Estudio comparativo de métodos de extracción y evaluación del efecto protector de extractos de hojas de mandarina (Citrus reticulata) var. Arrayana contra la oxidación lipídica en aceite de soja

dc.contributor.advisorPalomeque Forero, Liliam Alexandraspa
dc.contributor.advisorParada Alfonso, Fabiánspa
dc.contributor.authorRodríguez García, Camilospa
dc.contributor.researchgroupGrupo de Investigación en Química de Alimentosspa
dc.date.accessioned2025-04-21T22:54:13Z
dc.date.available2025-04-21T22:54:13Z
dc.date.issued2025-04-15
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl efecto negativo de los antioxidantes sintéticos sobre la salud junto con el interés de los consumidores por adquirir productos naturales ha contribuido a sustituir los aditivos sintéticos por antioxidantes naturales. En este sentido, la valorización de residuos y subproductos agroindustriales representa una alternativa económica y ambiental para la obtención de compuestos bioactivos. Por lo tanto, este estudio se centró en la valorización de hojas de mandarina (Citrus reticulata) var. Arrayana mediante la extracción de compuestos antioxidantes utilizando dióxido de carbono supercrítico (CO₂ SC) para proteger aceite de soja contra la oxidación lipídica. Inicialmente, se obtuvieron extractos Soxhlet con hexano, acetato de etilo y etanol con el fin de verificar la polaridad de los compuestos obtenidos que pudieran presentar efecto protector contra la oxidación lipídica. Entre los extractos, el obtenido con hexano ofreció la mayor protección en términos de índice de peróxido y p-anisidina lo que indica la acción de los compuestos no polares como antioxidantes en el aceite. Para extraer eficientemente estos compuestos no polares utilizando un solvento no tóxico, se realizó un diseño central compuesto (DCC) que evaluó las presiones de CO₂ SC (100, 200 y 300 bar) y temperatura (40, 50 y 60 °C). Se evaluó el contenido fenólico total (CFT) y la capacidad antioxidante mediante ABTS y DPPH y se evaluó la oxidación cada 5 días durante 20 días por ensayos de estabilidad oxidativa acelerados como horno Schaal y Rancimat. La condición óptima de extracción (37 ºC y 273 bar) permitió obtener compuestos que promovieron la mejor protección del aceite en el día 20 de seguimiento en términos de índice de peróxido más bajo (6,96 meq O₂/kg) e índice de p-anisidina (13,36) que el control, así como un tiempo de inducción más largo (5,2 h frente a 4,4 h para hexano y 3,8 h para el control). El extracto optimo mostró un contenido total de fenoles comparable al obtenido por extracción Soxhlet y superó su capacidad antioxidante en los ensayos DPPH (41,2 umol eq. Trolox/g extracto) y ABTS (1159 umol eq. Trolox/g extracto). Además, este extracto promovió un cambio de color menor (ΔE = 11,36) en el aceite que el de hexano (ΔE = 13,3). Estos resultados se asociaron con las diferentes clases de compuestos extraídos debido a las condiciones empleadas. Una presión de CO2 y una temperatura más bajas permitieron un extracto con una mayor concentración de compuestos bioactivos como terpenoides como linalol, timol y tangeritina, carotenoides como luteína, all-trans-β-caroteno y clorofila a. Por lo tanto, la extracción con CO2 SC de compuestos no polares de las hojas de mandarina demostró ser un método sostenible y eficaz para obtener antioxidantes naturales para mejorar la estabilidad oxidativa del aceite de soja. (Texto tomado de la fuente).spa
dc.description.abstractThe negative effect of synthetic antioxidants on health, along with the interest of consumers in purchasing natural products, has contributed to substituting synthetic additives with natural antioxidants. In this sense, valorizing agro-industrial waste for obtaining bioactive compounds represents an economic and environmental alternative. In this context, this study focused on valorizing tangerine leaves (Citrus reticulata) var. Arrayana by extracting antioxidant compounds using supercritical carbon dioxide (SC-CO2) to preserve soybean oil against lipidic oxidation. Initially, Soxhlet extracts were acquired with hexane, ethyl acetate, and ethanol to verify the polarity of compounds obtained from tangerine leaves that could present antioxidant activity in soybean oil. Thus, among the extracts, hexane one offered the highest protection against lipid oxidation, indicating the action of tangerine leaves non-polar compounds as oil preservatives. To efficiently extract these non-polar compounds using a non-toxic solvent, a central composite design (CCD) evaluating SC-CO2 pressures (100, 200, 300 bar) and temperatures (40, 50, 60 °C) was performed to optimize the condition to obtain compounds for protecting soybean oil. The extracts were added to soybean oil and the oil was evaluated for 20 days. The optimal extraction condition (37 °C and 273 bar) allowed compounds that promoted the best oil protection, allowing lower peroxide index (6.96 meq O₂/kg) and p-anisidine index (13.36) than the control, as well as a longer induction time (5.2 h versus 4.4 h for hexane and 3.8 h for the control). The optimal extract showed a total phenol content comparable to that obtained by Soxhlet extraction and surpassed its antioxidant capacity in the DPPH (41,2 umol eq. Trolox/g extract) and ABTS (1159 umol eq. Trolox/g extract) assays. Moreover, this extract promoted lower color change (ΔE = 11.36) in the oil than hexane one (ΔE = 13.3). These results were associated with the different classes of compounds extracted due to the conditions employed. A lower CO2 pressure and temperature allowed an extract with a higher concentration of bioactive compounds like as linalool, thymol, and tangeritin, carotenoids like lutein, all-trans- carotene and chlorophyll a. Therefore, SC-CO2 extraction of non-polar compounds from tangerine leaves proved to be a sustainable and effective method for obtaining natural antioxidants to enhance the oxidative stability of soybean oil.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaCalidad de los alimentosspa
dc.format.extentxi, 110 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88021
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAguilar, P., Escobár, M. J., & Pássaro, C. P. (2012). Situación actual de la cadena de cítricos en Colombia: limitantes y perspectivas. In L. F. Garcés (Ed.), Cítricos: cultivo, poscosecha e industrialización (Corporació, pp. 7–47). Ministerio de Agricultura y Desarrollo Rural, Corpoica, Universidad de Antioquia. http://repository.unilasallista.edu.co/dspace/bitstream/10567/452/1/citricos.pdfspa
dc.relation.referencesAgustí, M. (2003). Citricultura. Madrid, España: Editorial Mundi-Prensaspa
dc.relation.referencesAltemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. In Plants (Vol. 6, Issue 4). MDPI AG. https://doi.org/10.3390/plants6040042spa
dc.relation.referencesAlvarez, G., Bueno, M., Ballesteros, D., Mendiola, J. A., & Ibañez, E. (2020). Pressurized Liquid Extraction. In Liquid-Phase Extraction (pp. 375–398). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816911-7.00013-Xspa
dc.relation.referencesAnwar, F., Nasser, R., Bhanger, M., Ashraf, S., Talpur, F., & Aladedunye, F. (2008). Physico-Chemical Characteristics of Citrus Seeds and Seed Oils from Pakistan. J Am Oil Chem Soc, 321–330. https://doi.org/10.1007/s11746-008-1204-3spa
dc.relation.referencesAndrade, M. A., Barbosa, C. H., Shah, M. A., Ahmad, N., Vilarinho, F., Khwaldia, K., Silva, A. S., & Ramos, F. (2022). Citrus By-Products: Valuable Source of Bioactive Compounds for Food Applications. Antioxidants, 12(1), 38. https://doi.org/10.3390/ANTIOX12010038spa
dc.relation.referencesAmórtegui, I. (2001). El cultivo de los cítricos (pp. 13-16). Ibagué, Tolima, Colombia: Corporación para la promoción del desarrollo rural y agroindustrial de Tolima Prohaciendo.spa
dc.relation.referencesAsensio, V. Nepote, N.R. Grosso, Int. J. Food Sci. Tech. 48,2417 (2013)spa
dc.relation.referencesAteş, F., Şahin, S., & İlbay, Z. (2017). A Green Valorisation Approach Using Microwaves and Supercritical ­ CO 2 for High-Added Value Ingredients from Mandarin ( Citrus deliciosa Tenore ) Leaf Waste. Waste and Biomass Valorization, 0(0), 0. https://doi.org/10.1007/s12649-017-0074-zspa
dc.relation.referencesAtolani, O., Adamu, N., Oguntoye, O. S., Zubair, M. F., Fabiyi, O. A., Oyegoke, R. A., Adeyemi, O. S., Areh, E. T., Tarigha, D. E., Kambizi, L., & Olatunji, G. A. (2020). Chemical characterization, antioxidant, cytotoxicity, Anti-Toxoplasma gondii and antimicrobial potentials of the Citrus sinensis seed oil for sustainable cosmeceutical production. Heliyon, 6(March 2019), e03399. https://doi.org/10.1016/j.heliyon.2020.e03399spa
dc.relation.referencesAzmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014spa
dc.relation.referencesBalamurugan P, Rajkumar AR, Prasad MP: Comparative phytochemical analysis of Rutaceae family (Citrus Species) extracts. Int J Sci. 2014; 148–150.spa
dc.relation.referencesBallesteros-Vivas, D., Álvarez-Rivera, G., del Pilar Sánchez-Camargo, A., Ibáñez, E., Parada-Alfonso, F., & Cifuentes, A. (2019). A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Journal of Chromatography A, 1584, 155–164. https://doi.org/10.1016/j.chroma.2018.11.055spa
dc.relation.referencesBallesteros-Vivas, D.; Alvarez-Rivera, G.; García Ocampo, A. F.; Morantes, S. J.; Sánchez Camargo, A. del P.; Cifuentes, A.; Parada-Alfonso, F.; Ibánez, E. Supercritical Antisolvent Fractionation as a Tool for Enhancing Antiproliferative Activity of Mango Seed Kernel Extracts against Colon Cancer Cells. J. Supercrit. Fluids 2019, 152, 104563. https://doi.org/10.1016/j.supflu.2019.104563.spa
dc.relation.referencesBellés, M. ; Alonso, V. ; Roncalés, P. ; Beltrán, J.A. Carne de hamburguesa de cordero sin sulfito: Propiedades antimicrobianas y antioxidantes del té verde y el carvacrol. J. Ciencia. Agricultura alimentaria. 2018, 99, 464-472.spa
dc.relation.referencesBernhoft, A., & Symposium Held at the Norwegian Academy of Science and Letters (2008 : Oslo). (2010). Bioactive compounds in plants : benefits and risks for man and animals : proceedings from a symposium held in Norwegian Academy of Science and Letters, Oslo, 13-14 November 2008. Novus Forlag.spa
dc.relation.referencesBlasi, F., & Cossignani, L. (2020). An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. In Processes (Vol. 8, Issue 8). MDPI AG. https://doi.org/10.3390/PR8080956spa
dc.relation.referencesBloom, A. J. (2010). Assimilation of inorganic Nutrients. En L. Taiz, E. Zeiger, I. M. Moller y A. Murphy (eds.), Plant physiology and development (pp. 360-361). Massachusets: Publishers Sunderland.spa
dc.relation.referencesBoora, F., Chirisa, E., & Mukanganyama, S. (2014). Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents. Journal of Food Processing, 2014(1), 918018.spa
dc.relation.referencesBuelvas-Puello LM, Franco-Arnedo G, Martínez-Correa HA, Ballesteros-Vivas D, Sánchez-Camargo AdP, Miranda-Lasprilla D, Narváez-Cuenca C-E, Parada-Alfonso F. Supercritical Fluid Extraction of Phenolic Compounds from Mango (Mangifera indica L.) Seed Kernels and Their Application as an Antioxidant in an Edible Oil. Molecules. 2021; 26(24):7516. https://doi.org/10.3390/molecules26247516spa
dc.relation.referencesCárdenas, G., Arrazola, G., & Villalba, C. (2015). Frutas tropicales : fuente de compuestos bioactivos naturales en la industria de alimentos *. Revista de La Facultad de Ingeniería INGENIUM, 29–40.spa
dc.relation.referencesCasas Mesa, N., & Ortiz Ramírez, J. S. (2019a). Protocolo de ensayo para determinaion de fenoles y polifenoles mediante el método de Folin-Ciocalteu. Universidad Nacional de Colombia, 2, 1–18.spa
dc.relation.referencesCasas Mesa, N., & Ortiz Ramírez, J. S. (2019b). Protocolo de estimacion de la actividad antioxidante por determinacion de la concentración de eficiencia (EC50) del radical 1,1-difenil-2-picrilhidrazil (DPPH). Universidad Nacional de Colombia, 2, 1–17.spa
dc.relation.referencesCavalcanti, R. N., Meireles, M. A. A., & Sp, C. (2012). Fundamentals of Supercritical Fluid Extraction. In Comprehensive Sampling and Sample Preparation: Analytical Techniques for Scientists (Vol. 2). Elsevier. https://doi.org/10.1016/B978-0-12-381373-2.10039-0spa
dc.relation.referencesChemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Review of green food processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies, 41, 357-377.spa
dc.relation.referencesChen, J., Yuan, Z., Zhang, H., Li, W., Shi, M., Li, M., Tian, J., Deng, X., Cheng, Y., Deng, C. H., Peng, Z., Tian, J., Cheng, Y., Yao, J., & Zealand, N. (2019). Cit1,2RhaT and two novel CitdGlcTs participate in flavor-related flavonoid metabolism during citrus fruit development Accepted. Experimental Botany, 70(10), 2759–2771. https://doi.org/https://doi.org/10.1093/jxb/erz081spa
dc.relation.referencesChi, P. T. L., van Hung, P., le Thanh, H., & Phi, N. T. L. (2020). Valorization of Citrus Leaves: Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oils. Waste and Biomass Valorization, 11(9), 4849–4857. https://doi.org/10.1007/s12649-019-00815-6spa
dc.relation.referencesChoe, E., & Min, D. B. (2006). Mechanisms and Factors for Edible Oil Oxidation. Comprehensive Reviews in Food Science and Food Safety, 5, 169–186. https://doi.org/https://doi.org/10.1111/j.1541-4337.2006.00009.xspa
dc.relation.referencesChun, O.K., Kim, D.-O., Moon, H.Y., Kang, H.G., Lee, C.Y., 2003. Contribution of individual polyphenolics to total antioxidant capacity of plums. Journal of Agricultural and Food Chemistry 51, 7240–7245.spa
dc.relation.referencesChun, O.K., Kim, D.O., Smith, N., Schroeder, D., Han, J.T., Lee, C.Y., 2005. Daily consumption of phenolics and total antioxidant capacity from fruits and vegetables in the American diet. Journal of the Science of Food and Agriculture 85, 1715–1724.spa
dc.relation.referencesCissé, M., Bohuon, P., Sambe, F., Kane, C., Sakho, M., & Dornier, M. (2012). Aqueous extraction of anthocyanins from Hibiscus sabdariffa: Experimental kinetics and modeling. Journal of Food Engineering, 109, 16-21. https://doi.org/10.1016/J.JFOODENG.2011.10.012.spa
dc.relation.referencesCODEX ALIMENTARIUS- CODEX STAN210-1999- Normas Internacionales de los Alimentos. Roma, 2017.spa
dc.relation.referencesCorrales, L. C., María, M., & Ariza, M. (2012). Estrés oxidativo : origen , evolución y consecuencias de la toxicidad del oxígeno.spa
dc.relation.referencesCorrea, E., Quiñones, W., & Echeverri, F. (2015). Methyl-N-methylanthranilate, a pungent compound from Citrus reticulata Blanco leaves. Pharmaceutical Biology, 54(4), 569–571. https://doi.org/10.3109/13880209.2015.1044618spa
dc.relation.referencesDalia, I. H., Maged, E. M., & Assem, M. E. S. (2016). Citrus reticulata Blanco cv. Santra leaf and fruit peel: A common waste products, volatile oils composition and biological activities. Journal of Medicinal Plants Research, 10(30), 457–467. https://doi.org/10.5897/jmpr2016.6139spa
dc.relation.referencesDe Lucas, A., Martinez de la Ossa, E., Rincón, J., Blanco, M. ., & Gracia, I. (2002). Supercritical fluid extraction of tocopherol concentrates from olive tree leaves. The Journal of Supercritical Fluids, 22(3), 221–228. doi:10.1016/s0896-8446(01)00132-2spa
dc.relation.referencesDANE. (2019). Encuesta Nacional Agropecuaria (ENA) 2017 (pp. 1–31). https://www.agronet.gov.co/Lists/Boletin/Attachments/2575/boletin_ena_2017.pdfspa
dc.relation.referencesDa Porto, C., Voinovich, D., Decorti, D., & Natolino, A. (2012). Response surface optimization of hemp seed (Cannabis sativa L.) oil yield and oxidation stability by supercritical carbon dioxide extraction. The journal of supercritical fluids, 68, 45-51.spa
dc.relation.referencesDomínguez-Rodríguez, G., Amador-Luna, V. M., Benešová, K., Pernica, M., Parada-Alfonso, F., & Ibáñez, E. (2024). Biorefinery approach with green solvents for the valorization of Citrus reticulata leaves to obtain antioxidant and anticholinergic extracts. Food Chemistry, 140034.spa
dc.relation.referencesDomínguez-Rodríguez, G., Ramón Vidal, D., Martorell, P., Plaza, M., & Marina, M. L. (2022). Composition of Nonextractable Polyphenols from Sweet Cherry Pomace Determined by DART-Orbitrap-HRMS and Their in Vitro and in Vivo Potential Antioxidant, Antiaging, and Neuroprotective Activities. Journal of Agricultural and Food Chemistry, 70(26), 7993–8009. https://doi.org/10.1021/acs.jafc.2c03346spa
dc.relation.referencesDhara, K. N. P. Rani, P. P. Chakrabarti, Supercritical Carbon Dioxide Extraction of Vegetable Oils: Retrospective and Prospects. Eur. J. Lipid Sci. Technol. 2022, 124, 2200006. https://doi.org/10.1002/ejlt.202200006spa
dc.relation.referencesDrescher, A.; Kienberger, M. A Systematic Review on Waste as Sustainable Feedstock for Bioactive Molecules—Extraction as Isolation Technology. Processes 2022, 10, 1668.spa
dc.relation.referencesDrosou, C., Kyriakopoulou, K., Bimpilas, A., Tsimogiannis, D., & Krokida, M. (2015). A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Industrial Crops and Products, 75, 141–149. https://doi.org/10.1016/j.indcrop.2015.05.063spa
dc.relation.referencesEl-Hamidi, M.; Zaher, F.A. Production of vegetable oils in the world and in Egypt: An overview. Bull. Nat. Res. Centre 2018, 42, 19.spa
dc.relation.referencesEsazadeh, K., Ezzati Nazhad Dolatabadi, J., Andishmand, H., Mohammadzadeh‐Aghdash, H., Mahmoudpour, M., Naemi Kermanshahi, M., & Roosta, Y. (2024). Cytotoxic and genotoxic effects of tert‐butylhydroquinone, butylated hydroxyanisole and propyl gallate as synthetic food antioxidants. Food Science & Nutrition, 12(10), 7004-7016.spa
dc.relation.referencesEskandani, Morteza, Hamed Hamishehkar, and Jafar Ezzati Nazhad Dolatabadi. "Cytotoxicity and DNA damage properties of tert-butylhydroquinone (TBHQ) food additive." Food chemistry 153 (2014): 315-320.spa
dc.relation.referencesEuropean Food Safety Authority (EFSA). (2004). Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the Commission related to tertiary‐Butylhydroquinone (TBHQ). EFSA Journal, 2(10), 84.spa
dc.relation.referencesEzeabara, C. A., & Okeke, C. U. (2019). Nutrient content assessment of six citrus species parts and their feedstuff significance. Agriculture and Food Sciences Research, 6(2), 166-171.spa
dc.relation.referencesFadhlillah, F. M. ; Oktaviani, W. ; Mariani, R. (2019). Antioxidant activity of Ethanol Extract, n-Hexane fraction, Ethyl Acetate fraction and Water fraction of Garut Orange Leaves (Citrus reticulata Blanco). Journal of Physics: Conference Series, Volume 1402, Issue 5, article id. 055083. doi:10.1088/1742-6596/1402/5/055083spa
dc.relation.referencesFernández-Ponce, M. T., Parjikolaei, B. R., Lari, H. N., Casas, L., Mantell, C., & Martínez de la Ossa, E. J. (2016). Pilot-plant scale extraction of phenolic compounds from mango leaves using different green techniques: Kinetic and scale up study. Chemical Engineering Journal, 299, 420–430. https://doi.org/10.1016/j.cej.2016.04.046spa
dc.relation.referencesFederal Institute for Occupational Safety and Health. Substance evaluation conclusion as required by reach article 48 and evaluation report for n-hexane. EC no. 203-777-6. CAS no. 110-54- 3, Dortmund Germany, 2014.spa
dc.relation.referencesFierascu, R. C., Fierascu, I., Avramescu, S. M., & Sieniawska, E. (2019). Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules, 24, 4212, 1–29. https://doi.org/10.3390/molecules24234212spa
dc.relation.referencesFigueiredo AC, Barroso JG, Pedro LG, Johannes JC, Scheffer JJC (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr. J. 23:213-226.spa
dc.relation.referencesFloegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, SI; Chun, OK Comparación de ensayos ABTS/DPPH para medir la capacidad antioxidante en alimentos populares estadounidenses ricos en antioxidantes. J. Composturas alimentarias. Anal. 2011 , 24 , 1043–1048.spa
dc.relation.referencesGarzón, D. (2012). Evaluación de la influencia del déficit hídrico en el crecimiento y desarrollo de la naranja “Valencia” (Citrus sinensis Osbeck) en el piedemonte llanero de Colombia. Bogotá: Universidad Nacional de Colombia.spa
dc.relation.referencesGalanakis, C. M., Tornbergb, E., & Gekasc, V. (2010). Recovery and preservation of phenols from olive waste in ethanolic extracts. Journal of Chemical Technology and Biotechnology, 85(8), 1148–1155. https://doi.org/10.1002/jctb.2413spa
dc.relation.referencesGallego, R., Bueno, M., & Herrero, M. (2019). Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update. Trends in Analytical Chemistry, 116, 198–213. https://doi.org/10.1016/j.trac.2019.04.030spa
dc.relation.referencesGarcía-salas, P., Gómez-caravaca, A. M., Arráez-román, D., Segura-carretero, A., Guerra-hernández, E., García-villanova, B., & Fernández-gutiérrez, A. (2013). Influence of technological processes on phenolic compounds , organic acids , furanic derivatives , and antioxidant activity of whole-lemon powder. Food Chemistry, 141, 869–878. https://doi.org/10.1016/j.foodchem.2013.02.124spa
dc.relation.referencesGharavi, N., Haggarty, S., & El-kadi, A. O. S. (2007). Chemoprotective and Carcinogenic Effects of tert-Butylhydroquinone and Its Metabolites. Current Drug Metabolism, 8, 1–7. https://doi.org/http://dx.doi.org/10.2174/138920007779315035spa
dc.relation.referencesGião, M. S., Pereira, C. I., Pintado, M. E., & Malcata, F. X. (2013). Effect of technological processing upon the antioxidant capacity of aromatic and medicinal plant infusions : From harvest to packaging. LWT - Food Science and Technology, 50(1), 320–325. https://doi.org/10.1016/j.lwt.2012.05.007spa
dc.relation.referencesGonzález, L. (2021) Alternativas de aprovechamiento de los residuos en la agroindustria. Hasmida, M., M. Liza, A. Nur Syukriah, Y. Harisun, C. Mohd Azizi,and A. Fadzilah Adibah, "Total Phenolic Content and AntioxidantActivity of Quercus infectoria Galls Using Supercritical CO2 ExtractionTechnique and Its Comparison with Soxhlet Extraction". PertanikaJournal of Science & Technology, 23(2), 2015.spa
dc.relation.referencesHashemi, S. M. B., Khorram, S. B., & Sohrabi, M. (2017). Antioxidant Activity of Essential Oils in Foods. Essential Oils in Food Processing, 247–265. doi:10.1002/9781119149392.ch8spa
dc.relation.referencesHernández-Corroto, E., Plaza, M., Marina, M. L., & García, M. C. (2020). Sustainable extraction of proteins and bioactive substances from pomegranate peel (Punica granatum L.) using pressurized liquids and deep eutectic solvents. Innovative Food Science & Emerging Technologies, 60, 102314. https://doi.org/10.1016/j.ifset.2020.102314spa
dc.relation.referencesGholivand, M.B., Piryaei, M.: Un método para el análisis rápido de componentes volátiles de las hojas de Citrus aurantium L.. Nat. Pinchar. Res. 27, 1315-1318 (2013)spa
dc.relation.referencesGorinstein, S., Haruenkit, R., Poovarodom, S., Vearasilp, S., Ruamsuke, P., Namiesnik, J., Leontowicz, M., Leontowicz, H., Suhaj, M., Sheng, G.P., 2010. Some analytical assays for the determination of bioactivity of exotic fruits. Phytochemical Analysis 21, 355–362.spa
dc.relation.referencesGouveia L, Nobre B, Mrejen M, Cardoso A, Mendes R. Food functional oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem. 2007;101:717–23.spa
dc.relation.referencesGutiérrez-del-Río, I.; López-Ibáñez, S.; Magadán-Corpas, P.; Fernández-Calleja, L.; Pérez-Valero, Á.; Tuñón-Granda, M.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants 2021, 10, 1264. https://doi.org/10.3390/antiox10081264.spa
dc.relation.referencesHamdan, D. I., Mohamed, M. E., & El-Shazly, A. M. (2016). Citrus reticulata Blanco cv. Santra leaf and fruit peel: A common waste products, volatile oils composition and biological activities. Journal of Medicinal Plants Research, 10(30), 457-467.spa
dc.relation.referencesHawthorne, S. B., Grabanski, C. B., Martin, E., & Miller, D. J. (2000). Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. Journal of Chromatography A, 892(1-2), 421-433.spa
dc.relation.referencesHe, X., Jiang, Z., Akakuru, O. U., Li, J., & Wu, A. (2021). Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. Chemical Communications, 57(93), 12417-12435spa
dc.relation.referencesHerzi, N., Bouajila, J., Camy, S., Romdhane, M., & Condoret, J. S. (2013). Comparison of different methods for extraction from Tetraclinis articulata: Yield, chemical composition and antioxidant activity. Food chemistry, 141(4), 3537-3545.spa
dc.relation.referencesHerrero, M., Sánchez-Camargo, A. del P., Cifuentes, A., & Ibáñez, E. (2015). Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC - Trends in Analytical Chemistry, 71, 26–38. https://doi.org/10.1016/j.trac.2015.01.018spa
dc.relation.referencesHoang, N. M., & Park, K. (2024). Applications of Tert-Butyl-Phenolic Antioxidants in Consumer Products and Their Potential Toxicities in Humans. Toxics, 12(12), 869.spa
dc.relation.referencesIbrahim, R. K., & Muzac, I. (2000). The Methyltransferase gene superfamily. A tree with multiple branches. In Recent Advances in phytochemistry (pp. 349–384). https://doi.org/https://doi.org/10.1016/S0079-9920(00)80012-Xspa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación [ICONTEC]. (2016). Normá técnica colombiana: Grasas y aceites animales y vegetales comestibles. Aceite crudo de soya (NTC 505).spa
dc.relation.referencesIyongo, T. T., & Ukwela, M. (2024). Morphometry of the Citrus Mealybug Planococcus citri (Risso) and its Feeding Impact on the Proximate Composition of Citrus Species Leaves in Makurdi Southern Guinea Savanna, Nigeria. Sahel Journal of Life Sciences FUDMA, 2(1), 214–221. https://doi.org/10.33003/sajols-2024-0201-026spa
dc.relation.referencesJiang ST, Niu L. 2011. Optimization and evaluation of wheat germ oil extracted by supercritical CO2. Grasas Aceites 62, 181-189. http://dx.doi.org/10.3989/gya.078710spa
dc.relation.referencesJha, A. K., & Sit, N. (2022). Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. In Trends in Food Science and Technology (Vol. 119, pp. 579–591). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2021.11.019spa
dc.relation.referencesJuhaimi, F., & Ghafoor, K. (2016). The physico-chemical properties of some citrus seeds and seed oils. Table 1, 4–10. https://doi.org/10.1515/znc-2016-0004spa
dc.relation.referencesKalia, K., Sharma, K., Singh, H. P., & Singh, B. (2008). Effects of extraction methods on phenolic contents and antioxidant activity in aerial parts of Potentilla atrosanguinea Lodd. and quantification of its phenolic constituents by RP-HPLC. Journal of Agricultural and Food Chemistry, 56(21), 10129-10134.spa
dc.relation.referencesKamal GM, Anwar F, Hussain AI, et al. (2011). Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peles. Int Food Res J 18:1275–82spa
dc.relation.referencesKammoun Bejar, A., Boudhrioua Mihoubi, N., & Kechaou, N. (2012). Moisture sorption isotherms - Experimental and mathematical investigations of orange (Citrus sinensis) peel and leaves. Food Chemistry, 132(4), 1728–1735. https://doi.org/10.1016/j.foodchem.2011.06.059spa
dc.relation.referencesKasimoglu Z, Tontul I, Soylu A et al (2018) The oxidative stabil-ity of flavoured virgin olive oil: the effect of the water activity ofrosemary. J Food Meas Charact 12:2080–2086. https://doi.org/10.1007/s11694-018-9822-4spa
dc.relation.referencesEnhancing olive oil quality through an advanced enrichment process utilizing ripe and fallenfruits.Https://www.researchgate.net/publication/379868958_Enhancing_olive_oil_quality_through_an_advanced_enrichment_process_utilizing_ripe_and_fallen_fruits#fullTextFileContent [accessed Sep 15 2024].spa
dc.relation.referencesKosar, M., Dorman, H. J. D., & Hiltunen, R. (2005). Effect of an acid treatment on the phytochemical and antioxidant characteristics of extracts from selected Lamiaceae species. Food Chemistry, 91, 525–533. https://doi.org/10.1016/j. foodchem.2004.06.029.spa
dc.relation.referencesKumar, K., Goh, K.M., 2000. Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Adv. Agron. 68:197-319.spa
dc.relation.referencesLachowicz, S., Oszmiański, J., Wojdyło, A., Cebulak, T., Hirnle, L., & Siewiński, M. (2019). UPLC-PDA-Q/TOF-MS identification of bioactive compounds and on-line UPLC-ABTS assay in Fallopia japonica Houtt and Fallopia sachalinensis (F. Schmidt) leaves and rhizomes grown in Poland. European Food Research and Technology, 245, 691-706.spa
dc.relation.referencesLagha-Benamrouchea S, Madania K (2013) Phenolic contents and antioxidant activity of orange varieties(Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: peels and leaves. Ind Crop Prod 50(2013):723–730. https://doi.org/10.1016/j.indcrop.2013.07.048spa
dc.relation.referencesLama-Muñoz, A., Contreras, M. del M., Espínola, F., Moya, M., Romero, I., & Castro, E. (2020). Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry, 320, 126626. https://doi.org/10.1016/j.foodchem.2020.126626spa
dc.relation.referencesLamine, M., Hamdi, Z., Zemni, H., Rahali, F. Z., Melki, I., Mliki, A., & Gargouri, M. (2024). From residue to resource: The recovery of high-added values compounds through an integral green valorization of citrus residual biomass. Sustainable Chemistry and Pharmacy, 37, 101379.spa
dc.relation.referencesLanuzza, F., Mondello, F., & Tripodo, M. (2014). https://doi.org/10.1007/978-3-319-03826-1_15.spa
dc.relation.referencesLeporini, M., Tundis, R., Sicari, V., Pellicanò, T.M., Dugay, A., Deguin, B., & Loizzo, M.R. (2020). Impact of extraction processes on phytochemicals content and biological activity of Citrus × clementina Hort. Ex Tan. leaves: New opportunity for under-utilized food by-products. Food research international, 127, 108742.spa
dc.relation.referencesLira, R. H., Méndez, B., & Vera, L. (2016). Producción de especies reactivas de oxigeno en plantas elicitadas con nanopartículas. 80–92.spa
dc.relation.referencesLiew SS, Ho WY, Yeap SK, Sharifudin SAB. Phytochemical composition and in vitro antioxidant activities of Citrus sinensis peel extracts. PeerJ. 2018 Aug 3;6:e5331. doi: 10.7717/peerj.5331.spa
dc.relation.referencesLiu, Runzeng, and Scott A. Mabury. "Synthetic phenolic antioxidants: A review of environmental occurrence, fate, human exposure, and toxicity." Environmental science & technology 54.19 (2020): 11706-11719.spa
dc.relation.referencesLobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902.spa
dc.relation.referencesLoizzo MR, Tundis R, Bonesi M, Menichini F, De Luca D, Colica C, Menichini F. Evaluation of Citrus aurantifolia peel and leaves extracts for their chemical composition, antioxidant and anti-cholinesterase activities. J Sci Food Agric. 2012 Dec;92(15):2960-7. doi: 10.1002/jsfa.5708. Epub 2012 May 16. PMID: 22589172.spa
dc.relation.referencesLota ML, de Rocca Serra D, Tomi F, Casanova J (2001). Chemical variability of peel and leaf essential oils of 15 species of mandarins. Biochem. Syst. Ecol. 29:77-104.spa
dc.relation.referencesLondoño, J. (2011). Antioxidantes : importancia biológica y métodos para medir su actividad.spa
dc.relation.referencesLondoño, J., Sierra, J., Álvarez, R., Restrepo, A., & Pássaro, C. (2012). Aprovechamiento de los subproductos citrícolas. In L. F. Garcés (Ed.), Cítricos: Cultivo, Poscosecha e Industrialización (Corporació, pp. 223–284). Ministerio de Agricultura y Desarrollo Rural, Corpoica, Universidad de Antioquia. http://repository.lasallista.edu.co/dspace/bitstream/10567/452/1/citricos.pdfspa
dc.relation.referencesLuo, Y., Chen, D., & Xing, X. L. (2023). Comprehensive analyses revealed eight immune related signatures correlated with aberrant methylations as prognosis and diagnosis biomarkers for kidney renal papillary cell carcinoma. Clinical Genitourinary Cancer, 21(5), 537-545.spa
dc.relation.referencesMarco, B. A., Rechelo, B. S., Tótoli, E. G., Kogawa, A. C., & Salgado, H. R. N. (2019). Evolution of green chemistry and its multidimensional impacts: A review. Saudi pharmaceutical journal, 27(1), 1-8spa
dc.relation.referencesM. Keramat, M.T. Golmakani, M. Aminlari, S. Shekarforoush, J. Food Process. Preserv. 41, e12951 (2017)spa
dc.relation.referencesMachado, A. P. D. F., Pereira, A. L. D., Barbero, G. F., & Martínez, J. (2017). Recovery of anthocyanins from residues of Rubus fruticosus , Vaccinium myrtillus and Eugenia brasiliensis by ultrasound assisted extraction, pressurized liquid extraction and their combination. Food Chemistry, 231, 1–10. https://doi.org/10.1016/j.foodchem.2017.03.060spa
dc.relation.referencesMahato, N., Sharma, K., Sinha, M., & Cho, M. H. (2018). Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. In Journal of Functional Foods (Vol. 40, pp. 307–316). Elsevier Ltd. https://doi.org/10.1016/j.jff.2017.11.015spa
dc.relation.referencesMalacrida, C., Kimura, M., & Neuza, J. (2012). Phytochemicals and Antioxidant Activity of Citrus Seed Oils. Food Sci. Tecnol, 18(3), 399–404. https://doi.org/https://doi.org/10.3136/fstr.18.399spa
dc.relation.referencesManjare, S. D., & Dhingra, K. (2019). Supercritical fluids in separation and purification : A review. Materials Science for Energy Technologies, 2(3), 463–484. https://doi.org/10.1016/j.mset.2019.04.005spa
dc.relation.referencesMarinho, C.M., Lemos, C.O.T., Arvelos, S. et al. Extraction of corn germ oil with supercritical CO2 and cosolvents. J Food Sci Technol 56, 4448–4456 (2019). https://doi.org/10.1007/s13197-019-03923-2spa
dc.relation.referencesMariod, M. Ismail, N. F. Abd Rahman, B. Matthaus, Grasas Aceites 2014, 65, e013. C.H.Wang,C.R.Chen,J.J.Wu,L.Y.Wang,C.M.J.Chang,W.J.Ho, J. Sep. Sci. 2008, 31, 1399 J. W. King, Grasas Aceites 2002, 53, 8.spa
dc.relation.referencesMinagricultura. (2021). Cadena de citricos. Indicadores e instrumentos. https://sioc.minagricultura.gov.co/Citricos/Documentos/2021-03-31 Cifras Sectoriales.pdfspa
dc.relation.referencesMiranda-Lasprilla, D. (2020). Mandarina (Citrus reticulata Blanco): Manual de recomendaciones técnicas para su cultivo en el departamento de Cundinamarca. Bogotá, D. C.: Corredor Tecnológico Agroindustrial CTA-2.spa
dc.relation.referencesMiranda, D. (2012). Mango (Mangifera indica L.). En PRODUMEDIOS (Ed.), Manual para el cultivo de frutales en el trópico (pp. 627-656).spa
dc.relation.referencesMondello L, Casilli A, Tranchida PQ, et al. (2003). Comparison of fast and conventional GC analysis for Citrus. J Agric Food Chem 51:5602–6spa
dc.relation.referencesMokgotho MP, Gololo SS, Masoko P, Mdee LK, Mbazima V, Shai LJ, Bagla VP, Eloff JN, Mampuru L. Isolation and Chemical Structural Characterisation of a Compound with Antioxidant Activity from the Roots of Senna italica. Evid Based Complement Alternat Med. 2013;2013:519174. doi: 10.1155/2013/519174. Epub 2013 Jun 17. PMID: 23843877; PMCID: PMC3703421.spa
dc.relation.referencesMohanan, A. ; Nickerson, M.T.; Ghosh, S. Estabilidad oxidativa del aceite de linaza: Efecto de los antioxidantes hidrofílicos, hidrófobos e de polaridad intermedia. Química de alimentos. 2018, 266, 524-533.spa
dc.relation.referencesNamania JA, Baqira E, Ajwaa Al Abria AA, Hubaishia TA, Husainb A, Khana SA (2018) Phytochemical screening, phenolic content and antioxidant activity of Citrus aurantifolia l. leaves grown in two regions of Oman. Iran J Pharm Sci 14:27–34spa
dc.relation.referencesNawaz, H., Shad, M.A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56.spa
dc.relation.referencesNielsen, Food Analysis Laboratory Manual, Food Science Text Series, 65 DOI 10.1007/978-3-319-44127-6_5, © Springer International Publishing 2017spa
dc.relation.referencesNielsen, S. S. 2010. Food Analysis Fourth Edition. ISBN: 978-1-4419-1477-4. United State of Amerika: Springer. DOI 10.1007/978-1-4419-1478-1.spa
dc.relation.referencesOnwuka G. l. 2005. Food analysis and instrumentation. Theory and practice. 1st edition, Naphthali Prints Nigeria, pp 1-129spa
dc.relation.referencesOkiyama, D. C. G., Soares, I. D., Toda, T. A., Oliveira, A. L., & Rodrigues, C. E. C. (2019). Effect of the temperature on the kinetics of cocoa bean shell fat extraction using pressurized ethanol and evaluation of the lipid fraction and defatted meal. Industrial Crops and Products, 130, 96–103. https://doi.org/10.1016/j.indcrop.2018.12.063spa
dc.relation.referencesOrduz-Rodríguez, J. O., Monroy, J., Barrera, S., Núñez, V., & Ligarreto, G. (2012). Caracterización morfo-agronómica y molecular de mandarina ‘ Arrayana ‘ en el piedemonte del Meta ( Colombia ). Revista Corpoica-Ciencia y Tecnología Agropecuaria, 13, 5–12.spa
dc.relation.referencesOrduz, J., & Mateus, D. (2012). Generalidades de los cítricos y recomendaciones agronómicas para su cultivo en Colombia. In L. F. Garcés (Ed.), Cítricos: Cultivo, Poscosecha e Industrialización (Corporació, pp. 49–88). Ministerio de Agricultura y Desarrollo Rural, Corpoica, Universidad de Antioquia. http://repository.lasallista.edu.co/dspace/bitstream/10567/452/1/citricos.pdfspa
dc.relation.referencesOspina, Y. (2016). Actividad antioxidante en aceites comestibles de extractos de algas del caribe colombiano obtenidos mediante extracción supercrítica. Universidad Nacional de Colombia.spa
dc.relation.referencesOu, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49, 4619–4626.spa
dc.relation.referencesPateiro, M., Barba, F. J., Domínguez, R., Sant’Ana, A. S., Mousavi Khaneghah, A., Gavahian, M., Lorenzo, J. M. (2018). Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Research International, 113, 156–166. doi:10.1016/j.foodres.2018.07.014spa
dc.relation.referencesPandey BP, Thapa R, Upreti A (2019) Total phenolic content, flavonoids content, antioxidant and antimicrobial activities of the leaves, peels, and fruits of locally available citrus plants collected from Kavre District of Nepal. Int J Pharmacogn Chin Med 3(3):1–6spa
dc.relation.referencesPanthong, K., Srisud, Y., Rukachaisirikul, V., & Hutadilok-towatana, N. (2013). Benzene , coumarin and quinolinone derivatives from roots of Citrus hystrix. Phytochemistry, 88, 79–84. https://doi.org/10.1016/j.phytochem.2012.12.013spa
dc.relation.referencesPássaro, C., Navarro, P. & Salvador, A. (2012). Poscosecha. In L. F. Garcés (Ed.), Cítricos: Cultivo, Poscosecha e Industrialización (Corporació, pp. 223–284). Ministerio de Agricultura y Desarrollo Rural, Corpoica, Universidad de Antioquia.spa
dc.relation.referencesPereira, Carla; Carvalho, Idalina; Barros, Lilian; Ferreira, Isabel CFR (2018). Hojas de Citrus hystrix L. condimento: composición aproximada, perfil de ácidos grasos y azúcares. En XXIV Encuentro de Química Luso Galego. Puerto. ISBN 978-989-8124-24-1spa
dc.relation.referencesPeñarrieta, J. M., Tejeda, L., Mollinedo, P., Vila, J. L., & Bravo, J. A. (2014). Compuestos fenólicos y su presencia en alimentos. Revista Boliviana De Química, 31, 68–81. https://www.redalyc.org/pdf/4263/426339682006.pdfspa
dc.relation.referencesPlaza, M., & Turner, C. (2015). Pressurized hot water extraction of bioactives. Trends in Analytical Chemistry, 71, 39–54. https://doi.org/10.1016/j.trac.2015.02.022spa
dc.relation.referencesPlaza, M., Oliveira, D., Nilsson, A., & Turner, C. (2017). Green and efficient extraction method to determine polyphenols in cocoa and cocoa products. Food Analytical Methods, 10, 2677–2691. https://doi.org/10.1007/s12161-017-0830-5.spa
dc.relation.referencesPohndorf, R. S., Camara, Á. S., Larrosa, A. P. Q., Pinheiro, C. P., Strieder, M. M., & Pinto, L. A. A. (2016). Production of lipids from microalgae Spirulina sp.: Influence of drying, cell disruption and extraction methods. Biomass and Bioenergy, 93, 25–32. https://doi.org/10.1016/j.biombioe.2016.06.020spa
dc.relation.referencesPolania Barreto, W. (2014). Actividad antioxidante de residuos del aguacate Hass (Persea americana Mill. var Hass) sometidos a extracciones clásicas ya fluidos presurizados (Doctoral dissertation).spa
dc.relation.referencesPutra, N. R., A. H. A. Aziz, Z. Idham, M. S. H. Ruslan, and M. A. C.Yunus, "Diffusivity optimization of supercritical carbon dioxideextraction with co-solvent-ethanol from peanut skin". Malaysian Journalof Fundamental and Applied Sciences, 14(1), 2018spa
dc.relation.referencesQueimada, A. J., Mota, F. L., Pinho, S. P., & Macedo, E. A. (2009). Solubilities of biologically active phenolic compounds: measurements and modeling. The Journal of Physical Chemistry B, 113(11), 3469-3476.spa
dc.relation.referencesRahman, M., & Rahman, M. (2020). Effects of elevated temperature on prooxidant-antioxidant homeostasis and redox status in the American oyster: signaling pathways of cellular apoptosis during heat stress.. Environmental research, 110428 . https://doi.org/10.1016/j.envres.2020.110428.spa
dc.relation.referencesRaju, K., Roshan, D. (2022). Antioxidants market by type (natural antioxidants and synthetic antioxidants), form (dry and liquid), and application (food& feed additivies, pharmaceuticals & personal care products, fuel & lubricant additives, plastic; rubber: & latex additives, and others): Global Opportunity analysis and industry forecast, 2022-2031. https://www.alliedmarketresearch.com/anti-oxidants-marketspa
dc.relation.referencesRaman G, Cho M, Brodbelt JS, Patil BS. 2005. Isolation and purification of closelyrelated Citrus limonoid glucosides by flash chromatography. Phytochemical Analysis:An International Journal of Plant Chemical and Biochemical Techniques 16:155–160spa
dc.relation.referencesRebolledo, A. (2012). Fisiología de la floración y fructificación en los cítricos. In L. F. Garcés (Ed.), Cítricos: Cultivo, Poscosecha e Industrialización (Corporació, pp. 89–106). Ministerio de Agricultura y Desarrollo Rural, Corpoica, Universidad de Antioquia. http://repository.lasallista.edu.co/dspace/bitstream/10567/452/1/citricos.pdfspa
dc.relation.referencesReşat Apak, Mustafa Özyürek, Kubilay Güçlü, and Esra Çapanoğlu. Journal of Agricultural and Food Chemistry 2016 64 (5), 1028-1045. DOI: 10.1021/acs.jafc.5b04743spa
dc.relation.referencesResearch Nester. (2024, diciembre 6). Phenolic antioxidants market: Global demand analysis & opportunity outlook 2035. Recuperado de https://www.researchnester.com/reports/phenolic-antioxidants-market/5027spa
dc.relation.referencesReyes-Giraldo, A. F., Gutierrez-Montero, D. J., Rojano, B. A., Andrade-Mahecha, M. M., & Martínez-Correa, H. A. (2020). Sequential Extraction process of oil and antioxidants compounds from chontaduro epicarp. The Journal of Supercritical Fluids, 166, 105022. https://doi.org/10.1016/j.supflu.2020.105022spa
dc.relation.referencesRinguelet, J. (2020). Productos naturales vegetales. In Productos naturales vegetales. https://doi.org/10.35537/10915/27885spa
dc.relation.referencesRodrigues, V. H., de Melo, M. M. R., Portugal, I., & Silva, C. M. (2018). Extraction of Eucalyptus leaves using solvents of distinct polarity. Cluster analysis and extracts characterization. The Journal of Supercritical Fluids, 135, 263–274. https://doi.org/10.1016/J.SUPFLU.2018.01.010spa
dc.relation.referencesRodríguez-Solana, Raquel; Salgado, José Manuel; Domínguez, José Manuel; Cortés-Diéguez, Sandra . (2015). Comparison of Soxhlet, Accelerated Solvent and Supercritical Fluid Extraction Techniques for Volatile (GC-MS and GC/FID) and Phenolic Compounds (HPLC-ESI/MS/MS) from Lamiaceae Species. Phytochemical Analysis, 26(1), 61–71. doi:10.1002/pca.2537spa
dc.relation.referencesRouseff, R. L., & Perez-Cacho, P. R. (2017). Carotenoids in citrus: Biosynthesis and function. Elsevier.spa
dc.relation.referencesSagwan, S., Rao, D, y Sharma, R. (2010). Phytochemical evaluation and quantification of primary metabolites of Maytenus emarginata (Willd.) Ding Hou. Journal of chemical and pharmaceutical research, 2(6), 46-50.spa
dc.relation.referencesSahin, S.: Una nueva tecnología para la extracción de antioxidantes fenólicos de hojas de mandarina (Citrus deliciosa Tenore): extracción por microondas sin disolventes . Coreano J. Chem. Ing. 32(5), 950–957 (2015)spa
dc.relation.referencesSalama, M. A., El Harkaoui, S., Nounah, I., Sakr, H., Abdin, M., Owon, M., ... & Matthäus, B. (2020). Oxidative stability of Opuntia ficus-indica seeds oil blending with Moringa oleifera seeds oil☆. OCL, 27, 53.spa
dc.relation.referencesSalmanzadeh, R., Eskandani, M., Mokhtarzadeh, A., Vandghanooni, S., Ilghami, R., Maleki, H., ... & Omidi, Y. (2018). Propyl gallate (PG) and tert-butylhydroquinone (TBHQ) may alter the potential anti-cancer behavior of probiotics. Food bioscience, 24, 37-45.spa
dc.relation.referencesSamaniego Sanchez, C., Troncoso Gonzalez, A.M., Garcia-Parrilla, M.C., Quesada Granados, J.J., Lopez Garcia de la Serrana, H., Lopez Martinez, M.C., 2007. Different radical scavenging tests in virgin olive oil and their relation to the total phenol content. Analytica Chimica Acta 593, 103–107.spa
dc.relation.referencesSanchez-Martinez, J. D., Bueno, M., Alvarez-Rivera, G., Tudela, J., Ibanez, E., & Cifuentes, A. (2021). In vitro neuroprotective potential of terpenes from industrial orange juice by-products. Food and Function, 12(1), 302–314. https://doi.org/10.1039/d0fo02809fspa
dc.relation.referencesSánchez, M. E. (2013). Antioxidantes. Consumo de antioxidantes naturales en adultos mayores de entre 65 y 75 años con Dislipidemia. Universidad Abierta Interamericana.spa
dc.relation.referencesSantos, P. H., Baggio Ribeiro, D. H., Micke, G. A., Vitali, L., & Hense, H. (2019). Extraction of bioactive compounds from feijoa (Acca sellowiana (O. Berg) Burret) peel by low and high-pressure techniques. The Journal of Supercritical Fluids, 145, 219–227. https://doi.org/10.1016/j.supflu.2018.12.016spa
dc.relation.referencesSawamura M, Thi Minh Tu N, Onishi Y, Ogawa E, Choi HS (2004). Characteristic odor components of Citrus reticulata Blanco (ponkan) cold-pressed oil. Biosci. Biotechnol. Biochem. 68:1690-1697.spa
dc.relation.referencesSeo, J.K. ; Parvin, R. ; Parque, J. ; Yang, H.S. Utilización de astaxantina como sustituto antioxidante sintético para salchichas emulsionadas. Antioxidantes 2021, 10, 407spa
dc.relation.referencesShalaby, E. A., & Shanab, S. M. M. (2013). African Journal of Pharmacy and Pharmacology Review Antioxidant compounds, assays of determination and mode of action. 7(10), 528–539. https://doi.org/10.5897/AJPP2013spa
dc.relation.referencesShams, A., Mortazavi, S. A., Khosravi, K., & Bahmaei, M. (2016). A comparison between ascorbylpalmitateen capsulated with nanoliposomeas a natural antioxidant and conventional antioxidants (TBHQ And BHA) in the oxidative stability of sunflower oil. Biosciences Biotechnology Research Asia, 13(4), 2135.spa
dc.relation.referencesShen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383(August 2021), 132531. https://doi.org/10.1016/j.foodchem.2022.132531spa
dc.relation.referencesShixian Q, Dai Y, Kakuda Y, Shi J, Mittal G, Yeung D, Jiang Y. Synergistic anti-oxidative effects of lycopene with other bioactive compounds. Food Rev Int. 2005;21:295–311spa
dc.relation.referencesSindhu, R., Gnansounou, E., Rebello, S., Binod, P., Varjani, S., Thakur, I. S., Nair, R. B., & Pandey, A. (2019). Conversion of food and kitchen waste to value-added products. Journal of Environmental Management, 241(August 2018), 619–630. https://doi.org/10.1016/j.jenvman.2019.02.053spa
dc.relation.referencesSingh, A., Singh, G., Kalia, A. et al. Leaf morpho-anatomical diversity analysis in mandarin (Citrus reticulata Blanco) genotypes using scanning electron microscopy. Genet Resour Crop Evol 67, 2173–2194 (2020). https://doi.org/10.1007/s10722-020-00972-xspa
dc.relation.referencesSun-Waterhouse D, Thakorlal J, Zhou J. 2011. Effects of added phenolics on the storage stability of avocado and coconut oils. Int. J. Food Sci. Technol. 46, 1575–1585. https://doi.org/10.1111/j.1365-2621.2011.02655.xspa
dc.relation.referencesSurai, P. F. (2015). Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants, 4(1), 204-247.spa
dc.relation.referencesTemelli, F., Saldaña, M., & Comin, L. (2012). Application of Supercritical Fluid Extraction in Food Processing. In E. University of Alberta (Ed.), Extraction techniques and applications: food and beverages (Vol. 4, pp. 415–440). Elsevier. https://doi.org/10.1016/B978-0-12-381373-2.10142-5spa
dc.relation.referencesTomsone, L., & Kruma, Z. (2013). Comparison of different solvents for isolation of phenolic compounds from horseradish (Armoracia rusticana L.) leaves.spa
dc.relation.referencesTorres, T. M. S., Guedes, J. A. C., de Brito, E. S., Mazzutti, S., & Ferreira, S. R. S. (2021). High-pressure biorefining of ora-pro-nobis (Pereskia aculeata). The Journal of Supercritical Fluids, 181(September 2021), 105514. https://doi.org/10.1016/j.supflu.2021.105514spa
dc.relation.referencesUSDA (2017). Citrus: World markets and trade. United States Department of Agriculture Foreign Agricultural Service July 2017.spa
dc.relation.referencesUmemura, T., Kodama, Y., Nishikawa, A., & Hioki, K. (2006). Nine-week detection of six genotoxic lung carcinogens using the rasH2 / BHT mouse model. Cancer Letters, 231, 314–318. https://doi.org/10.1016/j.canlet.2005.02.024spa
dc.relation.referencesVásquez-Villanueva, R., Plaza, M., García, M. C., & Marina, M. L. (2020). Recovery and determination of cholesterol-lowering compounds from Olea europaea seeds employing pressurized liquid extraction and gas chromatography-mass spectrometry. Microchemical Journal, 156, 104812. https://doi.org/10.1016/j.microc.2020.104812spa
dc.relation.referencesWang, C., Duan, Z., Fan, L., & Li, J. (2019). Supercritical CO 2 Fluid Extraction of Elaeagnus mollis Diels Seed Oil and Its Antioxidant Ability. Molecules, 24 (5), 91, 1–12. https://doi.org/10.3390/molecules24050911spa
dc.relation.referencesWang, W., Xiong, P., Zhang, H., Zhu, Q., & Liao, C. (2021). Analysis , occurrence , toxicity and environmental health risks of synthetic phenolic antioxidants : A review. Environmental Research, 201(June), 111531. https://doi.org/10.1016/j.envres.2021.111531spa
dc.relation.referencesWang, X., Yang, T., Shi, S., Xu, C., Wang, F., Dai, D., ... & Guo, Y. (2024). Heterogeneity‐induced NGF‐NGFR communication inefficiency promotes mitotic spindle disorganization in exhausted T cells through PREX1 suppression to impair the anti‐tumor immunotherapy with PD‐1 mAb in hepatocellular carcinoma. Cancer medicine, 13(3), e6736.spa
dc.relation.referencesWei, X., Chen, C., Yu, Q., Gady, A., Yu, Y., Liang, G., & Gmitter, F. G. (2014). Novel expression patterns of carotenoid pathway-related genes in citrus leaves and maturing fruits. Tree Genetics & Genomes, 10, 439-448.spa
dc.relation.referencesWilliamson, G., Kay, C. D., & Crozier, A. (2018). The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1054–1112. https://doi.org/10.1111/1541-4337.12351spa
dc.relation.referencesWilmsen, P., Spada, D., & Salvador, M. (2005). Antioxidant Activity of the Flavonoid Hesperidin in Chemical and Biological Systems. Agricultural and Fodd Chemistry, 53, 4757–4761. https://doi.org/10.1021/jf0502000spa
dc.relation.referencesWink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. In Phytochemistry (Vol. 64, Issue 1, pp. 3–19). Elsevier Ltd. https://doi.org/10.1016/S0031-9422(03)00300-5spa
dc.relation.referencesXu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M.-R., Wang, X., Martínez, M., Anadón, A., & Martínez, M. A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353, 129488.spa
dc.relation.referencesYang, X., Sun, Z., Wang, W., Zhou, Q., & Shi, G. (2018). Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebra fi sh. Science of the Total Environment, 643, 559–568. https://doi.org/10.1016/j.scitotenv.2018.06.213spa
dc.relation.referencesYe, Y., Xu, G., & Li, D. (2021). Acridone alkaloids and flavones from the leaves of Citrus reticulata Acridone alkaloids and flavones from the leaves of Citrus reticulata. https://doi.org/10.1080/14786419.2021.1876047spa
dc.relation.referencesYıldıztekin, M., & Kuzu, S. (2020). Soil Properties and Mineral Nutrients of Clementine Mandarine (Citrus reticulata Blanco) Grown in the Koycegiz Region of Mugla Province. International Journal of Secondary Metabolite, 6(4), 323-332. https://doi.org/10.21448/ijsm.639215spa
dc.relation.referencesZaidun, N. H., Thent, Z. C., & Abd, A. (2018). Combating oxidative stress disorders with citrus fl avonoid : Naringenin. Life Sciences, 208(July), 111–122. https://doi.org/10.1016/j.lfs.2018.07.017spa
dc.relation.referencesZayed, A., Badawy, M. T., & Farag, M. A. (2021). Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chemistry, 355(March), 129609. https://doi.org/10.1016/j.foodchem.2021.129609spa
dc.relation.referencesZeb, A. (2020). Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry, 44(9), e13394.spa
dc.relation.referencesZhang, Y., Wang, F., Li, S., Yan, S., Li, B., Huang, Z., & Li, J. (2024). Comparison of Phenolic Antioxidants’ Impact on Thermal Oxidation Stability of Pentaerythritol Ester Insulating Oil. IEEE Transactions on Dielectrics and Electrical Insulation.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocOxidaciónspa
dc.subject.agrovocoxidationeng
dc.subject.agrovocAceite de sojaspa
dc.subject.agrovocsoybean oileng
dc.subject.agrovocAntioxidantespa
dc.subject.agrovocantioxidantseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalHojas de mandarina (Citrus reticulata)spa
dc.subject.proposalCO₂ supercríticospa
dc.subject.proposalEstabilidad oxidativaspa
dc.subject.proposalCapacidad antioxidantespa
dc.subject.proposalRancimatspa
dc.subject.proposalValorización de residuosspa
dc.subject.proposalMetodología de superficie de respuestaspa
dc.subject.proposalTangerine leaves (Citrus reticulata)eng
dc.subject.proposalSupercritical CO2eng
dc.subject.proposalOxidative stabilityeng
dc.subject.proposalAntioxidant capacityeng
dc.subject.proposalRancimateng
dc.subject.proposalWaste valorizationeng
dc.subject.proposalResponse surface methodologyeng
dc.titleEstudio comparativo de métodos de extracción y evaluación del efecto protector de extractos de hojas de mandarina (Citrus reticulata) var. Arrayana contra la oxidación lipídica en aceite de sojaspa
dc.title.translatedComparative study of extraction methods and evaluation of the protective effect of mandarin (Citrus reticulata) var. Arrayana leaf extracts against lipid oxidation in soybean oileng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019089277.2025.pdf
Tamaño:
4.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: