Estudio comparativo de métodos de extracción y evaluación del efecto protector de extractos de hojas de mandarina (Citrus reticulata) var. Arrayana contra la oxidación lipídica en aceite de soja
dc.contributor.advisor | Palomeque Forero, Liliam Alexandra | spa |
dc.contributor.advisor | Parada Alfonso, Fabián | spa |
dc.contributor.author | Rodríguez García, Camilo | spa |
dc.contributor.researchgroup | Grupo de Investigación en Química de Alimentos | spa |
dc.date.accessioned | 2025-04-21T22:54:13Z | |
dc.date.available | 2025-04-21T22:54:13Z | |
dc.date.issued | 2025-04-15 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El efecto negativo de los antioxidantes sintéticos sobre la salud junto con el interés de los consumidores por adquirir productos naturales ha contribuido a sustituir los aditivos sintéticos por antioxidantes naturales. En este sentido, la valorización de residuos y subproductos agroindustriales representa una alternativa económica y ambiental para la obtención de compuestos bioactivos. Por lo tanto, este estudio se centró en la valorización de hojas de mandarina (Citrus reticulata) var. Arrayana mediante la extracción de compuestos antioxidantes utilizando dióxido de carbono supercrítico (CO₂ SC) para proteger aceite de soja contra la oxidación lipídica. Inicialmente, se obtuvieron extractos Soxhlet con hexano, acetato de etilo y etanol con el fin de verificar la polaridad de los compuestos obtenidos que pudieran presentar efecto protector contra la oxidación lipídica. Entre los extractos, el obtenido con hexano ofreció la mayor protección en términos de índice de peróxido y p-anisidina lo que indica la acción de los compuestos no polares como antioxidantes en el aceite. Para extraer eficientemente estos compuestos no polares utilizando un solvento no tóxico, se realizó un diseño central compuesto (DCC) que evaluó las presiones de CO₂ SC (100, 200 y 300 bar) y temperatura (40, 50 y 60 °C). Se evaluó el contenido fenólico total (CFT) y la capacidad antioxidante mediante ABTS y DPPH y se evaluó la oxidación cada 5 días durante 20 días por ensayos de estabilidad oxidativa acelerados como horno Schaal y Rancimat. La condición óptima de extracción (37 ºC y 273 bar) permitió obtener compuestos que promovieron la mejor protección del aceite en el día 20 de seguimiento en términos de índice de peróxido más bajo (6,96 meq O₂/kg) e índice de p-anisidina (13,36) que el control, así como un tiempo de inducción más largo (5,2 h frente a 4,4 h para hexano y 3,8 h para el control). El extracto optimo mostró un contenido total de fenoles comparable al obtenido por extracción Soxhlet y superó su capacidad antioxidante en los ensayos DPPH (41,2 umol eq. Trolox/g extracto) y ABTS (1159 umol eq. Trolox/g extracto). Además, este extracto promovió un cambio de color menor (ΔE = 11,36) en el aceite que el de hexano (ΔE = 13,3). Estos resultados se asociaron con las diferentes clases de compuestos extraídos debido a las condiciones empleadas. Una presión de CO2 y una temperatura más bajas permitieron un extracto con una mayor concentración de compuestos bioactivos como terpenoides como linalol, timol y tangeritina, carotenoides como luteína, all-trans-β-caroteno y clorofila a. Por lo tanto, la extracción con CO2 SC de compuestos no polares de las hojas de mandarina demostró ser un método sostenible y eficaz para obtener antioxidantes naturales para mejorar la estabilidad oxidativa del aceite de soja. (Texto tomado de la fuente). | spa |
dc.description.abstract | The negative effect of synthetic antioxidants on health, along with the interest of consumers in purchasing natural products, has contributed to substituting synthetic additives with natural antioxidants. In this sense, valorizing agro-industrial waste for obtaining bioactive compounds represents an economic and environmental alternative. In this context, this study focused on valorizing tangerine leaves (Citrus reticulata) var. Arrayana by extracting antioxidant compounds using supercritical carbon dioxide (SC-CO2) to preserve soybean oil against lipidic oxidation. Initially, Soxhlet extracts were acquired with hexane, ethyl acetate, and ethanol to verify the polarity of compounds obtained from tangerine leaves that could present antioxidant activity in soybean oil. Thus, among the extracts, hexane one offered the highest protection against lipid oxidation, indicating the action of tangerine leaves non-polar compounds as oil preservatives. To efficiently extract these non-polar compounds using a non-toxic solvent, a central composite design (CCD) evaluating SC-CO2 pressures (100, 200, 300 bar) and temperatures (40, 50, 60 °C) was performed to optimize the condition to obtain compounds for protecting soybean oil. The extracts were added to soybean oil and the oil was evaluated for 20 days. The optimal extraction condition (37 °C and 273 bar) allowed compounds that promoted the best oil protection, allowing lower peroxide index (6.96 meq O₂/kg) and p-anisidine index (13.36) than the control, as well as a longer induction time (5.2 h versus 4.4 h for hexane and 3.8 h for the control). The optimal extract showed a total phenol content comparable to that obtained by Soxhlet extraction and surpassed its antioxidant capacity in the DPPH (41,2 umol eq. Trolox/g extract) and ABTS (1159 umol eq. Trolox/g extract) assays. Moreover, this extract promoted lower color change (ΔE = 11.36) in the oil than hexane one (ΔE = 13.3). These results were associated with the different classes of compounds extracted due to the conditions employed. A lower CO2 pressure and temperature allowed an extract with a higher concentration of bioactive compounds like as linalool, thymol, and tangeritin, carotenoids like lutein, all-trans- carotene and chlorophyll a. Therefore, SC-CO2 extraction of non-polar compounds from tangerine leaves proved to be a sustainable and effective method for obtaining natural antioxidants to enhance the oxidative stability of soybean oil. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencia y Tecnología de Alimentos | spa |
dc.description.researcharea | Calidad de los alimentos | spa |
dc.format.extent | xi, 110 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88021 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Aguilar, P., Escobár, M. J., & Pássaro, C. P. (2012). Situación actual de la cadena de cítricos en Colombia: limitantes y perspectivas. In L. F. Garcés (Ed.), Cítricos: cultivo, poscosecha e industrialización (Corporació, pp. 7–47). Ministerio de Agricultura y Desarrollo Rural, Corpoica, Universidad de Antioquia. http://repository.unilasallista.edu.co/dspace/bitstream/10567/452/1/citricos.pdf | spa |
dc.relation.references | Agustí, M. (2003). Citricultura. Madrid, España: Editorial Mundi-Prensa | spa |
dc.relation.references | Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. In Plants (Vol. 6, Issue 4). MDPI AG. https://doi.org/10.3390/plants6040042 | spa |
dc.relation.references | Alvarez, G., Bueno, M., Ballesteros, D., Mendiola, J. A., & Ibañez, E. (2020). Pressurized Liquid Extraction. In Liquid-Phase Extraction (pp. 375–398). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816911-7.00013-X | spa |
dc.relation.references | Anwar, F., Nasser, R., Bhanger, M., Ashraf, S., Talpur, F., & Aladedunye, F. (2008). Physico-Chemical Characteristics of Citrus Seeds and Seed Oils from Pakistan. J Am Oil Chem Soc, 321–330. https://doi.org/10.1007/s11746-008-1204-3 | spa |
dc.relation.references | Andrade, M. A., Barbosa, C. H., Shah, M. A., Ahmad, N., Vilarinho, F., Khwaldia, K., Silva, A. S., & Ramos, F. (2022). Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants, 12(1), 38. https://doi.org/10.3390/ANTIOX12010038 | spa |
dc.relation.references | Amórtegui, I. (2001). El cultivo de los cítricos (pp. 13-16). Ibagué, Tolima, Colombia: Corporación para la promoción del desarrollo rural y agroindustrial de Tolima Prohaciendo. | spa |
dc.relation.references | Asensio, V. Nepote, N.R. Grosso, Int. J. Food Sci. Tech. 48,2417 (2013) | spa |
dc.relation.references | Ateş, F., Şahin, S., & İlbay, Z. (2017). A Green Valorisation Approach Using Microwaves and Supercritical CO 2 for High-Added Value Ingredients from Mandarin ( Citrus deliciosa Tenore ) Leaf Waste. Waste and Biomass Valorization, 0(0), 0. https://doi.org/10.1007/s12649-017-0074-z | spa |
dc.relation.references | Atolani, O., Adamu, N., Oguntoye, O. S., Zubair, M. F., Fabiyi, O. A., Oyegoke, R. A., Adeyemi, O. S., Areh, E. T., Tarigha, D. E., Kambizi, L., & Olatunji, G. A. (2020). Chemical characterization, antioxidant, cytotoxicity, Anti-Toxoplasma gondii and antimicrobial potentials of the Citrus sinensis seed oil for sustainable cosmeceutical production. Heliyon, 6(March 2019), e03399. https://doi.org/10.1016/j.heliyon.2020.e03399 | spa |
dc.relation.references | Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014 | spa |
dc.relation.references | Balamurugan P, Rajkumar AR, Prasad MP: Comparative phytochemical analysis of Rutaceae family (Citrus Species) extracts. Int J Sci. 2014; 148–150. | spa |
dc.relation.references | Ballesteros-Vivas, D., Álvarez-Rivera, G., del Pilar Sánchez-Camargo, A., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Journal of Chromatography A, 1584, 155–164. https://doi.org/10.1016/j.chroma.2018.11.055 | spa |
dc.relation.references | Ballesteros-Vivas, D.; Alvarez-Rivera, G.; García Ocampo, A. F.; Morantes, S. J.; Sánchez Camargo, A. del P.; Cifuentes, A.; Parada-Alfonso, F.; Ibánez, E. Supercritical Antisolvent Fractionation as a Tool for Enhancing Antiproliferative Activity of Mango Seed Kernel Extracts against Colon Cancer Cells. J. Supercrit. Fluids 2019, 152, 104563. https://doi.org/10.1016/j.supflu.2019.104563. | spa |
dc.relation.references | Bellés, M. ; Alonso, V. ; Roncalés, P. ; Beltrán, J.A. Carne de hamburguesa de cordero sin sulfito: Propiedades antimicrobianas y antioxidantes del té verde y el carvacrol. J. Ciencia. Agricultura alimentaria. 2018, 99, 464-472. | spa |
dc.relation.references | Bernhoft, A., & Symposium Held at the Norwegian Academy of Science and Letters (2008 : Oslo). (2010). Bioactive compounds in plants : benefits and risks for man and animals : proceedings from a symposium held in Norwegian Academy of Science and Letters, Oslo, 13-14 November 2008. Novus Forlag. | spa |
dc.relation.references | Blasi, F., & Cossignani, L. (2020). An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. In Processes (Vol. 8, Issue 8). MDPI AG. https://doi.org/10.3390/PR8080956 | spa |
dc.relation.references | Bloom, A. J. (2010). Assimilation of inorganic Nutrients. En L. Taiz, E. Zeiger, I. M. Moller y A. Murphy (eds.), Plant physiology and development (pp. 360-361). Massachusets: Publishers Sunderland. | spa |
dc.relation.references | Boora, F., Chirisa, E., & Mukanganyama, S. (2014). Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents. Journal of Food Processing, 2014(1), 918018. | spa |
dc.relation.references | Buelvas-Puello LM, Franco-Arnedo G, Martínez-Correa HA, Ballesteros-Vivas D, Sánchez-Camargo AdP, Miranda-Lasprilla D, Narváez-Cuenca C-E, Parada-Alfonso F. Supercritical Fluid Extraction of Phenolic Compounds from Mango (Mangifera indica L.) Seed Kernels and Their Application as an Antioxidant in an Edible Oil. Molecules. 2021; 26(24):7516. https://doi.org/10.3390/molecules26247516 | spa |
dc.relation.references | Cárdenas, G., Arrazola, G., & Villalba, C. (2015). Frutas tropicales : fuente de compuestos bioactivos naturales en la industria de alimentos *. Revista de La Facultad de Ingeniería INGENIUM, 29–40. | spa |
dc.relation.references | Casas Mesa, N., & Ortiz Ramírez, J. S. (2019a). Protocolo de ensayo para determinaion de fenoles y polifenoles mediante el método de Folin-Ciocalteu. Universidad Nacional de Colombia, 2, 1–18. | spa |
dc.relation.references | Casas Mesa, N., & Ortiz Ramírez, J. S. (2019b). Protocolo de estimacion de la actividad antioxidante por determinacion de la concentración de eficiencia (EC50) del radical 1,1-difenil-2-picrilhidrazil (DPPH). Universidad Nacional de Colombia, 2, 1–17. | spa |
dc.relation.references | Cavalcanti, R. N., Meireles, M. A. A., & Sp, C. (2012). Fundamentals of Supercritical Fluid Extraction. In Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists (Vol. 2). Elsevier. https://doi.org/10.1016/B978-0-12-381373-2.10039-0 | spa |
dc.relation.references | Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Review of green food processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies, 41, 357-377. | spa |
dc.relation.references | Chen, J., Yuan, Z., Zhang, H., Li, W., Shi, M., Li, M., Tian, J., Deng, X., Cheng, Y., Deng, C. H., Peng, Z., Tian, J., Cheng, Y., Yao, J., & Zealand, N. (2019). Cit1,2RhaT and two novel CitdGlcTs participate in flavor-related flavonoid metabolism during citrus fruit development Accepted. Experimental Botany, 70(10), 2759–2771. https://doi.org/https://doi.org/10.1093/jxb/erz081 | spa |
dc.relation.references | Chi, P. T. L., van Hung, P., le Thanh, H., & Phi, N. T. L. (2020). Valorization of Citrus Leaves: Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oils. Waste and Biomass Valorization, 11(9), 4849–4857. https://doi.org/10.1007/s12649-019-00815-6 | spa |
dc.relation.references | Choe, E., & Min, D. B. (2006). Mechanisms and Factors for Edible Oil Oxidation. Comprehensive Reviews in Food Science and Food Safety, 5, 169–186. https://doi.org/https://doi.org/10.1111/j.1541-4337.2006.00009.x | spa |
dc.relation.references | Chun, O.K., Kim, D.-O., Moon, H.Y., Kang, H.G., Lee, C.Y., 2003. Contribution of individual polyphenolics to total antioxidant capacity of plums. Journal of Agricultural and Food Chemistry 51, 7240–7245. | spa |
dc.relation.references | Chun, O.K., Kim, D.O., Smith, N., Schroeder, D., Han, J.T., Lee, C.Y., 2005. Daily consumption of phenolics and total antioxidant capacity from fruits and vegetables in the American diet. Journal of the Science of Food and Agriculture 85, 1715–1724. | spa |
dc.relation.references | Cissé, M., Bohuon, P., Sambe, F., Kane, C., Sakho, M., & Dornier, M. (2012). Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling. Journal of Food Engineering, 109, 16-21. https://doi.org/10.1016/J.JFOODENG.2011.10.012. | spa |
dc.relation.references | CODEX ALIMENTARIUS- CODEX STAN210-1999- Normas Internacionales de los Alimentos. Roma, 2017. | spa |
dc.relation.references | Corrales, L. C., María, M., & Ariza, M. (2012). Estrés oxidativo : origen , evolución y consecuencias de la toxicidad del oxígeno. | spa |
dc.relation.references | Correa, E., Quiñones, W., & Echeverri, F. (2015). Methyl-N-methylanthranilate, a pungent compound from Citrus reticulata Blanco leaves. Pharmaceutical Biology, 54(4), 569–571. https://doi.org/10.3109/13880209.2015.1044618 | spa |
dc.relation.references | Dalia, I. H., Maged, E. M., & Assem, M. E. S. (2016). Citrus reticulata Blanco cv. Santra leaf and fruit peel: A common waste products, volatile oils composition and biological activities. Journal of Medicinal Plants Research, 10(30), 457–467. https://doi.org/10.5897/jmpr2016.6139 | spa |
dc.relation.references | De Lucas, A., Martinez de la Ossa, E., Rincón, J., Blanco, M. ., & Gracia, I. (2002). Supercritical fluid extraction of tocopherol concentrates from olive tree leaves. The Journal of Supercritical Fluids, 22(3), 221–228. doi:10.1016/s0896-8446(01)00132-2 | spa |
dc.relation.references | DANE. (2019). Encuesta Nacional Agropecuaria (ENA) 2017 (pp. 1–31). https://www.agronet.gov.co/Lists/Boletin/Attachments/2575/boletin_ena_2017.pdf | spa |
dc.relation.references | Da Porto, C., Voinovich, D., Decorti, D., & Natolino, A. (2012). Response surface optimization of hemp seed (Cannabis sativa L.) oil yield and oxidation stability by supercritical carbon dioxide extraction. The journal of supercritical fluids, 68, 45-51. | spa |
dc.relation.references | Domínguez-Rodríguez, G., Amador-Luna, V. M., Benešová, K., Pernica, M., Parada-Alfonso, F., & Ibáñez, E. (2024). Biorefinery approach with green solvents for the valorization of Citrus reticulata leaves to obtain antioxidant and anticholinergic extracts. Food Chemistry, 140034. | spa |
dc.relation.references | Domínguez-Rodríguez, G., Ramón Vidal, D., Martorell, P., Plaza, M., & Marina, M. L. (2022). Composition of Nonextractable Polyphenols from Sweet Cherry Pomace Determined by DART-Orbitrap-HRMS and Their in Vitro and in Vivo Potential Antioxidant, Antiaging, and Neuroprotective Activities. Journal of Agricultural and Food Chemistry, 70(26), 7993–8009. https://doi.org/10.1021/acs.jafc.2c03346 | spa |
dc.relation.references | Dhara, K. N. P. Rani, P. P. Chakrabarti, Supercritical Carbon Dioxide Extraction of Vegetable Oils: Retrospective and Prospects. Eur. J. Lipid Sci. Technol. 2022, 124, 2200006. https://doi.org/10.1002/ejlt.202200006 | spa |
dc.relation.references | Drescher, A.; Kienberger, M. A Systematic Review on Waste as Sustainable Feedstock for Bioactive Molecules—Extraction as Isolation Technology. Processes 2022, 10, 1668. | spa |
dc.relation.references | Drosou, C., Kyriakopoulou, K., Bimpilas, A., Tsimogiannis, D., & Krokida, M. (2015). A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Industrial Crops and Products, 75, 141–149. https://doi.org/10.1016/j.indcrop.2015.05.063 | spa |
dc.relation.references | El-Hamidi, M.; Zaher, F.A. Production of vegetable oils in the world and in Egypt: An overview. Bull. Nat. Res. Centre 2018, 42, 19. | spa |
dc.relation.references | Esazadeh, K., Ezzati Nazhad Dolatabadi, J., Andishmand, H., Mohammadzadeh‐Aghdash, H., Mahmoudpour, M., Naemi Kermanshahi, M., & Roosta, Y. (2024). Cytotoxic and genotoxic effects of tert‐butylhydroquinone, butylated hydroxyanisole and propyl gallate as synthetic food antioxidants. Food Science & Nutrition, 12(10), 7004-7016. | spa |
dc.relation.references | Eskandani, Morteza, Hamed Hamishehkar, and Jafar Ezzati Nazhad Dolatabadi. "Cytotoxicity and DNA damage properties of tert-butylhydroquinone (TBHQ) food additive." Food chemistry 153 (2014): 315-320. | spa |
dc.relation.references | European Food Safety Authority (EFSA). (2004). Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to tertiary‐Butylhydroquinone (TBHQ). EFSA Journal, 2(10), 84. | spa |
dc.relation.references | Ezeabara, C. A., & Okeke, C. U. (2019). Nutrient content assessment of six citrus species parts and their feedstuff significance. Agriculture and Food Sciences Research, 6(2), 166-171. | spa |
dc.relation.references | Fadhlillah, F. M. ; Oktaviani, W. ; Mariani, R. (2019). Antioxidant activity of Ethanol Extract, n-Hexane fraction, Ethyl Acetate fraction and Water fraction of Garut Orange Leaves (Citrus reticulata Blanco). Journal of Physics: Conference Series, Volume 1402, Issue 5, article id. 055083. doi:10.1088/1742-6596/1402/5/055083 | spa |
dc.relation.references | Fernández-Ponce, M. T., Parjikolaei, B. R., Lari, H. N., Casas, L., Mantell, C., & Martínez de la Ossa, E. J. (2016). Pilot-plant scale extraction of phenolic compounds from mango leaves using different green techniques: Kinetic and scale up study. Chemical Engineering Journal, 299, 420–430. https://doi.org/10.1016/j.cej.2016.04.046 | spa |
dc.relation.references | Federal Institute for Occupational Safety and Health. Substance evaluation conclusion as required by reach article 48 and evaluation report for n-hexane. EC no. 203-777-6. CAS no. 110-54- 3, Dortmund Germany, 2014. | spa |
dc.relation.references | Fierascu, R. C., Fierascu, I., Avramescu, S. M., & Sieniawska, E. (2019). Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules, 24, 4212, 1–29. https://doi.org/10.3390/molecules24234212 | spa |
dc.relation.references | Figueiredo AC, Barroso JG, Pedro LG, Johannes JC, Scheffer JJC (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr. J. 23:213-226. | spa |
dc.relation.references | Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, SI; Chun, OK Comparación de ensayos ABTS/DPPH para medir la capacidad antioxidante en alimentos populares estadounidenses ricos en antioxidantes. J. Composturas alimentarias. Anal. 2011 , 24 , 1043–1048. | spa |
dc.relation.references | Garzón, D. (2012). Evaluación de la influencia del déficit hídrico en el crecimiento y desarrollo de la naranja “Valencia” (Citrus sinensis Osbeck) en el piedemonte llanero de Colombia. Bogotá: Universidad Nacional de Colombia. | spa |
dc.relation.references | Galanakis, C. M., Tornbergb, E., & Gekasc, V. (2010). Recovery and preservation of phenols from olive waste in ethanolic extracts. Journal of Chemical Technology and Biotechnology, 85(8), 1148–1155. https://doi.org/10.1002/jctb.2413 | spa |
dc.relation.references | Gallego, R., Bueno, M., & Herrero, M. (2019). Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update. Trends in Analytical Chemistry, 116, 198–213. https://doi.org/10.1016/j.trac.2019.04.030 | spa |
dc.relation.references | García-salas, P., Gómez-caravaca, A. M., Arráez-román, D., Segura-carretero, A., Guerra-hernández, E., García-villanova, B., & Fernández-gutiérrez, A. (2013). Influence of technological processes on phenolic compounds , organic acids , furanic derivatives , and antioxidant activity of whole-lemon powder. Food Chemistry, 141, 869–878. https://doi.org/10.1016/j.foodchem.2013.02.124 | spa |
dc.relation.references | Gharavi, N., Haggarty, S., & El-kadi, A. O. S. (2007). Chemoprotective and Carcinogenic Effects of tert-Butylhydroquinone and Its Metabolites. Current Drug Metabolism, 8, 1–7. https://doi.org/http://dx.doi.org/10.2174/138920007779315035 | spa |
dc.relation.references | Gião, M. S., Pereira, C. I., Pintado, M. E., & Malcata, F. X. (2013). Effect of technological processing upon the antioxidant capacity of aromatic and medicinal plant infusions : From harvest to packaging. LWT - Food Science and Technology, 50(1), 320–325. https://doi.org/10.1016/j.lwt.2012.05.007 | spa |
dc.relation.references | González, L. (2021) Alternativas de aprovechamiento de los residuos en la agroindustria. Hasmida, M., M. Liza, A. Nur Syukriah, Y. Harisun, C. Mohd Azizi,and A. Fadzilah Adibah, "Total Phenolic Content and AntioxidantActivity of Quercus infectoria Galls Using Supercritical CO2 ExtractionTechnique and Its Comparison with Soxhlet Extraction". PertanikaJournal of Science & Technology, 23(2), 2015. | spa |
dc.relation.references | Hashemi, S. M. B., Khorram, S. B., & Sohrabi, M. (2017). Antioxidant Activity of Essential Oils in Foods. Essential Oils in Food Processing, 247–265. doi:10.1002/9781119149392.ch8 | spa |
dc.relation.references | Hernández-Corroto, E., Plaza, M., Marina, M. L., & García, M. C. (2020). Sustainable extraction of proteins and bioactive substances from pomegranate peel (Punica granatum L.) using pressurized liquids and deep eutectic solvents. Innovative Food Science & Emerging Technologies, 60, 102314. https://doi.org/10.1016/j.ifset.2020.102314 | spa |
dc.relation.references | Gholivand, M.B., Piryaei, M.: Un método para el análisis rápido de componentes volátiles de las hojas de Citrus aurantium L.. Nat. Pinchar. Res. 27, 1315-1318 (2013) | spa |
dc.relation.references | Gorinstein, S., Haruenkit, R., Poovarodom, S., Vearasilp, S., Ruamsuke, P., Namiesnik, J., Leontowicz, M., Leontowicz, H., Suhaj, M., Sheng, G.P., 2010. Some analytical assays for the determination of bioactivity of exotic fruits. Phytochemical Analysis 21, 355–362. | spa |
dc.relation.references | Gouveia L, Nobre B, Mrejen M, Cardoso A, Mendes R. Food functional oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem. 2007;101:717–23. | spa |
dc.relation.references | Gutiérrez-del-Río, I.; López-Ibáñez, S.; Magadán-Corpas, P.; Fernández-Calleja, L.; Pérez-Valero, Á.; Tuñón-Granda, M.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants 2021, 10, 1264. https://doi.org/10.3390/antiox10081264. | spa |
dc.relation.references | Hamdan, D. I., Mohamed, M. E., & El-Shazly, A. M. (2016). Citrus reticulata Blanco cv. Santra leaf and fruit peel: A common waste products, volatile oils composition and biological activities. Journal of Medicinal Plants Research, 10(30), 457-467. | spa |
dc.relation.references | Hawthorne, S. B., Grabanski, C. B., Martin, E., & Miller, D. J. (2000). Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. Journal of Chromatography A, 892(1-2), 421-433. | spa |
dc.relation.references | He, X., Jiang, Z., Akakuru, O. U., Li, J., & Wu, A. (2021). Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. Chemical Communications, 57(93), 12417-12435 | spa |
dc.relation.references | Herzi, N., Bouajila, J., Camy, S., Romdhane, M., & Condoret, J. S. (2013). Comparison of different methods for extraction from Tetraclinis articulata: Yield, chemical composition and antioxidant activity. Food chemistry, 141(4), 3537-3545. | spa |
dc.relation.references | Herrero, M., Sánchez-Camargo, A. del P., Cifuentes, A., & Ibáñez, E. (2015). Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC - Trends in Analytical Chemistry, 71, 26–38. https://doi.org/10.1016/j.trac.2015.01.018 | spa |
dc.relation.references | Hoang, N. M., & Park, K. (2024). Applications of Tert-Butyl-Phenolic Antioxidants in Consumer Products and Their Potential Toxicities in Humans. Toxics, 12(12), 869. | spa |
dc.relation.references | Ibrahim, R. K., & Muzac, I. (2000). The Methyltransferase gene superfamily. A tree with multiple branches. In Recent Advances in phytochemistry (pp. 349–384). https://doi.org/https://doi.org/10.1016/S0079-9920(00)80012-X | spa |
dc.relation.references | Instituto Colombiano de Normas Técnicas y Certificación [ICONTEC]. (2016). Normá técnica colombiana: Grasas y aceites animales y vegetales comestibles. Aceite crudo de soya (NTC 505). | spa |
dc.relation.references | Iyongo, T. T., & Ukwela, M. (2024). Morphometry of the Citrus Mealybug Planococcus citri (Risso) and its Feeding Impact on the Proximate Composition of Citrus Species Leaves in Makurdi Southern Guinea Savanna, Nigeria. Sahel Journal of Life Sciences FUDMA, 2(1), 214–221. https://doi.org/10.33003/sajols-2024-0201-026 | spa |
dc.relation.references | Jiang ST, Niu L. 2011. Optimization and evaluation of wheat germ oil extracted by supercritical CO2. Grasas Aceites 62, 181-189. http://dx.doi.org/10.3989/gya.078710 | spa |
dc.relation.references | Jha, A. K., & Sit, N. (2022). Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. In Trends in Food Science and Technology (Vol. 119, pp. 579–591). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.11.019 | spa |
dc.relation.references | Juhaimi, F., & Ghafoor, K. (2016). The physico-chemical properties of some citrus seeds and seed oils. Table 1, 4–10. https://doi.org/10.1515/znc-2016-0004 | spa |
dc.relation.references | Kalia, K., Sharma, K., Singh, H. P., & Singh, B. (2008). Effects of extraction methods on phenolic contents and antioxidant activity in aerial parts of Potentilla atrosanguinea Lodd. and quantification of its phenolic constituents by RP-HPLC. Journal of Agricultural and Food Chemistry, 56(21), 10129-10134. | spa |
dc.relation.references | Kamal GM, Anwar F, Hussain AI, et al. (2011). Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peles. Int Food Res J 18:1275–82 | spa |
dc.relation.references | Kammoun Bejar, A., Boudhrioua Mihoubi, N., & Kechaou, N. (2012). Moisture sorption isotherms - Experimental and mathematical investigations of orange (Citrus sinensis) peel and leaves. Food Chemistry, 132(4), 1728–1735. https://doi.org/10.1016/j.foodchem.2011.06.059 | spa |
dc.relation.references | Kasimoglu Z, Tontul I, Soylu A et al (2018) The oxidative stabil-ity of flavoured virgin olive oil: the effect of the water activity ofrosemary. J Food Meas Charact 12:2080–2086. https://doi.org/10.1007/s11694-018-9822-4 | spa |
dc.relation.references | Enhancing olive oil quality through an advanced enrichment process utilizing ripe and fallenfruits.Https://www.researchgate.net/publication/379868958_Enhancing_olive_oil_quality_through_an_advanced_enrichment_process_utilizing_ripe_and_fallen_fruits#fullTextFileContent [accessed Sep 15 2024]. | spa |
dc.relation.references | Kosar, M., Dorman, H. J. D., & Hiltunen, R. (2005). Effect of an acid treatment on the phytochemical and antioxidant characteristics of extracts from selected Lamiaceae species. Food Chemistry, 91, 525–533. https://doi.org/10.1016/j. foodchem.2004.06.029. | spa |
dc.relation.references | Kumar, K., Goh, K.M., 2000. Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Adv. Agron. 68:197-319. | spa |
dc.relation.references | Lachowicz, S., Oszmiański, J., Wojdyło, A., Cebulak, T., Hirnle, L., & Siewiński, M. (2019). UPLC-PDA-Q/TOF-MS identification of bioactive compounds and on-line UPLC-ABTS assay in Fallopia japonica Houtt and Fallopia sachalinensis (F. Schmidt) leaves and rhizomes grown in Poland. European Food Research and Technology, 245, 691-706. | spa |
dc.relation.references | Lagha-Benamrouchea S, Madania K (2013) Phenolic contents and antioxidant activity of orange varieties(Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: peels and leaves. Ind Crop Prod 50(2013):723–730. https://doi.org/10.1016/j.indcrop.2013.07.048 | spa |
dc.relation.references | Lama-Muñoz, A., Contreras, M. del M., Espínola, F., Moya, M., Romero, I., & Castro, E. (2020). Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry, 320, 126626. https://doi.org/10.1016/j.foodchem.2020.126626 | spa |
dc.relation.references | Lamine, M., Hamdi, Z., Zemni, H., Rahali, F. Z., Melki, I., Mliki, A., & Gargouri, M. (2024). From residue to resource: The recovery of high-added values compounds through an integral green valorization of citrus residual biomass. Sustainable Chemistry and Pharmacy, 37, 101379. | spa |
dc.relation.references | Lanuzza, F., Mondello, F., & Tripodo, M. (2014). https://doi.org/10.1007/978-3-319-03826-1_15. | spa |
dc.relation.references | Leporini, M., Tundis, R., Sicari, V., Pellicanò, T.M., Dugay, A., Deguin, B., & Loizzo, M.R. (2020). Impact of extraction processes on phytochemicals content and biological activity of Citrus × clementina Hort. Ex Tan. leaves: New opportunity for under-utilized food by-products. Food research international, 127, 108742. | spa |
dc.relation.references | Lira, R. H., Méndez, B., & Vera, L. (2016). Producción de especies reactivas de oxigeno en plantas elicitadas con nanopartículas. 80–92. | spa |
dc.relation.references | Liew SS, Ho WY, Yeap SK, Sharifudin SAB. Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts. PeerJ. 2018 Aug 3;6:e5331. doi: 10.7717/peerj.5331. | spa |
dc.relation.references | Liu, Runzeng, and Scott A. Mabury. "Synthetic phenolic antioxidants: A review of environmental occurrence, fate, human exposure, and toxicity." Environmental science & technology 54.19 (2020): 11706-11719. | spa |
dc.relation.references | Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902. | spa |
dc.relation.references | Loizzo MR, Tundis R, Bonesi M, Menichini F, De Luca D, Colica C, Menichini F. Evaluation of Citrus aurantifolia peel and leaves extracts for their chemical composition, antioxidant and anti-cholinesterase activities. J Sci Food Agric. 2012 Dec;92(15):2960-7. doi: 10.1002/jsfa.5708. Epub 2012 May 16. PMID: 22589172. | spa |
dc.relation.references | Lota ML, de Rocca Serra D, Tomi F, Casanova J (2001). Chemical variability of peel and leaf essential oils of 15 species of mandarins. Biochem. Syst. Ecol. 29:77-104. | spa |
dc.relation.references | Londoño, J. (2011). Antioxidantes : importancia biológica y métodos para medir su actividad. | spa |
dc.relation.references | Londoño, J., Sierra, J., Álvarez, R., Restrepo, A., & Pássaro, C. (2012). Aprovechamiento de los subproductos citrícolas. In L. F. Garcés (Ed.), Cítricos: Cultivo, Poscosecha e Industrialización (Corporació, pp. 223–284). Ministerio de Agricultura y Desarrollo Rural, Corpoica, Universidad de Antioquia. http://repository.lasallista.edu.co/dspace/bitstream/10567/452/1/citricos.pdf | spa |
dc.relation.references | Luo, Y., Chen, D., & Xing, X. L. (2023). Comprehensive analyses revealed eight immune related signatures correlated with aberrant methylations as prognosis and diagnosis biomarkers for kidney renal papillary cell carcinoma. Clinical Genitourinary Cancer, 21(5), 537-545. | spa |
dc.relation.references | Marco, B. A., Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., & Salgado, H. R. N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi pharmaceutical journal, 27(1), 1-8 | spa |
dc.relation.references | M. Keramat, M.T. Golmakani, M. Aminlari, S. Shekarforoush, J. Food Process. Preserv. 41, e12951 (2017) | spa |
dc.relation.references | Machado, A. P. D. F., Pereira, A. L. D., Barbero, G. F., & Martínez, J. (2017). Recovery of anthocyanins from residues of Rubus fruticosus , Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chemistry, 231, 1–10. https://doi.org/10.1016/j.foodchem.2017.03.060 | spa |
dc.relation.references | Mahato, N., Sharma, K., Sinha, M., & Cho, M. H. (2018). Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. In Journal of Functional Foods (Vol. 40, pp. 307–316). Elsevier Ltd. https://doi.org/10.1016/j.jff.2017.11.015 | spa |
dc.relation.references | Malacrida, C., Kimura, M., & Neuza, J. (2012). Phytochemicals and Antioxidant Activity of Citrus Seed Oils. Food Sci. Tecnol, 18(3), 399–404. https://doi.org/https://doi.org/10.3136/fstr.18.399 | spa |
dc.relation.references | Manjare, S. D., & Dhingra, K. (2019). Supercritical fluids in separation and purification : A review. Materials Science for Energy Technologies, 2(3), 463–484. https://doi.org/10.1016/j.mset.2019.04.005 | spa |
dc.relation.references | Marinho, C.M., Lemos, C.O.T., Arvelos, S. et al. Extraction of corn germ oil with supercritical CO2 and cosolvents. J Food Sci Technol 56, 4448–4456 (2019). https://doi.org/10.1007/s13197-019-03923-2 | spa |
dc.relation.references | Mariod, M. Ismail, N. F. Abd Rahman, B. Matthaus, Grasas Aceites 2014, 65, e013. C.H.Wang,C.R.Chen,J.J.Wu,L.Y.Wang,C.M.J.Chang,W.J.Ho, J. Sep. Sci. 2008, 31, 1399 J. W. King, Grasas Aceites 2002, 53, 8. | spa |
dc.relation.references | Minagricultura. (2021). Cadena de citricos. Indicadores e instrumentos. https://sioc.minagricultura.gov.co/Citricos/Documentos/2021-03-31 Cifras Sectoriales.pdf | spa |
dc.relation.references | Miranda-Lasprilla, D. (2020). Mandarina (Citrus reticulata Blanco): Manual de recomendaciones técnicas para su cultivo en el departamento de Cundinamarca. Bogotá, D. C.: Corredor Tecnológico Agroindustrial CTA-2. | spa |
dc.relation.references | Miranda, D. (2012). Mango (Mangifera indica L.). En PRODUMEDIOS (Ed.), Manual para el cultivo de frutales en el trópico (pp. 627-656). | spa |
dc.relation.references | Mondello L, Casilli A, Tranchida PQ, et al. (2003). Comparison of fast and conventional GC analysis for Citrus. J Agric Food Chem 51:5602–6 | spa |
dc.relation.references | Mokgotho MP, Gololo SS, Masoko P, Mdee LK, Mbazima V, Shai LJ, Bagla VP, Eloff JN, Mampuru L. Isolation and Chemical Structural Characterisation of a Compound with Antioxidant Activity from the Roots of Senna italica. Evid Based Complement Alternat Med. 2013;2013:519174. doi: 10.1155/2013/519174. Epub 2013 Jun 17. PMID: 23843877; PMCID: PMC3703421. | spa |
dc.relation.references | Mohanan, A. ; Nickerson, M.T.; Ghosh, S. Estabilidad oxidativa del aceite de linaza: Efecto de los antioxidantes hidrofílicos, hidrófobos e de polaridad intermedia. Química de alimentos. 2018, 266, 524-533. | spa |
dc.relation.references | Namania JA, Baqira E, Ajwaa Al Abria AA, Hubaishia TA, Husainb A, Khana SA (2018) Phytochemical screening, phenolic content and antioxidant activity of Citrus aurantifolia l. leaves grown in two regions of Oman. Iran J Pharm Sci 14:27–34 | spa |
dc.relation.references | Nawaz, H., Shad, M.A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56. | spa |
dc.relation.references | Nielsen, Food Analysis Laboratory Manual, Food Science Text Series, 65 DOI 10.1007/978-3-319-44127-6_5, © Springer International Publishing 2017 | spa |
dc.relation.references | Nielsen, S. S. 2010. Food Analysis Fourth Edition. ISBN: 978-1-4419-1477-4. United State of Amerika: Springer. DOI 10.1007/978-1-4419-1478-1. | spa |
dc.relation.references | Onwuka G. l. 2005. Food analysis and instrumentation. Theory and practice. 1st edition, Naphthali Prints Nigeria, pp 1-129 | spa |
dc.relation.references | Okiyama, D. C. G., Soares, I. D., Toda, T. A., Oliveira, A. L., & Rodrigues, C. E. C. (2019). Effect of the temperature on the kinetics of cocoa bean shell fat extraction using pressurized ethanol and evaluation of the lipid fraction and defatted meal. Industrial Crops and Products, 130, 96–103. https://doi.org/10.1016/j.indcrop.2018.12.063 | spa |
dc.relation.references | Orduz-Rodríguez, J. O., Monroy, J., Barrera, S., Núñez, V., & Ligarreto, G. (2012). Caracterización morfo-agronómica y molecular de mandarina ‘ Arrayana ‘ en el piedemonte del Meta ( Colombia ). Revista Corpoica-Ciencia y Tecnología Agropecuaria, 13, 5–12. | spa |
dc.relation.references | Orduz, J., & Mateus, D. (2012). Generalidades de los cítricos y recomendaciones agronómicas para su cultivo en Colombia. In L. F. Garcés (Ed.), Cítricos: Cultivo, Poscosecha e Industrialización (Corporació, pp. 49–88). Ministerio de Agricultura y Desarrollo Rural, Corpoica, Universidad de Antioquia. http://repository.lasallista.edu.co/dspace/bitstream/10567/452/1/citricos.pdf | spa |
dc.relation.references | Ospina, Y. (2016). Actividad antioxidante en aceites comestibles de extractos de algas del caribe colombiano obtenidos mediante extracción supercrítica. Universidad Nacional de Colombia. | spa |
dc.relation.references | Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49, 4619–4626. | spa |
dc.relation.references | Pateiro, M., Barba, F. J., Domínguez, R., Sant’Ana, A. S., Mousavi Khaneghah, A., Gavahian, M., Lorenzo, J. M. (2018). Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Research International, 113, 156–166. doi:10.1016/j.foodres.2018.07.014 | spa |
dc.relation.references | Pandey BP, Thapa R, Upreti A (2019) Total phenolic content, flavonoids content, antioxidant and antimicrobial activities of the leaves, peels, and fruits of locally available citrus plants collected from Kavre District of Nepal. Int J Pharmacogn Chin Med 3(3):1–6 | spa |
dc.relation.references | Panthong, K., Srisud, Y., Rukachaisirikul, V., & Hutadilok-towatana, N. (2013). Benzene , coumarin and quinolinone derivatives from roots of Citrus hystrix. Phytochemistry, 88, 79–84. https://doi.org/10.1016/j.phytochem.2012.12.013 | spa |
dc.relation.references | Pássaro, C., Navarro, P. & Salvador, A. (2012). Poscosecha. In L. F. Garcés (Ed.), Cítricos: Cultivo, Poscosecha e Industrialización (Corporació, pp. 223–284). Ministerio de Agricultura y Desarrollo Rural, Corpoica, Universidad de Antioquia. | spa |
dc.relation.references | Pereira, Carla; Carvalho, Idalina; Barros, Lilian; Ferreira, Isabel CFR (2018). Hojas de Citrus hystrix L. condimento: composición aproximada, perfil de ácidos grasos y azúcares. En XXIV Encuentro de Química Luso Galego. Puerto. ISBN 978-989-8124-24-1 | spa |
dc.relation.references | Peñarrieta, J. M., Tejeda, L., Mollinedo, P., Vila, J. L., & Bravo, J. A. (2014). Compuestos fenólicos y su presencia en alimentos. Revista Boliviana De Química, 31, 68–81. https://www.redalyc.org/pdf/4263/426339682006.pdf | spa |
dc.relation.references | Plaza, M., & Turner, C. (2015). Pressurized hot water extraction of bioactives. Trends in Analytical Chemistry, 71, 39–54. https://doi.org/10.1016/j.trac.2015.02.022 | spa |
dc.relation.references | Plaza, M., Oliveira, D., Nilsson, A., & Turner, C. (2017). Green and efficient extraction method to determine polyphenols in cocoa and cocoa products. Food Analytical Methods, 10, 2677–2691. https://doi.org/10.1007/s12161-017-0830-5. | spa |
dc.relation.references | Pohndorf, R. S., Camara, Á. S., Larrosa, A. P. Q., Pinheiro, C. P., Strieder, M. M., & Pinto, L. A. A. (2016). Production of lipids from microalgae Spirulina sp.: Influence of drying, cell disruption and extraction methods. Biomass and Bioenergy, 93, 25–32. https://doi.org/10.1016/j.biombioe.2016.06.020 | spa |
dc.relation.references | Polania Barreto, W. (2014). Actividad antioxidante de residuos del aguacate Hass (Persea americana Mill. var Hass) sometidos a extracciones clásicas ya fluidos presurizados (Doctoral dissertation). | spa |
dc.relation.references | Putra, N. R., A. H. A. Aziz, Z. Idham, M. S. H. Ruslan, and M. A. C.Yunus, "Diffusivity optimization of supercritical carbon dioxideextraction with co-solvent-ethanol from peanut skin". Malaysian Journalof Fundamental and Applied Sciences, 14(1), 2018 | spa |
dc.relation.references | Queimada, A. J., Mota, F. L., Pinho, S. P., & Macedo, E. A. (2009). Solubilities of biologically active phenolic compounds: measurements and modeling. The Journal of Physical Chemistry B, 113(11), 3469-3476. | spa |
dc.relation.references | Rahman, M., & Rahman, M. (2020). Effects of elevated temperature on prooxidant-antioxidant homeostasis and redox status in the American oyster: signaling pathways of cellular apoptosis during heat stress.. Environmental research, 110428 . https://doi.org/10.1016/j.envres.2020.110428. | spa |
dc.relation.references | Raju, K., Roshan, D. (2022). Antioxidants market by type (natural antioxidants and synthetic antioxidants), form (dry and liquid), and application (food& feed additivies, pharmaceuticals & personal care products, fuel & lubricant additives, plastic; rubber: & latex additives, and others): Global Opportunity analysis and industry forecast, 2022-2031. https://www.alliedmarketresearch.com/anti-oxidants-market | spa |
dc.relation.references | Raman G, Cho M, Brodbelt JS, Patil BS. 2005. Isolation and purification of closelyrelated Citrus limonoid glucosides by flash chromatography. Phytochemical Analysis:An International Journal of Plant Chemical and Biochemical Techniques 16:155–160 | spa |
dc.relation.references | Rebolledo, A. (2012). Fisiología de la floración y fructificación en los cítricos. In L. F. Garcés (Ed.), Cítricos: Cultivo, Poscosecha e Industrialización (Corporació, pp. 89–106). Ministerio de Agricultura y Desarrollo Rural, Corpoica, Universidad de Antioquia. http://repository.lasallista.edu.co/dspace/bitstream/10567/452/1/citricos.pdf | spa |
dc.relation.references | Reşat Apak, Mustafa Özyürek, Kubilay Güçlü, and Esra Çapanoğlu. Journal of Agricultural and Food Chemistry 2016 64 (5), 1028-1045. DOI: 10.1021/acs.jafc.5b04743 | spa |
dc.relation.references | Research Nester. (2024, diciembre 6). Phenolic antioxidants market: Global demand analysis & opportunity outlook 2035. Recuperado de https://www.researchnester.com/reports/phenolic-antioxidants-market/5027 | spa |
dc.relation.references | Reyes-Giraldo, A. F., Gutierrez-Montero, D. J., Rojano, B. A., Andrade-Mahecha, M. M., & Martínez-Correa, H. A. (2020). Sequential Extraction process of oil and antioxidants compounds from chontaduro epicarp. The Journal of Supercritical Fluids, 166, 105022. https://doi.org/10.1016/j.supflu.2020.105022 | spa |
dc.relation.references | Ringuelet, J. (2020). Productos naturales vegetales. In Productos naturales vegetales. https://doi.org/10.35537/10915/27885 | spa |
dc.relation.references | Rodrigues, V. H., de Melo, M. M. R., Portugal, I., & Silva, C. M. (2018). Extraction of Eucalyptus leaves using solvents of distinct polarity. Cluster analysis and extracts characterization. The Journal of Supercritical Fluids, 135, 263–274. https://doi.org/10.1016/J.SUPFLU.2018.01.010 | spa |
dc.relation.references | Rodríguez-Solana, Raquel; Salgado, José Manuel; Domínguez, José Manuel; Cortés-Diéguez, Sandra . (2015). Comparison of Soxhlet, Accelerated Solvent and Supercritical Fluid Extraction Techniques for Volatile (GC-MS and GC/FID) and Phenolic Compounds (HPLC-ESI/MS/MS) from Lamiaceae Species. Phytochemical Analysis, 26(1), 61–71. doi:10.1002/pca.2537 | spa |
dc.relation.references | Rouseff, R. L., & Perez-Cacho, P. R. (2017). Carotenoids in citrus: Biosynthesis and function. Elsevier. | spa |
dc.relation.references | Sagwan, S., Rao, D, y Sharma, R. (2010). Phytochemical evaluation and quantification of primary metabolites of Maytenus emarginata (Willd.) Ding Hou. Journal of chemical and pharmaceutical research, 2(6), 46-50. | spa |
dc.relation.references | Sahin, S.: Una nueva tecnología para la extracción de antioxidantes fenólicos de hojas de mandarina (Citrus deliciosa Tenore): extracción por microondas sin disolventes . Coreano J. Chem. Ing. 32(5), 950–957 (2015) | spa |
dc.relation.references | Salama, M. A., El Harkaoui, S., Nounah, I., Sakr, H., Abdin, M., Owon, M., ... & Matthäus, B. (2020). Oxidative stability of Opuntia ficus-indica seeds oil blending with Moringa oleifera seeds oil☆. OCL, 27, 53. | spa |
dc.relation.references | Salmanzadeh, R., Eskandani, M., Mokhtarzadeh, A., Vandghanooni, S., Ilghami, R., Maleki, H., ... & Omidi, Y. (2018). Propyl gallate (PG) and tert-butylhydroquinone (TBHQ) may alter the potential anti-cancer behavior of probiotics. Food bioscience, 24, 37-45. | spa |
dc.relation.references | Samaniego Sanchez, C., Troncoso Gonzalez, A.M., Garcia-Parrilla, M.C., Quesada Granados, J.J., Lopez Garcia de la Serrana, H., Lopez Martinez, M.C., 2007. Different radical scavenging tests in virgin olive oil and their relation to the total phenol content. Analytica Chimica Acta 593, 103–107. | spa |
dc.relation.references | Sanchez-Martinez, J. D., Bueno, M., Alvarez-Rivera, G., Tudela, J., Ibanez, E., & Cifuentes, A. (2021). In vitro neuroprotective potential of terpenes from industrial orange juice by-products. Food and Function, 12(1), 302–314. https://doi.org/10.1039/d0fo02809f | spa |
dc.relation.references | Sánchez, M. E. (2013). Antioxidantes. Consumo de antioxidantes naturales en adultos mayores de entre 65 y 75 años con Dislipidemia. Universidad Abierta Interamericana. | spa |
dc.relation.references | Santos, P. H., Baggio Ribeiro, D. H., Micke, G. A., Vitali, L., & Hense, H. (2019). Extraction of bioactive compounds from feijoa (Acca sellowiana (O. Berg) Burret) peel by low and high-pressure techniques. The Journal of Supercritical Fluids, 145, 219–227. https://doi.org/10.1016/j.supflu.2018.12.016 | spa |
dc.relation.references | Sawamura M, Thi Minh Tu N, Onishi Y, Ogawa E, Choi HS (2004). Characteristic odor components of Citrus reticulata Blanco (ponkan) cold-pressed oil. Biosci. Biotechnol. Biochem. 68:1690-1697. | spa |
dc.relation.references | Seo, J.K. ; Parvin, R. ; Parque, J. ; Yang, H.S. Utilización de astaxantina como sustituto antioxidante sintético para salchichas emulsionadas. Antioxidantes 2021, 10, 407 | spa |
dc.relation.references | Shalaby, E. A., & Shanab, S. M. M. (2013). African Journal of Pharmacy and Pharmacology Review Antioxidant compounds, assays of determination and mode of action. 7(10), 528–539. https://doi.org/10.5897/AJPP2013 | spa |
dc.relation.references | Shams, A., Mortazavi, S. A., Khosravi, K., & Bahmaei, M. (2016). A comparison between ascorbylpalmitateen capsulated with nanoliposomeas a natural antioxidant and conventional antioxidants (TBHQ And BHA) in the oxidative stability of sunflower oil. Biosciences Biotechnology Research Asia, 13(4), 2135. | spa |
dc.relation.references | Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383(August 2021), 132531. https://doi.org/10.1016/j.foodchem.2022.132531 | spa |
dc.relation.references | Shixian Q, Dai Y, Kakuda Y, Shi J, Mittal G, Yeung D, Jiang Y. Synergistic anti-oxidative effects of lycopene with other bioactive compounds. Food Rev Int. 2005;21:295–311 | spa |
dc.relation.references | Sindhu, R., Gnansounou, E., Rebello, S., Binod, P., Varjani, S., Thakur, I. S., Nair, R. B., & Pandey, A. (2019). Conversion of food and kitchen waste to value-added products. Journal of Environmental Management, 241(August 2018), 619–630. https://doi.org/10.1016/j.jenvman.2019.02.053 | spa |
dc.relation.references | Singh, A., Singh, G., Kalia, A. et al. Leaf morpho-anatomical diversity analysis in mandarin (Citrus reticulata Blanco) genotypes using scanning electron microscopy. Genet Resour Crop Evol 67, 2173–2194 (2020). https://doi.org/10.1007/s10722-020-00972-x | spa |
dc.relation.references | Sun-Waterhouse D, Thakorlal J, Zhou J. 2011. Effects of added phenolics on the storage stability of avocado and coconut oils. Int. J. Food Sci. Technol. 46, 1575–1585. https://doi.org/10.1111/j.1365-2621.2011.02655.x | spa |
dc.relation.references | Surai, P. F. (2015). Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants, 4(1), 204-247. | spa |
dc.relation.references | Temelli, F., Saldaña, M., & Comin, L. (2012). Application of Supercritical Fluid Extraction in Food Processing. In E. University of Alberta (Ed.), Extraction techniques and applications: food and beverages (Vol. 4, pp. 415–440). Elsevier. https://doi.org/10.1016/B978-0-12-381373-2.10142-5 | spa |
dc.relation.references | Tomsone, L., & Kruma, Z. (2013). Comparison of different solvents for isolation of phenolic compounds from horseradish (Armoracia rusticana L.) leaves. | spa |
dc.relation.references | Torres, T. M. S., Guedes, J. A. C., de Brito, E. S., Mazzutti, S., & Ferreira, S. R. S. (2021). High-pressure biorefining of ora-pro-nobis (Pereskia aculeata). The Journal of Supercritical Fluids, 181(September 2021), 105514. https://doi.org/10.1016/j.supflu.2021.105514 | spa |
dc.relation.references | USDA (2017). Citrus: World markets and trade. United States Department of Agriculture Foreign Agricultural Service July 2017. | spa |
dc.relation.references | Umemura, T., Kodama, Y., Nishikawa, A., & Hioki, K. (2006). Nine-week detection of six genotoxic lung carcinogens using the rasH2 / BHT mouse model. Cancer Letters, 231, 314–318. https://doi.org/10.1016/j.canlet.2005.02.024 | spa |
dc.relation.references | Vásquez-Villanueva, R., Plaza, M., García, M. C., & Marina, M. L. (2020). Recovery and determination of cholesterol-lowering compounds from Olea europaea seeds employing pressurized liquid extraction and gas chromatography-mass spectrometry. Microchemical Journal, 156, 104812. https://doi.org/10.1016/j.microc.2020.104812 | spa |
dc.relation.references | Wang, C., Duan, Z., Fan, L., & Li, J. (2019). Supercritical CO 2 Fluid Extraction of Elaeagnus mollis Diels Seed Oil and Its Antioxidant Ability. Molecules, 24 (5), 91, 1–12. https://doi.org/10.3390/molecules24050911 | spa |
dc.relation.references | Wang, W., Xiong, P., Zhang, H., Zhu, Q., & Liao, C. (2021). Analysis , occurrence , toxicity and environmental health risks of synthetic phenolic antioxidants : A review. Environmental Research, 201(June), 111531. https://doi.org/10.1016/j.envres.2021.111531 | spa |
dc.relation.references | Wang, X., Yang, T., Shi, S., Xu, C., Wang, F., Dai, D., ... & Guo, Y. (2024). Heterogeneity‐induced NGF‐NGFR communication inefficiency promotes mitotic spindle disorganization in exhausted T cells through PREX1 suppression to impair the anti‐tumor immunotherapy with PD‐1 mAb in hepatocellular carcinoma. Cancer medicine, 13(3), e6736. | spa |
dc.relation.references | Wei, X., Chen, C., Yu, Q., Gady, A., Yu, Y., Liang, G., & Gmitter, F. G. (2014). Novel expression patterns of carotenoid pathway-related genes in citrus leaves and maturing fruits. Tree Genetics & Genomes, 10, 439-448. | spa |
dc.relation.references | Williamson, G., Kay, C. D., & Crozier, A. (2018). The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1054–1112. https://doi.org/10.1111/1541-4337.12351 | spa |
dc.relation.references | Wilmsen, P., Spada, D., & Salvador, M. (2005). Antioxidant Activity of the Flavonoid Hesperidin in Chemical and Biological Systems. Agricultural and Fodd Chemistry, 53, 4757–4761. https://doi.org/10.1021/jf0502000 | spa |
dc.relation.references | Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. In Phytochemistry (Vol. 64, Issue 1, pp. 3–19). Elsevier Ltd. https://doi.org/10.1016/S0031-9422(03)00300-5 | spa |
dc.relation.references | Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M.-R., Wang, X., Martínez, M., Anadón, A., & Martínez, M. A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353, 129488. | spa |
dc.relation.references | Yang, X., Sun, Z., Wang, W., Zhou, Q., & Shi, G. (2018). Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebra fi sh. Science of the Total Environment, 643, 559–568. https://doi.org/10.1016/j.scitotenv.2018.06.213 | spa |
dc.relation.references | Ye, Y., Xu, G., & Li, D. (2021). Acridone alkaloids and flavones from the leaves of Citrus reticulata Acridone alkaloids and flavones from the leaves of Citrus reticulata. https://doi.org/10.1080/14786419.2021.1876047 | spa |
dc.relation.references | Yıldıztekin, M., & Kuzu, S. (2020). Soil Properties and Mineral Nutrients of Clementine Mandarine (Citrus reticulata Blanco) Grown in the Koycegiz Region of Mugla Province. International Journal of Secondary Metabolite, 6(4), 323-332. https://doi.org/10.21448/ijsm.639215 | spa |
dc.relation.references | Zaidun, N. H., Thent, Z. C., & Abd, A. (2018). Combating oxidative stress disorders with citrus fl avonoid : Naringenin. Life Sciences, 208(July), 111–122. https://doi.org/10.1016/j.lfs.2018.07.017 | spa |
dc.relation.references | Zayed, A., Badawy, M. T., & Farag, M. A. (2021). Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chemistry, 355(March), 129609. https://doi.org/10.1016/j.foodchem.2021.129609 | spa |
dc.relation.references | Zeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), e13394. | spa |
dc.relation.references | Zhang, Y., Wang, F., Li, S., Yan, S., Li, B., Huang, Z., & Li, J. (2024). Comparison of Phenolic Antioxidants’ Impact on Thermal Oxidation Stability of Pentaerythritol Ester Insulating Oil. IEEE Transactions on Dielectrics and Electrical Insulation. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Oxidación | spa |
dc.subject.agrovoc | oxidation | eng |
dc.subject.agrovoc | Aceite de soja | spa |
dc.subject.agrovoc | soybean oil | eng |
dc.subject.agrovoc | Antioxidante | spa |
dc.subject.agrovoc | antioxidants | eng |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
dc.subject.proposal | Hojas de mandarina (Citrus reticulata) | spa |
dc.subject.proposal | CO₂ supercrítico | spa |
dc.subject.proposal | Estabilidad oxidativa | spa |
dc.subject.proposal | Capacidad antioxidante | spa |
dc.subject.proposal | Rancimat | spa |
dc.subject.proposal | Valorización de residuos | spa |
dc.subject.proposal | Metodología de superficie de respuesta | spa |
dc.subject.proposal | Tangerine leaves (Citrus reticulata) | eng |
dc.subject.proposal | Supercritical CO2 | eng |
dc.subject.proposal | Oxidative stability | eng |
dc.subject.proposal | Antioxidant capacity | eng |
dc.subject.proposal | Rancimat | eng |
dc.subject.proposal | Waste valorization | eng |
dc.subject.proposal | Response surface methodology | eng |
dc.title | Estudio comparativo de métodos de extracción y evaluación del efecto protector de extractos de hojas de mandarina (Citrus reticulata) var. Arrayana contra la oxidación lipídica en aceite de soja | spa |
dc.title.translated | Comparative study of extraction methods and evaluation of the protective effect of mandarin (Citrus reticulata) var. Arrayana leaf extracts against lipid oxidation in soybean oil | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1019089277.2025.pdf
- Tamaño:
- 4.42 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: