, exhibited an LC50 of 7.83 µg/mL, suggesting that the isolated triterpenoids may be responsible for the observed biological activity. This research represents the first report on the chemical composition of P. hippurideus, including the identification of two novel triterpenoids. The results demonstrate significant toxicity in the extracts and fractions, as well as potential cytotoxic activity associated with their metabolites. The study contributes to the understanding of the Lycopodiaceae family in Colombia, highlighting the importance of national biodiversity through the first bioactivity analysis of P. hippurideus, the purification of some of its triterpenoids, and their structural elucidation. These compounds represent promising candidates for further research aimed at evaluating their potential applications in human health.eng
dc.description.curricularareaFormación en Ciencias.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaProductos Naturalesspa
dc.format.extent220 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88585
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesAgeta, H., Iwata, K., & Ootake, Y. (1962). Isolation of α-onocerin from Lycopodium clavatum Linn. Chemical and Pharmaceutical Bulletin, 10(7), 637-637.
dc.relation.referencesAgeta, H., Shiojima, K., & Masuda, K. (1982). Fern constituents; Onoceroid, α-Onoceradiene, Serratene and Onoceranoxide, Isolated from Lemmaphyllum microphyllum varieties. Chemical & Pharmaceutical Bulletin, 30, 2272-2274.
dc.relation.referencesAlmeida, A., Dong, L., Khakimov, B., Bassard, J. E., Moses, T., Lota, F., ... & Bak, S. (2018). A single oxidosqualene cyclase produces the seco-triterpenoid α-onocerin. Plant Physiology, 176(2), 1469-1484.
dc.relation.referencesAponte, A. R. (2022). Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae). [Tesis de Maestría Universidad Nacional de Colombia]. Repositorio Institucional UNAL: https://repositorio.unal.edu.co/handle/unal/82042
dc.relation.referencesArana, M. (2016). Nomenclatural notes on Phlegmariurus dentatus (Lycopodiaceae). Phytotaxa, 252, 298-300.
dc.relation.referencesArana, M., & Øllgaard, B. (2012). Revisión de las Lycopodiaceae (Embryopsida, Lycopodiidae) de Argentina y Uruguay. Darwiniana, 50(2), 266-295.
dc.relation.referencesArana, M., Reinoso, H., & Oggero, A. (2014). Morfología y anatomía de ejes caulinares, licofilos y esporangios de Phlegmariurus phylicifolius: un aporte a la sistemática de las Lycopodiaceae neotropicales. Revista De Biologia Tropical, 62, 1217-1227.
dc.relation.referencesArcanjo, D. D. R., Albuquerque, A. C. M., Melo-Neto, B., Santana, L. C., Medeiros, M., & Citó, A. M. D. G. L. (2012). Bioactivity evaluation against Artemia salina Leach of medicinal plants used in Brazilian Northeastern folk medicine. Brazilian Journal of Biology, 72, 505-509.
dc.relation.referencesArmenta-Montero, S., Carvajal-Hernández, C., Ellis, E., & Krömer, T. (2015). Distribution and Conservation Status of Phlegmariurus (Lycopodiaceae) in the State of Veracruz, Mexico. Tropical Conservation Science, 8, 114 - 137.
dc.relation.referencesArmijos, C., Gilardoni, G., Amay, L., Lozano, A., Bracco, F., Ramirez, J., ... & Vidari, G. (2016). Phytochemical and ethnomedicinal study of Huperzia species used in the traditional medicine of Saraguros in Southern Ecuador; AChE and MAO inhibitory activity. Journal of ethnopharmacology, 193, 546-554.
dc.relation.referencesBastaki, S. M., Amir, N., Adeghate, E., & Ojha, S. (2022). Lycopodium mitigates oxidative stress and inflammation in the colonic mucosa of acetic acid-induced colitis in rats. Molecules, 27(9), 2774.
dc.relation.referencesBauret, L., Field, A., Gaudeul, M., Selosse, M., & Rouhan, G. (2018). First insights on the biogeographical history of Phlegmariurus (Lycopodiaceae), with a focus on Madagascar. Molecular phylogenetics and evolution, 127, 488-501.
dc.relation.referencesBenucci, G., Burnard, D., Shepherd, L., Bonito, G., & Munkacsi, A. (2020). Evidence for Co-evolutionary History of Early Diverging Lycopodiaceae Plants with Fungi. Frontiers in Microbiology, 10.
dc.relation.referencesBoonya-udtayan, S., Chaiphattharakit, N., Thasana, N., Ruek-ngam, N., Ruchirawat, S., & Techasakul, S. (2017). Phytochemical investigation of Lycopodium nummularifolium Blume and their antibacterial activity. Sci J Phetchaburi Rajabhat University, 14(1), 26-33.
dc.relation.referencesBoonya-Udtayan, S., Thasana, N., Jarussophon, N., & Ruchirawat, S. (2019). Serratene triterpenoids and their biological activities from Lycopodiaceae plants. Fitoterapia, 136, 104181.
dc.relation.referencesBraekman, J., Nyembo, L., Bourdoux, P., Kahindo, N., & Hootele, C. (1974). Distribution des alcaloides dans le genre Lycopodium. Phytochemistry, 13, 2519-2528.
dc.relation.referencesBreckon, G., & Falk, R. (1974). External Spore Morphology and Taxonomic Affinities Of Phylloglossum drummondii Kunze (Lycopodiaceae). American Journal of Botany, 61, 481-485.
dc.relation.referencesBreitmaier, E. (2002). Recognition of Structural Fragments by NMR. En E. Breitmaier, Structure Elucidation by NMR in Organic Chemistry: A Practical guide (págs. 11-68). West Sussex, England: John Wiley & Sons Ltd.
dc.relation.referencesBunsupa, S., Hanada, K., Maruyama, A., Aoyagi, K., Komatsu, K., Ueno, H., Yamashita, M., Sasaki, R., Oikawa, A., Saito, K., & Yamazaki, M. (2016). Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis. Plant Physiology, 171, 2432 - 2444.
dc.relation.referencesBustos-Obregon, E., & Vargas, A. (2010). Chronic toxicity bioassay with populations of the crustacean Artemia salina exposed to the organophosphate diazinon. Biological research, 43 3, 357-62.
dc.relation.referencesCai, X., Pan, D., Xu, G., & Seto, H. F. (1992). Novel pentacyclic triterpene esters of D14- serratene type from Lycopodium obscurum L. Acta Chimica Sinica, 50(1), 60-66.
dc.relation.referencesCai, Z. Y., Zhou, Z. G., Li, P., Qin, Y., (2015). Advances in studies on chemical constituents in Lycopodii Herba and their pharmacological activities. Chinese Traditional and Herbal Drugs, 297-304.
dc.relation.referencesCalderón, A. I., Simithy-Williams, J., Sanchez, R., Espinosa, A., Valdespino, I., & Gupta, M. P. (2013). Lycopodiaceae from Panama: a new source of acetylcholinesterase inhibitors. Natural Product Research, 27(4-5), 500-505.
dc.relation.referencesCao, H., Chai, T., Wang, X., Morais-Braga, M., Yang, J., Wong, F., Wang, R., Yao, H., Cao, J., Cornara, L., Burlando, B., Wang, Y., Xiao, J., & Coutinho, H. (2017). Phytochemicals from fern species: potential for medicine applications. Phytochemistry Reviews, 16, 379 - 440.
dc.relation.referencesChen, G., Lin, Q., Zeng, L., & Zou, Y. (2020). Mining lycodine-type alkaloid biosynthetic genes and genetic markers from transcriptome of Lycopodiastrum casuarinoides. Chinese Herbal Medicines, 12, 133 - 141.
dc.relation.referencesChen, Y., Yang, Q., & Zhang, Y. (2020). Lycopodium japonicum: A comprehensive review on its phytochemical and biological activities. Arabian Journal of Chemistry, 13, 5438-5450.
dc.relation.referencesCho, Y. C., Kim, B. R., Le, H. T. T., & Cho, S. (2017). Anti inflammatory effects on murine macrophages of ethanol extracts of Lycodium japonicum spores via inhibition of NF κB and p38. Molecular Medicine Reports, 16(4), 4362-4370.
dc.relation.referencesDeng, T. Z., Ai, Y., Chen, Y., & Yang, G. Z. (2009). Triterpenoid from Lycopodium obscurum L. Acta Pharmaceutica Sinica, 44(8), 891-894.
dc.relation.referencesDong, Q., Zou, Z., Jia, X., Yu, X., Li, J., Zhou, W., Sun, H., Wu, W., Tan, G., & Xu, K. (2019). Cytotoxic polyhydroxy serratene triterpenoids from Lycopodium complanatum. Bioorganic chemistry, 87, 373-379.
dc.relation.referencesField, A., & Bostock, P. (2013). New and existing combinations in Palaeotropical Phlegmariurus (Lycopodiaceae) and lectotypification of the type species Phlegmariurus phlegmaria (L.) T. Sen & U. Sen. PhytoKeys, (20) 33-51.
dc.relation.referencesField, A., Testo, W., Bostock, P., Holtum, J., & Waycott, M. (2016). Molecular phylogenetics and the morphology of the Lycopodiaceae subfamily Huperzioideae supports three genera: Huperzia, Phlegmariurus and Phylloglossum. Molecular phylogenetics and evolution, 94 Pt B, 635-657.
dc.relation.referencesGess, R., & Prestianni, C. (2018). Kowieria alveoformis gen. nov. sp. nov., a new heterosporous lycophyte from the Latest Devonian of Southern Africa. Review of Palaeobotany and Palynology, 249, 1-8.
dc.relation.referencesGiang, V., Thuy, L., Hanh, T., Cuong, N., Vinh, L., Bản, N., Linh, T., Mai, N., Huong, T., Dang, N., Oh, H., Lee, D., & Quang, T. (2022). Cytotoxic and nitric oxide inhibitory activities of triterpenoids from Lycopodium clavatum L. Natural Product Research, 36, 6232 - 6239.
dc.relation.referencesGordon, R. K., Nigam, S. V., Weitz, J. A., Dave, J. R., Doctor, B. P., & Ved, H. S. (2001). The NMDA receptor ion channel: a site for binding of Huperzine A. Journal of Applied Toxicology: An International Journal, 21(S1), S47-S51.
dc.relation.referencesHa, M. T., Le, T. T., Kim, J. A., Choi, J. S., & Min, B. S. (2023). Isolation and characterization of PTP1B inhibitory serratene-type triterpenoids from Lycopodium serratum Thunb. Phytochemistry Letters, 57, 231-238.
dc.relation.referencesHam, Y. M., Yoon, W. J., Park, S. Y., Jung, Y. H., Kim, D., Jeon, Y. J., ... & Kim, K. N. (2012). Investigation of the component of Lycopodium serratum extract that inhibits proliferation and mediates apoptosis of human HL-60 leukemia cells. Food and chemical toxicology, 50(8), 2629-2634.
dc.relation.referencesHao, L. J., Zhou, Y. J., Wang, L. L., & Pan, K. (2016). Three new Lycopodium alkaloids from Phlegmariurus fargesii. Helvetica Chimica Acta, 99(3), 228-231.
dc.relation.referencesHaufler, C., Pryer, K., Schuettpelz, E., Sessa, E., Farrar, D., Moran, R., Schneller, J., Watkins, J., & Windham, M. (2016). Sex and the Single Gametophyte: Revising the Homosporous Vascular Plant Life Cycle in Light of Contemporary Research. BioScience, 66, 928-937.
dc.relation.referencesHe, J., Chen, X., Li, M., Zhao, Y., Xu, G., Cheng, X., Peng, L., Xie, M., Zheng, Y., Wang, Y., & Zhao, Q. (2009). Lycojapodine A, a novel alkaloid from Lycopodium japonicum. Organic letters, 11 6, 1397-400.
dc.relation.referencesHerrera, F., Testo, W. L., Field, A. R., Clark, E. G., Herendeen, P. S., Crane, P. R., & Shi, G. (2022). A permineralized Early Cretaceous lycopsid from China and the evolution of crown clubmosses. New Phytologist, 233(5), 2310-2322.
dc.relation.referencesHirasawa, Y., Morita, H., & Kobayashi, J. (2004). Nankakurine A, a novel C16N2-type alkaloid from Lycopodium hamiltonii. Organic letters, 6 19, 3389-91.
dc.relation.referencesInubushi, Y., Harayama, T., Hibino, T., & Akatsu, M. (1971). Studies on the constituents of domestic Lycopodium genus plants. 13. On the constituents of Lycopodium cernuum L. and Lycopodium inundatum L. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan, 91(9), 980-986.
dc.relation.referencesInubushi, Y., Hibino, T., Harayama, T., Hasegawa, T., & Somanathan, R. (1971). Triterpenoid constituents of Lycopodium phlegmaria L. Journal of the Chemical Society C: Organic, 3109-3114.
dc.relation.referencesInubushi, Y., Hibino, T., Hasegawa, T., & Somanathan, R. (1971). Isolation and structure of phlegmanol F. Chemical and Pharmaceutical Bulletin, 19(12), 2640-2642.
dc.relation.referencesInubushi, Y., Sano, T., & Tsuda, Y. (1964). Serratenediol: a new skeletal triterpenoid containing a seven-membered ring. Tetrahedron Letters, 5(21), 1303-1310.
dc.relation.referencesInubushi, Y., Tsuda, Y., & Sano, T. (1965). Tohogenol and Tohogeninol. Chemical and Pharmaceutical Bulletin, 13(6), 750-751.
dc.relation.referencesInubushi, Y., Tsuda, Y., Sano, T., Konita, T., Suzuki, S., Ageta, H., & Otake, Y. (1967). The Structure of Serratenediol. Chemical and Pharmaceutical Bulletin, 15(8), 1153-1168.
dc.relation.referencesIshiuchi, K., Kubota, T., Ishiyama, H., Hayashi, S., Shibata, T., Mori, K., Obara, Y., Nakahata, N., Kobayashi, J., (2011). Lyconadins D and E, and complanadine E, new Lycopodium alkaloids from Lycopodium complanatum. Bioorg Med Chem 19:749–753.
dc.relation.referencesJi, S., Huo, K., Wang, J., & Pan, S. (2007). A molecular phylogenetic study of Huperziaceae based on chloroplast rbcL and psbA-trnH sequences. Journal of Systematics and Evolution, 46, 213-219.
dc.relation.referencesJiang, J. M., Xia, D., Zhu, X. L., Zhu, D., Yang, X. W., & Pan, K. (2022). Lycophlegmarinines A–F, new Lycopodium alkaloids from Phlegmariurus phlegmaria. Tetrahedron, 114, 132782.
dc.relation.referencesJo, A., Kim, C. E., & Lee, M. (2020). Serratane triterpenoids isolated from Lycopodium clavatum by bioactivity-guided fractionation attenuate the production of inflammatory mediators. Bioorganic Chemistry, 96, 103632.
dc.relation.referencesKatakawa, K., Nozoe, A., Kogure, N., Kitajima, M., Hosokawa, M., & Takayama, H. (2007). Fawcettimine-related alkaloids from Lycopodium serratum. Journal of natural products, 70 6, 1024-8.
dc.relation.referencesKenrick, P., Davis, P., 2004. Fossil Plants. Smithsonian Books, Washington.
dc.relation.referencesKonrath, E. L., Neves, B. M., Lunardi, P. S., dos Santos Passos, C., Simões-Pires, A., Ortega, M. G., ... & Henriques, A. T. (2012). Investigation of the in vitro and ex vivo acetylcholinesterase and antioxidant activities of traditionally used Lycopodium species from South America on alkaloid extracts. Journal of Ethnopharmacology, 139(1), 58-67.
dc.relation.referencesKoyama, K., Morita, H., Hirasawa, Y., Yoshinaga, M., Hoshino, T., Obara, Y., Nakahata, N., Kobayashi, J., (2004). Lannotinidines A–G, new alkaloids from two species of Lycopodium. Tetrahedron 61(15):3681–3690.
dc.relation.referencesKutney, J., & Rogers, I. (1969). The neutral triterpenes of the bark of Picea sitchensis (Sitka spruce). Tetrahedron, 25 17, 3731-51.
dc.relation.referencesLallement, G., Baille, V., Baubichon, D., Carpentier, P., Collombet, J. M., Filliat, P., ... & Dorandeu, F. (2002). Review of the value of huperzine as pretreatment of organophosphate poisoning. Neurotoxicology, 23(1), 1-5.
dc.relation.referencesLan, N. N., Ma, Q. Y., Huang, S. Z., Kong, F. D., Yang, N. N., Dai, H. F., Wu, Y. G., Zhao, Y. X. (2017). Chemical constituents from fruiting bodies of Ganoderma daiqingshanense. Chinese Traditional and Herbal Drugs, 437-442.
dc.relation.referencesLi, J., Xu, P. S., Tan, L. H., Zou, Z. X., Wang, Y. K., Long, H. P., ... & Tan, G. S. (2017). Neolignans and serratane triterpenoids with inhibitory effects on xanthine oxidase from Palhinhaea cernua. Fitoterapia, 119, 45-50.
dc.relation.referencesLi, M. J., Liu, J., Zhang, Y. B., Chen, N. H., Wnag, G. C., Li, Y. L. (2015). Chemical constituents from whole herb of Lycopodium japonicum. Chinese Traditional and Herbal Drugs, 33-37.
dc.relation.referencesLi, P., Huang, W., Zhuo, J., Guo, Z., Cao, W., Xu, L., ... & Long, C. (2015). Seven new Lycopodium alkaloids from the aerial parts of Phlegmariurus squarrosus. Tetrahedron, 71(33), 5308-5314.
dc.relation.referencesLi, Q. J., Wang, C., Li, J. X., Zhang, J. J., Liu, Y. H., Pan, L. T. (2014). Chemical constituents from Huperzia leishangensis. Chinese Pharmaceutical Journal, 550-553.
dc.relation.referencesLi, X. L., Zhao, Y., Cheng, X., Tu, L., Peng, L. Y., Xu, G., & Zhao, Q. S. (2006). Japonicumins A–D: four new compounds from Lycopodium japonicum. Helvetica Chimica Acta, 89(7), 1467-1473.
dc.relation.referencesLin, M., Lu, Y., Chung, J., Li, Y., Wang, S., G, S., Wu, C., Su, H., & Chen, S. (2010). Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway. Cancer letters, 291 1, 46-58.
dc.relation.referencesLiu, B. R., Zheng, H. R., Jiang, X. J., Zhang, P. Z., & Wei, G. Z. (2022). Serratene triterpenoids from Lycopodium cernuum L. as α-glucosidase inhibitors: Identification, structure–activity relationship and molecular docking studies. Phytochemistry, 195, 113056.
dc.relation.referencesLiu, F., Dong, L. B., Gao, X., Wu, X. D., He, J., Peng, L. Y., ... & Zhao, Q. S. (2014). New Lycopodium alkaloids from Phlegmariurus squarrosus. Journal of Asian natural products research, 16(6), 574-580.
dc.relation.referencesLiu, J. S., Huang, M. F., (1994). The alkaloids huperzines C and D and huperzinine from Lycopodiastrum casuarinoides. Phytochemistry 37(6):1759–1761.
dc.relation.referencesLiu, J. S., Zhu, Y. L., Yu, C. M., Zhou, Y. Z., Han, Y. Y., Wu, F. W., Qi, B. F., (1986). The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can J Chem 64(4):837–839.
dc.relation.referencesLiu, Y. C., Fan, M., Jiang, W. W., Liu, F., Wu, X. D., He, J., ... & Zhao, Q. S. (2015). Four new fawcettimine-related alkaloids from Phlegmariurus squarrosus. Journal of Asian natural products research, 17(10), 967-975.
dc.relation.referencesLiu, Y. C., Su, J., Wu, X. D., Zhang, Z. J., Fan, M., Zhu, Q. F., ... & Zhao, Q. S. (2016). Five new Lycopodium alkaloids from the aerial parts of Phlegmariurus henryi. Fitoterapia, 115, 148-154.
dc.relation.referencesLiu, Y., Li, J., Li, D., Li, X., Li, D., Zhou, G., Xu, K., Kang, F., Zou, Z., Xu, P., & Tan, G. (2019). Anti-cholinesterase activities of constituents isolated from Lycopodiastrum casuarinoides. Fitoterapia, 104366.
dc.relation.referencesLiu, Y., Wang, Q., Xie, Z., Zheng, D. K., Li, J., & Tan, G. S. (2023). Lycopodiastrum casuarinoides: An overview of their phytochemicals, biological activities, structure-activity relationship, biosynthetic pathway and 13C NMR data. Fitoterapia, 165.
dc.relation.referencesLiu, Y., Wang, Q., Zheng, D. K., Zhang, D., Xie, Z., Hu, J. W., ... & Jiang, S. P. (2022). Abietane diterpenoids with neuroprotective activities from Phlegmariurus carinatus. Natural Product Research, 36(23), 6006-6011.
dc.relation.referencesLuo, H., Li, Y., Sun, C., Wu, Q., Song, J., Sun, Y., Steinmetz, A., & Chen, S. (2010). Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in Lycopodium alkaloid biosynthesis and developmental regulation. BMC Plant Biology, 10, 209 - 209.
dc.relation.referencesMa, X., & Gang, D. (2004). The Lycopodium Alkaloids. Natural product reports, 21 6, 752-772.
dc.relation.referencesMa, X., & Gang, D. (2008). In vitro production of huperzine A, a promising drug candidate for Alzheimer's disease. Phytochemistry, 69 10, 2022-8.
dc.relation.referencesMegarajan, S., Avadhanula, R. K., & Suresh, R. D. (2023). Artemia culture techniques for marine finfish larval rearing.
dc.relation.referencesMeyer, B., Ferrigni, N., Putnam, J., Jacobsen, L., Nichols, D., & McLaughlin, J. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta medica, 45 5, 31-4.
dc.relation.referencesMiller, N., Hootele, C., & Braekman, J. C. (1973). Triterpenoids of Lycopodium megastachyum. Phytochemistry, 12(7), 1759-1761.
dc.relation.referencesMurillo-Aldana, J., & Murillo-Pulido, M. T. (2017). Diversidad de los helechos y licófitos de Colombia. Acta Botánica Malacitana, 42(1), 23-32.
dc.relation.referencesMurillo-Pulido, M. T., & Murillo-Aldana, J. (1999). Pteridófitos de Colombia I. Composición y distribución de las Lycopodiaceae. Rev Acad Colomb Cienc, 23, 19-38.
dc.relation.referencesNaf, U., & Trager, W. (1960). On the Control of Antheridium Formation in the Fern Species Lycodium japonicum. Proceedings of the Society for Experimental Biology and Medicine, 105, 82 - 86.
dc.relation.referencesNakayama, W., Fujiwara, Y., Kosuge, Y., Monthakantirat, O., Fujikawa, K., Watthana, S., ... & Ishiuchi, K. I. (2019). Phlenumdines D and E, new Lycopodium alkaloids from Phlegmariurus nummulariifolius, and their regulatory effects on macrophage differentiation during tumor development. Phytochemistry Letters, 29, 98-103.
dc.relation.referencesNett, R., Dho, Y., Low, Y., & Sattely, E., (2021). A metabolic regulon reveals early and late acting enzymes in neuroactive Lycopodium alkaloid biosynthesis. Proceedings of the National Academy of Sciences, 118.
dc.relation.referencesNguyen, C. N., Nguyen, H. T. H., Trinh, D. T. T., Van Le, T. H., Nguyen, T. D., Vinh, D., ... & Tran, M. H. (2023). Anti-inflammatory activity via NO production inhibition of compounds from Vietnamese Lycopodium casuarinoides Spring. Phytochemistry Letters, 58, 42-48.
dc.relation.referencesNguyen, H. T., Doan, H. T., Ho, D. V., Pham, K. T., Raal, A., & Morita, H. (2018). Huperphlegmines A and B, two novel Lycopodium alkaloids with an unprecedented skeleton from Huperzia phlegmaria, and their acetylcholinesterase inhibitory activities. Fitoterapia, 129, 267-271.
dc.relation.referencesNguyen, V. T., To, D. C., Tran, M. H., Oh, S. H., Kim, J. A., Ali, M. Y., Woo, M. H., ... & Min, B. S. (2015). Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua. Bioorganic & Medicinal Chemistry, 23(13), 3126-3134.
dc.relation.referencesNiinuma, S., Khudair, A., Habib, H., Khudair, A., MacKenzie, G., Atkin, S., & Butler, A. (2024). Unearthing nature's remedy: An exploration into Lycopodium's medicinal and therapeutic potential. Applied Materials Today.
dc.relation.referencesNilsu, T., Thaisaeng, W., Thamnarak, W., Eurtivong, C., Jumraksa, A., Thorroad, S., Khunnawutmanotham, N., Ruchirawat, S., & Thasana, N. (2018). Three Lycopodium alkaloids from Thai club mosses. Phytochemistry, 156, 83-88.
dc.relation.referencesOhba, T., Yoshino, Y., Ishisaka, M., Abe, N., Tsuruma, K., Shimazawa, M., Oyama, M., Tabira, T., & Hara, H. (2015). Japanese Huperzia serrata extract and the constituent, huperzine A, ameliorate the scopolamine-induced cognitive impairment in mice. Bioscience, Biotechnology, and Biochemistry, 79, 1838 - 1844.
dc.relation.referencesOllgaard, B. (1987). A revised classification of the Lycopodiaceae s. lat. Opera Botanica, 92, 153-178.
dc.relation.referencesØllgaard, B. (1992). Neotropical Lycopodiaceae-An Overview. Annals of the Missouri Botanical Garden, 79, 687-717.
dc.relation.referencesØllgaard, B. (2012). New combinations in Neotropical Lycopodiaceae. Phytotaxa, 57, 10-22.
dc.relation.referencesØllgaard, B. (2019). Synopsis of the genus Phlegmariurus (Lycopodiaceae) in Colombia. Phytotaxa, 426(1). pp. 22-23.
dc.relation.referencesØllgaard, B. (2020). Lycopodiaceae in Colombia: Subfamilies Lycopodioideae and Lycopodielloideae. Phytotaxa, 433, 195-224.
dc.relation.referencesØllgaard, B., & Windisch, P. (2014). Lycopodiaceae in Brazil. Conspectus of the family I. The genera Lycopodium, Austrolycopodium, Diphasium, and Diphasiastrum. 65, 293-309.
dc.relation.referencesØllgaard, B., & Windisch, P. (2016). Lycopodiaceae in Brazil. Conspectus of the family II. The genera Lycopodiella, Palhinhaea, and Pseudolycopodiella. 67, 691-719.
dc.relation.referencesØllgaard, B., & Windisch, P. (2019). Lycopodiaceae in Brazil. Conspectus of the family III. The genera Huperzia and Phlegmariurus. Rodriguesia.
dc.relation.referencesØllgaard, B., Kessler, M., & Smith, A. (2018). Prodromus of a fern flora for Bolivia. II. Lycopodiaceae. Phytotaxa, 334, 255-294.
dc.relation.referencesOrito, K., Manske, R. H., & Rodrigo, R. (1972). The Triterpenes of Lycopodium lucidulum Michx. Canadian Journal of Chemistry, 50(20), 3280-3282.
dc.relation.referencesPan, G., & Williams, R. (2012). Unified total syntheses of fawcettimine class alkaloids: fawcettimine, fawcettidine, lycoflexine, and lycoposerramine B. The Journal of organic chemistry, 77 10, 4801-11.
dc.relation.referencesPan, K., Jian-Guang, L., & Ling-Yi, K., (2014). A new Lycopodium alkaloid from Phlegmariurus fargesii. Chinese Journal of Natural Medicines, 12(5), 373-376.
dc.relation.referencesPérez-González, M., Ramírez-Cisneros, M., & Morales-Morales, F. (2021). Triterpenoids from Lycopodiaceae: Structure, bioactivity, and applications. Phytochemistry Reviews, 20(2), 215-234.
dc.relation.referencesPerez‐Lamarque, B., Laurent-Webb, L., Bourceret, A., Maillet, L., Bik, F., Cartier, D., Labolle, F., Holveck, P., Epp, D., & Selosse, M. (2022). Fungal microbiomes associated with Lycopodiaceae during ecological succession. Environmental Microbiology Reports, 15, 109 - 118.
dc.relation.referencesPita, P., Menezes, N., & Prado, J. (2006). Morfologia externa e interna das folhas vegetativas, esporofilos e esporângios de espécies de Huperzia bernh. (Lycopodiaceae - Pteridophyta) do Brasil. Brazilian Journal of Botany, 29, 115-131.
dc.relation.referencesQian, Z., & Ke, Y. (2014). Huperzine A: Is it an Effective Disease-Modifying Drug for Alzheimer’s Disease? Frontiers in Aging Neuroscience, 6.
dc.relation.referencesQin-Feng, Zhu., & Qin-Shi, Zhao (2019). Chemical constituents and biological activities of lycophytes and ferns. Chinese journal of natural medicines, 17(12), 887-891.
dc.relation.referencesRamos, C., & Sylvestre, L. (2010). Lycopodiaceae no Parque Nacional do Itatiaia, RJ e MG, Brasil. Acta Botanica Brasilica, 24, 25-46.
dc.relation.referencesRuebhart, D., Cock, I., & Shaw, G. (2008). Brine shrimp bioassay: Importance of correct taxonomic identification of Artemia (Anostraca) species. Environmental Toxicology, 23.
dc.relation.referencesRuggiero, M., Gordon, D., Orrell, T., Bailly, N., Bourgoin, T., Brusca, R., Cavalier-smith, T., Guiry, M., & Kirk, P. (2015). A Higher-Level Classification of All Living Organisms. PLoS ONE, 10.
dc.relation.referencesRusea, G., Claysius, K., Runi, S., Joanes, U., Maideen, H., & Latiff, A. (2009). Ecology and distribution of Lycopodiaceae Mirbel in Malaysia. Blumea, 54, 269-271.
dc.relation.referencesRyu, B., Ponce-Zea, J. E., Mai, V. H., Lee, M., Sung, S. H., Chin, Y. W., & Oh, W. K. (2024). Inhibition of protein tyrosine phosphatase 1B by serratane triterpenes from Huperzia serrata and their molecular docking study. Bioorganic & Medicinal Chemistry Letters, 111, 129904.
dc.relation.referencesSaga, Y., Araki, T., Araya, H., Saito, K., Yamazaki, M., Suzuki, H., & Kushiro, T. (2017). Identification of serratane synthase gene from the fern Lycopodium clavatum. Organic letters, 19(3), 496-499.
dc.relation.referencesSano, T., Tsuda, Y., & Inubushi, Y. (1970). Structures of tohogenol and tohogeninol: triterpenoids of Lycopodium serratum. Tetrahedron, 26(12), 2981-2986.
dc.relation.referencesSchmidt, R. (1989). The application of Artemia salina L. bioassay for screening of Fusaria toxins. , 121-130.
dc.relation.referencesSeago, J., Mohamed, K., Leasure, B., & Bonacorsi, N. (2022). Enigmatic Features of the Lycopodiaceae and Selaginellaceae—Lycopodophyta. International Journal of Plant Sciences, 184, 34 - 55.
dc.relation.referencesSeto, H., Furihata, K., Guangyi, X., Xiong, C., & Deji, P. (1988). Assignments of the 1H-and 13C-NMR spectra of four Lycopodium triterpenoids by the application of a new two-dimensional technique, heteronuclear multiple bond connectivity (HMBC). Agricultural and biological chemistry, 52(7), 1797-1801.
dc.relation.referencesShi, H., Li, Z. Y., & Guo, Y. W. (2005). A new serratane-type triterpene from Lycopodium phlegmaria. Natural Product Research, 19(8), 777-781.
dc.relation.referencesSimsek, E., Lu, X., Ouzounov, S., Block, T. M., & Mehta, A. S. (2006). α-Glucosidase inhibitors have a prolonged antiviral effect against hepatitis B virus through the sustained inhibition of the large and middle envelope glycoproteins. Antiviral Chemistry and Chemotherapy, 17(5), 259-267.
dc.relation.referencesSun, Z. H., Li, W., Tang, G. H., & Yin, S. (2017). A new serratene triterpenoid from Lycopodium japonicum. Journal of Asian Natural Products Research, 19(3), 299-303.
dc.relation.referencesTakayama, H., Katakawa, K., Kitajima, M., Yamaguchib, K., Aimi, N., (2002). Seven new Lycopodium alkaloids, lycoposerramines-C, -D, -E, -P, -Q, -S, and -U, from Lycopodium serratum Thunb. Tetrahedron Letter 43(46):8307–8311.
dc.relation.referencesTanaka, R., Ishikawa, Y., Minami, T., Minoura, K., Tokuda, H., & Matsunaga, S. (2003). Two new anti-tumor promoting serratane-type triterpenoids from the stem bark of Picea jezoensis var. jezoensis. Planta medica, 69 11, 1041-7.
dc.relation.referencesTanaka, R., Minami, T., Ishikawa, Y., Matsunaga, S., Tokuda, H., & Nishino, H. (2004). Cancer chemopreventive activity of serratane-type triterpenoids on two-stage mouse skin carcinogenesis. Cancer letters, 196(2), 121-126.
dc.relation.referencesTanaka, R., Minami, T., Tsujimoto, K., Matsunaga, S., Tokuda, H., Nishino, H., ... & Yoshitake, A. (2001). Cancer chemopreventive agents, serratane-type triterpenoids from Picea jezoensis. Cancer letters, 172(2), 119-126.
dc.relation.referencesTanaka, R., Shanmugasundaram, K., Yamaguchi, C., Ishikawa, Y., Tokuda, H., Nishide, K., & Node, M. (2004). Cancer chemopreventive activity of 3β-methoxyserrat-14-en-21β-ol and several serratane analogs on two-stage mouse skin carcinogenesis. Cancer letters, 214(2), 149-156.
dc.relation.referencesTang, Y., Li, N., Zou, Y., Ai, Y., Ma, G., Osman, E., Xiong, J., Li, J., Jin, Z., & Hu, J. (2019). LC-MS guided isolation and dereplication of Lycopodium alkaloids from Lycopodium cernuum var. sikkimense of different geographical origins. Phytochemistry, 160, 25-30.
dc.relation.referencesTesto, W. (2018). Devonian origin and Cenozoic radiation in the clubmosses (Lycopodiaceae). The University of Vermont and State Agricultural College.
dc.relation.referencesTesto, W., Øllgaard, B., Field, A., Almeida, T., Kessler, M., & Barrington, D. (2018). Phylogenetic systematics, morphological evolution, and natural groups in neotropical Phlegmariurus (Lycopodiaceae). Molecular phylogenetics and evolution, 125, 1-13.
dc.relation.referencesTesto, W., Sessa, E., & Barrington, D. (2018). The rise of the Andes promoted rapid diversification in Neotropical Phlegmariurus (Lycopodiaceae). The New phytologist, 222 1, 604-613.
dc.relation.referencesThaisaeng, W., Thamnarak, W., Ruchirawat, S., Chainok, K., & Thasana, N. (2024). Two new serratene triterpenes from club moss cultivars. Natural Product Research, 38(15), 2553-2561.
dc.relation.referencesThamnarak, W., Thaisaeng, W., Batsomboon, P., Eurtivong, C., Wannarit, N., Ruchirawat, S., & Thasana, N. (2023). Phlegcarines AC, three Lycopodium alkaloids from Phlegmariurus carinatus (Desv. ex Poir.) Ching. Phytochemistry, 206, 113553.
dc.relation.referencesThomasson, M. J., Diego-Taboada, A., Barrier, S., Martin-Guyout, J., Amedjou, E., Atkin, S. L., ... & Mackenzie, G. (2020). Sporopollenin exine capsules (SpECs) derived from Lycopodium clavatum provide practical antioxidant properties by retarding rancidification of an ω-3 oil. Industrial Crops and Products, 154, 112714.
dc.relation.referencesTo, D. C., Tran, M. H., Oh, S. H., Kim, J. A., Ali, M. Y., Woo, M. H., ... & Min, B. S. (2015). Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua. Bioorganic & Medicinal Chemistry, 23(13), 3126-3134.
dc.relation.referencesTong, X. T., Tan, C. H., Zhou, H., Jiang, S. H., Ma, X. Q., & Zhu, D. Y. (2003). Triterpenoid constituents of Huperzia miyoshiana. Chinese Journal of Chemistry, 21(10), 1364-1368.
dc.relation.referencesTrofimova, N. N., Gromova, A. S., & Semenov, A. A. (1996). Serratene triterpenoids from Lycopodium clavatum L. (Lycopodiaceae). Russian chemical bulletin, 45, 961-963.
dc.relation.referencesTroìa, A., & Greuter, W. (2015). A critical conspectus of Italian Lycopodiaceae. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 149, 678 - 694.
dc.relation.referencesTsuda, Y., Fujimoto, T., & Kimpara, K. (1970). 16-Oxoserratriol and 16-oxolycoclavanol: Lycopodium triterpenoids. Journal of the Chemical Society D: Chemical Communications, (5), 261-262.
dc.relation.referencesTsuda, Y., Isobe, K., & Sano, T. (1975). IX. Lycopodium triterpenoid. (6). The structures of three tetra-ols, lycocryptol, 21-epilycocryptol, and diepilycocryptol, and two new acids, lycernuic acid-A and-B. Chem. Pharm. Bull., 23(2), 264.
dc.relation.referencesTsuda, Y., Kaneda, M., Yasufuku, N., & Shimizu, Y. (1981). Lycopodium Triterpenoids. (11). The Structures of Inundoside -A, -B, -C, -D1, -D2, -E, -F, and-G, Triterpenoid-glycosides Occurring in Lycopodium inundatum L. Chemical and Pharmaceutical Bulletin, 29(8), 2123-2134.
dc.relation.referencesTsuda, Y., Sano, T., Morimoto, A., & Inubushi, Y. (1966). Lycoclavanol and serratriol. Tetrahedron Letters, 7(47), 5933-5938.
dc.relation.referencesTsuda, Y., Tabata, Y., & Ichinohe, Y. (1980). Lycopodium triterpenoids. (10). Triterpenoid constituents of Lycopodium wightianum collected in Borneo. Chemical and Pharmaceutical Bulletin, 28(11), 3275-3282.
dc.relation.referencesWang, B., Guan, C., & Fu, Q. (2021). The traditional uses, secondary metabolites, and pharmacology of Lycopodium species. Phytochemistry Reviews, 1-79.
dc.relation.referencesWang, J., Li, H., Wang, X., Shen, T., Wang, S., & Ren, D. (2018). Alisol B-23-acetate, a tetracyclic triterpenoid isolated from Alisma orientale, induces apoptosis in human lung cancer cells via the mitochondrial pathway. Biochemical and biophysical research communications, 505 4, 1015-1021.
dc.relation.referencesWang, R., Zhang, H. Y., & Tang, X. C. (2001). Huperzine A attenuates cognitive dysfunction and neuronal degeneration caused by β-amyloid protein-(1–40) in rat. European journal of pharmacology, 421(3), 149-156.
dc.relation.referencesWang, X. J., Li, L., Yu, S. S., Ma, S. G., Qu, J., Liu, Y. B., Li, Y., Wang, Y. D., Tang, W. B., (2013). Five new fawcettimine-related alkaloids from Lycopodium japonicum Thunb. Fitoterapia 91:74–81.
dc.relation.referencesWang, X., Yu, D., & Yu, S. (2014). Two New Triterpenoids from Lycopodium japonicum Thunb. Chinese Journal of Chemistry, 32(10), 1007-1010.
dc.relation.referencesWang, Z., Wu, J., Zhao, N., Yang, Y., & Chen, Y. (2016). Two new Lycopodium alkaloids from Phlegmariurus phlegmaria (L.) Holub. Natural product research, 30(2), 241-245.
dc.relation.referencesWei, J. J., Wang, W. Q., Song, W. B., & Xuan, L. J. (2018). Serratene-type triterpenoids from Palhinhaea cernua. Fitoterapia, 127, 151-158.
dc.relation.referencesWikström, N., & Kenrick, P. (1997). Phylogeny of Lycopodiaceae (Lycopsida) and the Relationships of Phylloglossum drummondii Kunze Based on rbcL Sequences. International Journal of Plant Sciences, 158, 862 - 871.
dc.relation.referencesWikström, N., & Kenrick, P. (2001). Evolution of Lycopodiaceae (Lycopsida): estimating divergence times from rbcL gene sequences by use of nonparametric rate smoothing. Molecular phylogenetics and evolution, 19 2, 177-86.
dc.relation.referencesWittayalai, S., Sathalalai, S., Thorroad, S., Worawittayanon, P., Ruchirawat, S., & Thasana, N. (2012). Lycophlegmariols A-D: cytotoxic serratene triterpenoids from the club moss Lycopodium phlegmaria L. Phytochemistry, 76, 117-23.
dc.relation.referencesWu, C. (2014). An important player in brine shrimp lethality bioassay: The solvent. Journal of Advanced Pharmaceutical Technology & Research, 5, 57 - 58.
dc.relation.referencesXia, Z., Wei, Z., Shen, H., Shu, J., Wang, T., Gu, Y., Jaisi, A., & Yan, Y. (2021). Lycophyte transcriptomes reveal two whole-genome duplications in Lycopodiaceae: Insights into the polyploidization of Phlegmariurus. Plant Diversity, 44, 262 - 270.
dc.relation.referencesXiao, X., Wang, R., & Tang, X. (2000). Huperzine A and tacrine attenuate beta-amyloid peptide-induced oxidative injury. Journal of neuroscience research, 61 5, 564-9.
dc.relation.referencesXie, X., Jiang, J., Liu, Y., Min, K., Xue, Y., Jing, B., ... & Chen, Y. (2010). A new Lycopodine alkaloid from Phlegmariurus yunnanensis Ching. Helvetica Chimica Acta, 93(7), 1381-1384.
dc.relation.referencesXinhui, L., Zelin, X., & Shanqin, Y. (2002). Studies of the alkaloids of Phlegmariurus fordii (Baker) Ching. Bulletin of the Academy of Military Medical Sciences, 26(2), 123-138.
dc.relation.referencesXu, M., Heidmarsson, S., Boer, H., Kool, A., & Olafsdottir, E. (2019). Ethnopharmacology of the club moss subfamily Huperzioideae (Lycopodiaceae, Lycopodiophyta): A phylogenetic and chemosystematic perspective. Journal of ethnopharmacology, 112130.
dc.relation.referencesYan, J., Cheng, B. H., Zhang, X. M., & Qiu, M. H. (2006). Three new serratane triterpenoids from Phlegmariurus squarrosus. Helvetica chimica acta, 89(12), 2975-2980.
dc.relation.referencesYan, J., Sun, L., Li, W., Zhou, L., Li, Z., Zhang, X., ... & Qiu, M. (2010). Cytotoxic serratane triterpenes from Diphasiastrum complanatum with a hydroxy group at C-27. Planta medica, 76(04), 353-357.
dc.relation.referencesYan, J., Sun, L., Zhang, X., Li, Z., Zhou, L., & Qiu, M. (2009). Serratene Triterpenoids from Palhinhaea cernua var. sikkimensis. Chemical and Pharmaceutical Bulletin, 57(12), 1381-1384.
dc.relation.referencesYan, J., Yi, P., Chen, B., Lu, L., Li, Z., Zhang, X., ... & Qiu, M. (2008). Polyhydroxyserratane triterpenoids from Diphasiastrum complanatum. Phytochemistry, 69(2), 506-510.
dc.relation.referencesYan, J., Zhang, X. M., Li, Z. R., Zhou, L., Chen, J. C., Sun, L. R., & Qiu, M. H. (2005). Three new triterpenoids from Lycopodium japonicum Thunb. Helvetica chimica acta, 88(2), 240-244.
dc.relation.referencesYang, L., Ye, C., Huang, X., Tang, X., & Zhang, H. (2012). Decreased accumulation of subcellular amyloid-β with improved mitochondrial function mediates the neuroprotective effect of huperzine A. Journal of Alzheimer's disease: JAD, 31 1, 131-42.
dc.relation.referencesYin, S., Fan, C. Q., Wang, X. N., Yue, J. M., (2006). Lycodine-type alkaloids from Lycopodium casuarinoides. Helv Chim Acta 89:138–143.
dc.relation.referencesZhang, H., Zheng, C., Yan, H., Wang, Z., Tang, L., Gao, X., & Tang, X. (2008). Potential therapeutic targets of huperzine A for Alzheimer's disease and vascular dementia. Chemico-biological interactions, 175 1-3, 396-402.
dc.relation.referencesZhang, Y., Yi, P., Chen, Y., Mei, Z. N., Hu, X., & Yang, G. Z. (2014). Lycojaponicuminol A–F: cytotoxic serratene triterpenoids from Lycopodium japonicum. Fitoterapia, 96, 95-102.
dc.relation.referencesZhang, Z., ElSohly, H. N., Jacob, M. R., Pasco, D. S., Walker, L. A., & Clark, A. M. (2002). Natural products inhibiting Candida albicans secreted aspartic proteases from Lycopodium cernuum. Journal of natural products, 65(7), 979-985.
dc.relation.referencesZheng, K. K., Zhao, Y. Y., Yuan, P. L., Wu, Y. C., Zhang, L. Q., Guo, F. J. (2016). Chemical constituents of non-alkaloids from Huperzia serrata. Chinese Traditional and Herbal Drugs, 15-20.
dc.relation.referencesZhi, Q., Yi, F., & Xi, C. (1995). Huperzine A ameliorates the spatial working memory impairments induced by AF64A. Neuroreport, 6 16, 2221-4 .
dc.relation.referencesZhou, H., Li, Y. S., Tong, X. T., Liu, H. Q., Jiang, S. H., & Zhu, D. Y. (2004). Serratane-type triterpenoids from Huperzia serrata. Natural Product Research, 18(5), 453-459.
dc.relation.referencesZhou, W., Kang, F., Huang, L., Li, J., Wang, W., Xiao, L., Wen, Q., Yu, X., Xu, Y., Zou, Z., Zhou, H., Zang, H., Chen, S., & Xu, K. (2020). Serratane triterpenoids from Lycopodium complanatum and their anti-cancer and anti-inflammatory activities. Bioorganic chemistry, 101, 103959.
dc.relation.referencesZhu, Y., Dong, L. B., Zhang, Z. J., Fan, M., Zhu, Q. F., Qi, Y. Y., Liu, Y. C., Peng, L. Y., Wu, X. D., Zhao, Q. S., (2018). Three new Lycopodium alkaloids from Lycopodium japonicum. J Asian Nat Prod Re 21(1):17–24.
dc.relation.referencesAyer, W. A., Ma, Y. T., Liu, J. S., Huang, M. F., Schultz, L. W., & Clardy, J. (1994). Macleanine, a unique type of dinitrogenous Lycopodium alkaloid. Canadian journal of chemistry, 72(1), 128-130.
dc.relation.referencesDiMichele, W., & Phillips, T. (1985). Arborescent lycopod reproduction and paleoecology in a coal-swamp environment of late Middle Pennsylvanian age (herrin coal, Illinois, U.S.A.). Review of Palaeobotany and Palynology, 44, 1-26.
dc.relation.referencesDymek, A., Widelski, J., Wojtanowski, K., Płoszaj, P., Zhuravchak, R., & Mroczek, T. (2021). Optimization of Pressurized Liquid Extraction of Lycopodiaceae Alkaloids Obtained from Two Lycopodium Species. Molecules, 26 (6), 1626.
dc.relation.referencesFilipe, M. S., Isca, V. M., Princiotto, S., Díaz-Lanza, A. M., & Rijo, P. (2022). Lethality Bioassay using Artemia salina L. JoVE (Journal of Visualized Experiments), (188).
dc.relation.referencesInubushi, Y., Sano, T., & Price, J. R. (1967). Triterpene constituents of Lycopodium complanatum L. from New Guinea. Australian Journal of Chemistry, 20(2), 387-388.
dc.relation.referencesInubushi, Y., Tsuda, Y., & Sano, T. (1962). Studies on the constituents of domestic Lycopodium genus plants. I. On the constituents of Lycopodium clavatum L. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan, 82, 1537-1541
dc.relation.referencesInubushi, Y., Tsuda, Y., Sano, T., & Nakagawa, R. (1965). 21-Episerratenediol, Isolation and its Structure. Chemical and Pharmaceutical Bulletin, 13(1), 104-105.
dc.relation.referencesKatakawa, K., Mito, H., Kogure, N., Kitajima, M., Wongseripipatana, S., Arisawa, M., Takayama, H., (2011). Ten new fawcettimine-related alkaloids from three species of Lycopodium. Tetrahedron 67:6561–6567.
dc.relation.referencesLiang, L., Chen, Q., Xu, J., Liu, T., Song, X., Chen, H., & H, C. (2019). Serratanes from whole plant of Palhinhaea cernua. Chemistry of Natural Compounds, 55(4), 759-761.
dc.relation.referencesNguyen, V., Zhao, B., Seong, S., Kim, J., Woo, M., Choi, J., & Min, B. (2017). Inhibitory effects of serratene-type triterpenoids from Lycopodium complanatum on cholinesterases and β-secretase 1. Chemico-biological interactions, 274, 150-157.
dc.relation.referencesSimpson, G. Michael. (2019). Plant Systematics. 3ra Edición. Capítulo 4. Evolution and Diversity of Vascular Plants. p.p 75-130. Academic Press.
dc.relation.referencesVallejo, M. G., Corzo, M. E., Ortega, M. G., & Agnese, A. M. (2020). 12α-hydroxy-N-demethyl-sauroxine, a lycodane type alkaloid from Phlegmariurus saururus. Natural product research, 34(9), 1270-1275.
dc.relation.referencesWang, C., Yang, X., Mellick, G. D., & Feng, Y. (2022). Phlegmacaritones A and B, a pair of serratane-related triterpenoid epimers with an unprecedented carbon skeleton from Phlegmariurus carinatus. Journal of Natural Products, 85(4), 899-909.
dc.relation.referencesWang, Y., Tang, X., & Zhang, H. (2012). Huperzine a alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice. Journal of Neuroscience Research, 90.
dc.relation.referencesYan, J., Zhou, Z. Y., Zhang, M., Wang, J., Dai, H. F., & Tan, J. W. (2012). New serratene triterpenoids from Palhinhaea cernua and their cytotoxic activity. Planta medica, 78(12), 1387-1391.
dc.relation.referencesZangara, A. (2003). The psychopharmacology of huperzine A: an alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer's disease. Pharmacology Biochemistry and Behavior, 75(3), 675-686.
dc.relation.referencesZhou, H., Tan, C. H., Jiang, S. H., & Zhu, D. Y. (2003). Serratene-Type Triterpenoids from Huperzia serrata. Journal of natural products, 66(10), 1328-1332.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.lembLicofitasspa
dc.subject.lembLycophyteseng
dc.subject.lembExtractos de plantasspa
dc.subject.lembPlant extractseng
dc.subject.lembLicopodiaceasspa
dc.subject.lembLycopodiaceaeeng
dc.subject.proposalLycopodiaceae, Phlegmariurus hippurideus, triterpenos, serratano, aislamiento bioguiado, RMN, toxicidad, Artemia salina.spa
dc.subject.proposalLycopodiaceae, Phlegmariurus hippurideus, triterpenoids, serratane, bioguided isolation, NMR, toxicity, Artemia salina.eng
dc.subject.proposalLycopodiaceae
dc.subject.proposalPhlegmariurus hippurideus
dc.subject.proposalTriterpenosspa
dc.subject.proposalSerratanospa
dc.subject.proposalAislamiento bioguiadospa
dc.subject.proposalRMN
dc.subject.proposalToxicidadspa
dc.subject.proposalArtemia salinaspa
dc.subject.proposalTriterpenoidseng
dc.subject.proposalSerrataneeng
dc.subject.proposalBioguided isolationeng
dc.subject.proposalNMR
dc.subject.proposalToxicityeng
dc.titleAlgunos constituyentes químicos y actividad biológica de Phlegmariurus hippurideus (Lycopodiaceae)spa
dc.title.translatedSome chemical constituents and biological activity of Phlegmariurus hippurideus (Lycopodiaceae)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075289123.2025.pdf
Tamaño:
14.38 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: