Ecuaciones semilineales con espectro discreto

dc.contributor.authorCaicedo Contreras, José Francisco
dc.contributor.authorCastro, Alfonso
dc.contributor.illustratorRubiano, Gustavo
dc.date.accessioned2021-08-20T17:38:01Z
dc.date.available2021-08-20T17:38:01Z
dc.date.issued2012
dc.description.abstractEste libro está diseñado como un primer curso sobre ecuaciones diferenciales semilineales para estudiantes con conocimientos básicos de álgebra lineal, análisis matemático y ecuaciones diferenciales. El estudio del primer capítulo solamente requiere de conocimientos básicos de ecuaciones diferenciales elementales. Para el segundo capítulo se necesita manejo de las coordenadas polares y el teorema del valor intermedio. Lo anterior, más conocimiento de ecuaciones diferenciales ordinarias singulares facilitan el estudio del capítulo 3. En el capítulo métodos de orden, se usa a menudo el papel de las segundas derivadas parciales por su importancia para determinar mínimos o máximos locales. El estudio de los capítulos 5 a 8 requiere de cierta familiaridad con conceptos básicos del análisis funcional tales como la integral de Lebesgue, espacios de Hilbert y espacios Lp. (Texto tomado de la fuente).spa
dc.description.editionPrimera ediciónspa
dc.description.notesIncluye índice analítico.spa
dc.description.notesISBN de la versión impresa 9789587612424spa
dc.format.extentxiii, 175 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79984
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.departmentSede Bogotáspa
dc.publisher.placeBogotá, Colombiaspa
dc.relation.citationeditionPrimera ediciónspa
dc.relation.ispartofseriesColección textos;
dc.relation.referencesR. Adams, Sobolev spaces, Academic Press, New York, 1975.spa
dc.relation.referencesI. Ali and A. Castro, Positive solutions for a semilinear elliptic problem with critical exponent, Nonlinear Analysis 27 (1996), no. 3, 327– 338.spa
dc.relation.referencesJ. Ali, R. Shivaji, and M. Ramaswamy, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differential Integral Equations 19 (2006), no. 6, 669–680.spa
dc.relation.referencesH. Amann, Fixed point problems and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18 (1976), 620–709.spa
dc.relation.referencesSaddle points and multiple solutions of differential equations, Math. Z. (1979), 127–166.spa
dc.relation.referencesH. Amann and S. A. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39–54.spa
dc.relation.referencesP. Bates and A. Castro, Existence and uniqueness for a variational hyperbolic systems, Nonlinear Analysis. 4 (1980), no. 6, 1151–1156.spa
dc.relation.referencesNecessary and sufficient conditions for existence of solutions to equations with noninvertible linear part, Rev. Colombiana.Mat. 15 (1981), no. 1, 7–23.spa
dc.relation.referencesV. Benci and D. Fortunato, Towards a unified field theory for classical electrodynamics, Arch. Ration. Mech. Anal. 173 (2004), no. 3, 379–414.spa
dc.relation.referencesV. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals, Inventions math. 52 (1979), 241–273.spa
dc.relation.referencesA.G. Bratsos, the solution of the two dimensional sine-gordon equation using the method of lines, Journal of Computational and Applied Mathematics 206 (2007), 251–277.spa
dc.relation.referencesH. Brezis, Analyse Fonctionelle, Masson, 1983.spa
dc.relation.referencesH. Brezis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Annali della Scuola Norm. Sup. di Pisa (1978), 225–236.spa
dc.relation.referencesR. Brooks and K. Schmitt, The contraction mapping principle and some applications, Electronic Journal of Differential Equations, Monograph (2009), 225–236.spa
dc.relation.referencesJ. Caicedo and A. Castro, A semilinear wave equation with derivative of nonlinearity containing multiple eigenvalues of infinite multiplicity, Contemp. Math. 208 (1997), 111–132.spa
dc.relation.referencesJ.F. Caicedo and A. Castro, A semilinear wave equation with smooth data and no resonance having no continuous solution, Discrete and Continuous Dynamical Systems 24 (2009), 653–658.spa
dc.relation.referencesJ.F. Caicedo, A. Castro, and R. Duque, Existence of solutions for a wave equation with nonmonotone nonlinearity and a small parameter, preprint (2010).spa
dc.relation.referencesR. Cantrell, C. Cosner, and S. Martínez, Global bifurcation of solutions to diffusive logistic equations on bounded domains subject to nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 1, 45.spa
dc.relation.referencesA. Castro, Sufficient conditions for the existence of weak solutions of the boundary value problem Lu=g(u(x ),x ) (x ∈ Ω), u(x )=0 (x ∈ ∂Ω), Rev. Colombiana Mat. (1975), no. 3, 173–187.spa
dc.relation.referencesHammerstein integral equations with indefinite kernel, Internet. J. Math. Sci. 1 (1978), no. 8, 187–201.spa
dc.relation.referencesPeriodic solutions of the forced pendulum equation, Academic Press (1980), 149–160.spa
dc.relation.referencesA. Castro, J. Cossio, and J.M. Neuberger, A sign changing for a superlinear Dirichlet problem, Rocky Mountain J.Math.spa
dc.relation.referencesA minimax principle, index of the critical point, and existence of sign changing solutions to elliptic boundary value problem, Electron. J. Differential Equations 02 (1998), 18.spa
dc.relation.referencesA. Castro, J. Cossio, and C.A. Velez, Existence of seven solutions for an asymptotically linear Dirichlet problem, preprint (2010).spa
dc.relation.referencesA. Castro and A. Kurepa, Energy analysis of a nonlinear singular diferencial equation and applications, Rev. Colombiana Mat. 21 (1987), 155–166.spa
dc.relation.referencesA. Castro and A. Lazer, Applications of a maximun principle, Rev.Col. de Mat. (1976).spa
dc.relation.referencesCritical point theory and the numbers of solutions of a nonlinear dirichlet problem, Ann. Mat. Pura Appl. 4 (1979), no. 120.spa
dc.relation.referencesOn periodic solutions of weakly coupled systems of differential equations, Boll. Un. Mat. Ital. B 5 (1981), no. 18, 733–742.spa
dc.relation.referencesA. Castro and B. Preskill, Existence of solutions for a semilinear wave equation with non-monotone nonlinearity, Discrete Contin. Dyn. Syst. 28 (2010), no. 2, 649.spa
dc.relation.referencesA. Castro and R. Shivaji, Non-negative solutions for a class of nonpositone problems, Proc. Royal Soc. Endinburg Sect. A 108 (1988), no. 8, 291–302.spa
dc.relation.referencesNon-negative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric, Comm. in Partial Differential Equations 14 (1989), no. 8, 1091–1100.spa
dc.relation.referencesA. Castro and S. Unsurangsie, A semilinear wave equation with non-monotone nonlinearity, Pacific J. Math 132 (1988), no. 2, 215–225.spa
dc.relation.referencesS. Cingolani and M. Clapp, intertwining semiclassical bound states to a nonlinear magnetic schrodinger equation, Nonlinearity 22 (2009), no. 9, 2309–2331.spa
dc.relation.referencesSymmetric semiclassical states to a magnetic nonlinear schrodinger equation via equivariant morse theory, Commun. Pure Appl. Anal. 9 (2010), no. 5, 1263–1281.spa
dc.relation.referencesD. Clark, A variant of the Lusternik-Schnierelmann theory, Indiana Univ. Math. J. 22 (1972), 579–584.spa
dc.relation.referencesD. de Figueiredo, P. Lions, and R. Nusbaum, A priori and existence of positive solutions of semilinear elliptic equations, J. Math. Pures. Appl. 61 (1982), 41–63.spa
dc.relation.referencesP. Drabek, A. Kufner, and F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, Walter de Gruyter, Berlin, New York, 1997.spa
dc.relation.referencesS. Fucik, J. Necas, J. Soucek, and V. Soucek, Spectral analysis of nonlinear operators, vol. 343, Springer Verlag, 1973.spa
dc.relation.referencesB. Gidas, W. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.spa
dc.relation.referencesB. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations. 6 (1981), 883–901.spa
dc.relation.referencesD. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1998.spa
dc.relation.referencesV. Guillemin and A. Pollack, Differential Topology, Prentice Hall, Inc, 1974.spa
dc.relation.referencesH. Hofer, On the range of a wave operator with non-monotone nonlinearity, Math. Nachr. 106 (1982), 327–340.spa
dc.relation.referencesJ. Jacobsen and K. Schmitt, Radial solutions of quasilinear elliptic differential equations, Elsevier/North-Holland.spa
dc.relation.referencesJ. Jia and J. Huang, Krylov deferred correction accelerated method of lines transpose for parabolic problems, Journal of computational Physics 227 (2008), 1739–1753.spa
dc.relation.referencesD. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1973), 241–269.spa
dc.relation.referencesA. Khamayseh and R. Shivaji, Evolution of bifurcation curves for semipositone problems when nonlinearities develop multiple zeroes, Appl. Math. Comput. 52 (1992), no. 2, 173–188.spa
dc.relation.referencesM. Krasnoselskii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, London, New York, 1964.spa
dc.relation.referencesE. Landesman and A. Lazer, Nonlinear perturbations of elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970).spa
dc.relation.referencesS. Lang, Real Analysis, Addisson-Wesley Publishing Company, 1983.spa
dc.relation.referencesA. Lazer, E. Landesman, and D. Meyers, On saddle point problems in the calculus of variations, the ritz algorithm, and monotone convergence, J. Math. Appl. 52 (1975), no. 3.spa
dc.relation.referencesN.G. Lloyd, Degree theory, Cambridge University Press., 1978.spa
dc.relation.referencesJ. Mawhin, Periodic solutions of some semilinear wave equations and systems: a survey, Chaos, Solitons, and Fractals 5 (1995), 1651– 1669.spa
dc.relation.referencesP. J. McKenna, On solutions of a nonlinear wave equation when the ratio of the period to the length of the interval is irrational, Proc. Amer. Math. Soc. 93 (1985), no. 1, 59–64.spa
dc.relation.referencesA. Miciano and R. Shivaji, Multiple positive solutions for a class of semipositone Newmann two boundary value problems, J. Math. Anal. Appl. 178 (1993), no. 1, 102–115.spa
dc.relation.referencesJ. Milnor, Topology from a differentiable viewpoint, Princeton University Press.spa
dc.relation.referencesL. Nirenberg, Topics in nonlinear functional analysis, Courant Institute Lecture Notes, New York, 1974.spa
dc.relation.referencesF. Pacella and T. Weth, Symmetry of solutions to semilinear elliptic equations via morse index, Proc. Amer. Math. Soc. 135, no. 6, 1753– 1762.spa
dc.relation.referencesR. Palais, Lusternik-Schnirelmann theory on Banach manifolds, Topology 5 (1966), 115–132.spa
dc.relation.referencesM. Protter and H. Weinberger, Maximun principles in differential equations, Prentice Hall, Englewood, Cliffs, N.J., 1967.spa
dc.relation.referencesP. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681–703.spa
dc.relation.referencesP.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513.spa
dc.relation.referencesPeriodic solutions of Hamiltonian systems, Com. Pure Appl. Math. 31 (1978), 157–184.spa
dc.relation.referencesSome minimax theorems and applications to nonlinear partial differential equations, Nonlinear Analysis, Ac.Press 65 (1978), 161–177.spa
dc.relation.referencesMinimax methods in critical point theory with applications to differential equations, CBMS 65 (1985).spa
dc.relation.referencesM. Reed and B. Simon, Methods of modern mathematical physics, Academic Press., Inc., 1980.spa
dc.relation.referencesH. Royden, Real Analysis, McMillan Publishing Co., Inc., 1968.spa
dc.relation.referencesW. Rudin, Principles of mathematical analysis, McGraw-Hill, New York, 1976.spa
dc.relation.referencesReal and complex analysis, McGraw-Hill, New York, 1987.spa
dc.relation.referencesJ. Schwartz, Nonlinear functional analysis, Gordon Breach, New York, 1962.spa
dc.relation.referencesM. Willem, Density of the range of potential operators, Proc. Amer. Math. Soc. 83 (1981), no. 2, 341–344.spa
dc.relation.referencesP. Zhao, C. Zhong, and J. Zhu, Positive solutions for a nonhomogeneous semilinear elliptic problem with supercritical exponent, J. Math. Anal. Appl. 254 (2001), no. 2, 335–347.spa
dc.rightsDerechos Reservados al Autor, 2012spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.lembEcuaciones diferenciales parcialesspa
dc.subject.lembEcuaciones diferenciales semilinealesspa
dc.subject.lembTeoría espectralspa
dc.subject.proposalAnálisis funcionalspa
dc.subject.proposalFunciones de Greenspa
dc.subject.proposalEcuacionesspa
dc.titleEcuaciones semilineales con espectro discretospa
dc.typeLibrospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.redcolhttp://purl.org/redcol/resource_type/LIBspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneralspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
­Ecuaciones Semilineales con Espectro Discreto 9789587612424.pdf
Tamaño:
1.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Libro del Departamento de Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones