Approach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian Andes

dc.contributor.advisorAristizábal Giraldo, Edier Vicente
dc.contributor.advisorHolbling, Daneil
dc.contributor.authorNaranjo Bedoya, Karolina
dc.contributor.orcidKarolina Naranjo Bedoya [0000-0002-6484-0709]spa
dc.contributor.researchgateKarolina Naranjo Bedoyaspa
dc.contributor.researchgroupGrupo de Investigación en Geología Ambiental - GEAspa
dc.date.accessioned2024-01-26T20:30:20Z
dc.date.available2024-01-26T20:30:20Z
dc.date.issued2023
dc.descriptionIlustraciones, mapasspa
dc.description.abstractEl análisis de las condiciones de susceptibilidad por deslizamientos y avenidas torrenciales es un tema importante para desarrollar diferentes estrategias que permitan mejorar el ordenamiento territorial. Estos procesos son recurrentes en los Andes colombianos afectando personas cada año además de generar pérdidas económicas. El análisis del paisaje requiere la cuantificación de las características topográficas. Este estudio utiliza las redes de drenaje como la forma en que se conecta la morfogénesis con la morfodinámica. Se utilizó un conjunto de 25 índices morfométricos y herramientas de análisis geoespacial para caracterizar 168 cuencas hidrográficas del norte de los Andes colombianos, con el fin de identificar patrones anómalos en su distribución y examinarlos en función de los inventarios de deslizamientos y avenidas torrenciales recolectados. Se encuentra que los índices asociados a las clases de Textura del Drenaje y Características del Relieve son los que mejor separan los grupos de cuencas de acuerdo a su localización espacial, también se encuentran diferencias morfométricas entre las cuencas de drenaje ubicadas en la Cordillera Central y Cordillera Occidental, así como en los afluentes directos del río Cauca muestran características segregadas al conjunto de datos. Por último, el norte de los Andes colombianos presenta un paisaje activo con cuencas hidrográficas desequilibradas y divisorias asimétricas, donde predominan los deslizamientos recientes en lugar de los antiguos en las divisorias. La geomorfología tiene un papel esencial en el análisis y la comprensión de los desastres naturales. Esta tesis permitió investigar la susceptibilidad de las cuencas hidrográficas a desarrollar estos procesos a partir de una mirada a escalas mayores de tiempo y espacio que involucra el estudio de la evolución del paisaje. (Tomado de la fuente)spa
dc.description.abstractThe analysis of landslide and debris flow susceptibility conditions is an important topic to develop different strategies to enhance land-use planning. These processes are recurrent in the Colombian Andes affecting people each year in addition to economic losses. Landscape analysis requires the quantification of topographic characteristics. This study uses drainage networks as the route that connects morphogenesis with morphodynamics. A set of 25 morphometric indices and geospatial analysis tools were used to characterize 168 watersheds in the northern Colombian Andes to identify anomaly patterns in their distribution and to examine them in terms of inventories of landslides and debris flows collected. Indices associated with the Drainage Texture and Relief Characteristics classes are found to best separate groups of watersheds according to their spatial location, morphometric differences are found between the basin drainage located in the Central and Western Cordillera, as well as direct tributaries of the Cauca River show segregated characteristics to the data set. Finally, the northern Colombian Andes exhibits an active landscape with unbalanced watersheds and asymmetric divides, where recent landslides rather than ancient landslides predominate in the divides. Geomorphology has an essential role in the analysis and comprehension of natural disasters. This thesis allowed to investigate the susceptibility of watersheds to develop these processes from a look at larger scales of time and space that involves the study of the evolution of the landscape.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Medio Ambiente y Desarrollospa
dc.description.researchareaGeomorfometría y evolución del paisajespa
dc.format.extent133 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85472
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Medio Ambiente y Desarrollospa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAdams, B. A., Whipple, K. X., Forte, A. M., Heimsath, A. M., and Hodges, K. V. (2020). Climate controls on erosion in tectonically active landscapes. Science advances, 6:1–10.spa
dc.relation.referencesAguirre, V. (2020). Suspenden búsqueda de desaparecidos en Dabeiba y declaran camposanto la zona de la emergencia.spa
dc.relation.referencesAhmed, M. F., Ali, M. Z., Rogers, J. D., and Khan, M. S. (2019). A study of knickpoint surveys and their likely association with landslides along the Hunza River longitudinal profile. Environmental Earth Sciences, 78:1–15.spa
dc.relation.referencesAnselin, L. (1988). Spatial econometrics: methods and models, volume 4. Springer Science & Business Media.spa
dc.relation.referencesAnselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2):93–115.spa
dc.relation.referencesArango, M. I., Aristizábal, E., and Gómez, F. (2020). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105:983–1012.spa
dc.relation.referencesArias, L. A. (1995). El relieve de la zona central de Antioquia: un palimpsesto de eventos tectónicos y climáticos. Revista Facultad de Ingeniería Universidad de Antioquia, (10):9– 24.spa
dc.relation.referencesAristizábal, E., Arango, M., Gómez, F., López, S., De Villeros, A., and Riaño, A. (2020). Hazard Analysis of Hydrometeorological Concatenated Processes in the Colombian Andes. In Fernandes, F., Malheiro, A., and Chamin´e, H., editors, Advances in Natural Hazards and Hydrological Risks: Meeting the Challenge, chapter 2, pages 7–10. Springer.spa
dc.relation.referencesAristizábal, E. and Sánchez, O. (2019). Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous Colombian Andes. Disasters.spa
dc.relation.referencesAristizábal, E. and Yokota, S. (2006). Geomorfología aplicada a la ocurrencia de deslizamientos en el Valle de Aburrá. Dyna, 73(149):5–16.spa
dc.relation.referencesAristizábal, E. and Yokota, S. (2008). Evolución Geomorfológica del Valle de Aburrá y sus implicaciones en la ocurrencia de movimientos en masa. Boletín de Ciencias de la Tierra, 24:5–18.spa
dc.relation.referencesBeeson, H. W. and McCoy, S. W. (2020). Geomorphic signatures of the transient fluvial response to tilting. Earth Surface Dynamics, 8:123–159.spa
dc.relation.referencesBeeson, H. W., McCoy, S. W., and Keen-Zebert, A. (2017). Geometric disequilibrium of river basins produces long-lived transient landscapes. Earth and Planetary Science Letters, 475(October):34–43.spa
dc.relation.referencesBigi, A., Hasbargen, L. E., Montanari, A., and Paola, C. (2006). Knickpoints and hillslope failures: Interactions in a steady-state experimental landscape. Special Paper of the Geological Society of America, 398:295–307.spa
dc.relation.referencesBishop, P. (1995). Drainage rearrangement by river capture, beheading and diversion. Progress in Physical Geography, 19(4):449–473.spa
dc.relation.referencesBishop, P. (2007). Long-term landscape evolution: linking tectonics and surface processes. Earth Surface Processes and Landforms, 34:329–365.spa
dc.relation.referencesBotero, G. (1963). Contribución al conocimiento de la geología de la zona central de Antioquia. Anales de la Facultad de Minas, (57):94.spa
dc.relation.referencesBoulton, S. J. (2020). Geomorphic Response to Differential Uplift: River Long Profiles and Knickpoints From Guadalcanal and Makira (Solomon Islands). Frontiers in Earth Science, 8:1–23.spa
dc.relation.referencesBourgois, J., Azéma, J., Tournon, J., Bellon, H., Calle, B., Parra, E., Toussaint, J.-F., Glacon, G., Feinberg, H., De Wever, P., and Origlia, I. (1982). Ages et structures des comlplexes basiques et ultrabasiques de la fa¸cade pacifique entre 3°N et 12°N (Colombie, Panamá et Costa-Rica). Bulletin De La Société Géologique De Française, 7(3):545–554.spa
dc.relation.referencesBrunsden, D. (2002). Geomorphological roulette for engineers and planners: Some insights into an old game. Quarterly Journal of Engineering Geology and Hydrogeology, 35:101–142.spa
dc.relation.referencesBrunsdon, C., Fotheringham, A. S., and Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28(4):281– 298.spa
dc.relation.referencesBuchely, F., Parra, E., Castillo, H., Gonzalez, F., Davila, C., and Romero, O. (2009). Realización de la cartografía geológica y muestreo geoquímico en las planchas 144, 145, 128, 129, 113 y 114 (1580 km2). Technical report, INGEOMINAS, Bogotá.spa
dc.relation.referencesBull, W. B. (2009). Tectonically Active Landscapes. Wiley.spa
dc.relation.referencesBurbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C. (1996). Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379:505–510.spa
dc.relation.referencesBusnelli, J. and Horta, L. R. (2014). Morfometría de cuencas Montanas y Metamorfosis fluvial, Tucumán. Revista de la Asociación Geológica Argentina, 71(1):11–20.spa
dc.relation.referencesBustamante, C., Archanjo, C. J., Cardona, A., and Vervoort, J. D. (2016). Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. Bulletin of the Geological Society of America, 128(11-12):1762–1779spa
dc.relation.referencesBustamante, C., Cardona, A., Archanjo, C. J., Bayona, G., Lara, M., and Valencia, V. (2017). Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos, 277:199–209.spa
dc.relation.referencesBustos, X., Bermúdez, M. A., Toro, G. M., Bernet, M., Rojas, O., and Marín, M. I. (2013). Caracterización de superficies de erosión mediante geomorfología cuantitativa, Altiplano Antioqueño, Cordillera Central de Colombia. Terra, 46:43–67.spa
dc.relation.referencesCaballero, J., Rendón, A., Gallego, J., and Uasapud, N. (2016). Inter-Andean Cauca River Canyon. In Hermelin, M., editor, Landscapes and Landforms of Colombia, World Geomorphological Landscapes, chapter 13, pages 155–166. Springer, 1st edition.spa
dc.relation.referencesCalle, B. and González, H. (1982). Geología y Geoquímica de la Plancha 186 Riosucio. Technical report, INGEOMINAS, Medellín.spa
dc.relation.referencesCampello, R. J. G. B., Moulavi, D., and Sander, J. (2013). Density-based clustering based on hierarchical density estimates. In Pei, J., Tseng, V. S., Cao, L., Motoda, H., and Xu, G., editors, Advances in Knowledge Discovery and Data Mining, pages 160–172, Berlin, Heidelberg. Springer Berlin Heidelberg.spa
dc.relation.referencesCampforts, B., Shobe, C., Steer, P., Vanmaercke, M., Lague, D., and Braun, J. (2020). HyLands 1 . 0 : a Hybrid Landscape evolution model to simulate the impact of landslides and landslide-derived sediment on landscape evolution. Geoscientific Model Development, pages 1–36.spa
dc.relation.referencesCárdenas, C. (2005). Erupción del volcán Nevado de Ruiz de 1985. In Hermelín, M. and EAFIT, F. e. U., editors, Desastres de origen natural en Colombia 1979-2004, chapter 4, pages 39–54. Medellín, 1 edition.spa
dc.relation.referencesCardona, A., Valencia, V., Weber, M., Duque, J., Montes, C., Ojeda, G., Reiners, P., Domanik, K., Nicolescu, S., and Villagomez, D. (2011). Transient cenozoic tectonic stages in the southern margin of the caribbean plate: U-th/he thermochronological constraints from eocene plutonic rocks in the Santa Marta massif and serranía de Jarara, northern Colombia. Geologica Acta, pages 445–469.spa
dc.relation.referencesCastillo, M., Bishop, P., and Jansen, J. D. (2013). Knickpoint retreat and transient bedrock channel morphology triggered by base-level fall in small bedrock river catchments: The case of the Isle of Jura, Scotland. Geomorphology, 180-181:1–9spa
dc.relation.referencesCediel, F., Shaw, R., and Cáceres, C. (2003). Tectonic assembly of the Northern Andean Block. In Bartolini, C., Buffler, R., and Blickwede, J., editors, The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, number 79, chapter 37, pages 815–848.spa
dc.relation.referencesChiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., and Prieto, G. A. (2015). Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1):16–27.spa
dc.relation.referencesChicangana, G. (2005). The Romeral Fault System: A shear and deformed extinct subduction zone between oceanic and continental lithospheres in northwestern South America. Earth Sciences Research Journal, 9(1):51–66.spa
dc.relation.referencesCochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., and Chiaradia, M. (2014). Distinguishing between in-situ and accretionary growth of continents along active margins. Lithos, 202-203:382–394.spa
dc.relation.referencesComber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., Lü, Y., Murakami, D., Nakaya, T., Wang, Y., and Harris, P. (2023). A Route Map for Successful Applications of Geographically Weighted Regression. Geographical Analysis, 55(1):155–178.spa
dc.relation.referencesCorrêa, F., de Fátima, D., de Morisson, M., and de Oliveira, C. (2019). Neotectonics in the South American passive margin: Evidence of Late Quaternary uplifting in the northern Paraiba Basin (NE Brazil). Geomorphology, 325:1–16.spa
dc.relation.referencesCortés, M. and Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403:29–58.spa
dc.relation.referencesCox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106:571–581.spa
dc.relation.referencesCRED and UNISDR (2017). Economic Losses, Poverty Disasters 1998-2017. Technical report.spa
dc.relation.referencesDadson, S. J., Hovius, N., Hongey, C., Dade, W. B., Meng-long, H., Willett, S. D., Jyr-ching, H., Ming-Jame, H., Meng-Chiang, C., Stark, C. P., Lague, D., and Jiun-Chuan, L. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967):648–651.spa
dc.relation.referencesDahlquist, M. P., West, A. J., and Li, G. (2018). Landslide-driven drainage divide migration. Geology, 46(5):403–406.spa
dc.relation.referencesDas, S., Sarkar, S., and Kanungo, D. P. (2023). A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya. Natural Hazards, 115(1):23–72.spa
dc.relation.referencesDe Greiff, P., Hermelin, M., and Rend´on, D. (2004). Procesos erosivos en la Microcuenca Andina: El valle del alto del Río Medellín, Cordillera Central, Antioquia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 28(109):24–33.spa
dc.relation.referencesDolui, G., Das, K., Chatterjee, N. D., and Bhattcharya, R. K. (2022). Multi-criteria-based Morphometric Prioritization for Soil Erosion Susceptibility and Denudation Rate Assessment of Purulia District, India. In Kumar, P., Islam, A., Sankar, G., Bera, B., and Ghosh, S., editors, Drainage Basin Dynamics. An Introduction to Morphology, Landscape and Modelling, chapter 22, page 574. Springer.spa
dc.relation.referencesDuque-Caro, H. (1990). The choco block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3(1):71–84.spa
dc.relation.referencesEgholm, D. L., Knudsen, M. F., and Sandiford, M. (2013). Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. Nature, 498:475–478.spa
dc.relation.referencesEgo, F., Sébrier, M., Lavenu, A., Yepes, H., and Egues, A. (1996). Quaternary state of stress in the Northern Andes and the restraining bend model for the Ecuadorian Andes. Tectonophysics, 259:101–116spa
dc.relation.referencesEgo, F., Sébrier, M., and Yepes, H. (1995). Is the Cauca-Patia and Romeral Fault System left or rightlateral? Geophysical Research Letters, 22(1):33–36.spa
dc.relation.referencesEl País (2023). Encuentran otro cuerpo sin vida tras devastadora avalancha en Quetame.spa
dc.relation.referencesFaniran, A. (1968). The index of drainage intensity—a provisional new drainage factor. Australian journal of science, 31:328–330.spa
dc.relation.referencesFeininger, T. and Botero, G. (1982). The Antioquian Batholith, Colombia. Publicaciones geológicas especiales del Ingeominas, (12):1–50.spa
dc.relation.referencesFernandes, F. and Dietrich, E. (1997). Hillslope evolution by diffusive processes: The timescale for equilibrium adjustments. Water Resources Research, 33(6):1307–1318.spa
dc.relation.referencesFeuillet, T., Coquin, J., Mercier, D., Cossart, E., Decaulne, A., Jónsson, H. P., and Sæ- mundssonthorsteinn, T. (2014). Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland: Do paraglacial factors vary over space? Progress in Physical Geography, 38(3):354–377.spa
dc.relation.referencesFigueiredo, P. M., Rockwell, T. K., Cabral, J., and Ponte, C. (2019). Morphotectonics in a low tectonic rate area: Analysis of the southern Portuguese Atlantic coastal region. Geomorphology, 326:132–151.spa
dc.relation.referencesFlores, E., Qupenéhervé, G., Bachofer, F., Shahzad, F., and Maerker, M. (2015). Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data. Geomorphology, 248:427–439.spa
dc.relation.referencesForte, A. M. and Whipple, K. X. (2018). Criteria and tools for determining drainage divide stability. Earth and Planetary Science Letters, 493:102–117.spa
dc.relation.referencesFotheringham, A. S., Charlton, M. E., and Brunsdon, C. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30(11):1905–1927.spa
dc.relation.referencesFotheringham, A. S. and Oshan, T. M. (2016). Geographically weighted regression and multicollinearity: dispelling the myth. Journal of Geographical Systems, 18:303–329.spa
dc.relation.referencesFotheringham, S., Brunsdon, C., and Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wileyspa
dc.relation.referencesGaladini, F. (2006). Quaternary tectonics and large-scale gravitational deformations with evidence of rock-slide displacements in the Central Apennines (central Italy). Geomorphology, 82(3-4):201–228.spa
dc.relation.referencesGallego, J. (2018). Assessment of recent tectonic activity of the Sabanalarga Fault System, Western Antioquia – Colombia. Master thesis, University of Bern.spa
dc.relation.referencesGallen, S., Wegmann, K., Franke, K. L., Hughes, S., Lewis, R. Q., Lyons, N., Paris, P., Ross, K., Bauer, J. B., and Witt, A. C. (2011). Hillslope response to knickpoint migration in the Southern Appalachians: Implications for the evolution of post-orogenic landscapes. Earth Surface Processes and Landforms, 36:1254–1267.spa
dc.relation.referencesGarcía, C. (2007). Datación por fotoluminiscencia de algunas formaciones superficiales del Llano de Ovejas, Cordillera Central, Antioquia. PhD thesis, Universidad EAFIT.spa
dc.relation.referencesGarcia, C. and Hermelin, M. (2004). Cálculo preliminar de la tasa de meteorización del batolito antioqueño, Cordillera Central, Colombia. Revista Brasileira de Geomorfologia, 5(1).spa
dc.relation.referencesGarcía, H., Machuca, S., and Medina, E. (2019). Dynamic and geomorphic characterizations of the Mocoa debris flow (March 31, 2017, Putumayo Department, southern Colombia). Landslides, 16:597–609.spa
dc.relation.referencesGarcía, H., Machuca, S., Velandia, F., and Audemard, F. (2020). Along-strike variations in recent tectonic activity in the Santander Massif: New insights on landscape evolution in the Northern Andes. Journal of South American Earth Sciences, 98:1–22.spa
dc.relation.referencesGarcía, H. and Velandia, F. (2020). Tectonic geomorphology of the Serranía de San Lucas (Central Cordillera): Regional implications for active tectonics and drainage rearrangement in the Northern Andes. Geomorphology, 349:1–25.spa
dc.relation.referencesGarcia, Y. C., Martinez, J. I., Velez, M. I., Yokoyama, Y., Battarbee, R. W., and Suter, F. D. (2011). Palynofacies analysis of the late Holocene San Nicolás terrace of the Cauca paleolake and paleohydrology of northern South America. Palaeogeography, Palaeoclimatology, Palaeoecology, 299:298–308.spa
dc.relation.referencesGarrote, J., Cox, R., Swann, C., and Ellis, M. (2006). Tectonic geomorphology of the southeastern Mississippi Embayment in northern Mississippi, USA. Geological Society of America Bulletin, 118(9/10):1160–1170.spa
dc.relation.referencesGiardino, M., Ratto, S., Palomba, M., Alberto, W., Armand, M., and Cignetti, M. (2013). The Debris Flows Inventory of the Aosta Valley Region: An Integrated Natural Hazards Assessment. In Margottini, C., editor, The second world landslide forum, pages 127–134. Springer Verlagspa
dc.relation.referencesGlade, R. C., Shobe, C. M., Anderson, R. S., and Tucker, G. E. (2019). Canyon shape and erosion dynamics governed by channel-hillslope feedbacks. Geology, 47:650–654.spa
dc.relation.referencesGómez, J. and Montes, N. (2020). Mapa Geológico de Colombia en Relieve 2020. Escala 1:1 000 000. Technical report, Servicio Geológico Colombiano, Bogotá.spa
dc.relation.referencesGonzález, H. (2001). Mapa geológico del Departamento de Antioquia Escala 1:400.000. Memoria explicativa. Technical report, INGEOMINAS.spa
dc.relation.referencesDiaz & López (1987). Morfometría de redes fluviales: revisión crítica de los parámetros más utilizados y aplicación al Alto Guadalquivir. Papeles de geografía, 12:47–62.spa
dc.relation.referencesGonzález, H. and Londoño, A. C. (2002). Catálogo de las unidades litoestratigráficas de Colombia, Monzodiorita de la Horqueta (Stock de La Horqueta) Nmdh, Cordillera Occidental Departamento de Antioquia. Technical report, Ingeominas, Bogotá.spa
dc.relation.referencesGravelius, H. (1941). Flusskunde.spa
dc.relation.referencesGuerit, L., Goren, L., Dominguez, S., Malavieille, J., and Castelltort, S. (2018). Landscape ‘stress’ and reorganization from χ-maps: Insights from experimental drainage networks in oblique collision setting. Earth Surface Processes and Landforms, 43(15):3152–3163.spa
dc.relation.referencesHack, J. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. USGS Professional Paper, page 59.spa
dc.relation.referencesHack, J. (1973). Stream-profile analysis and stream-gradient index. J.Res.Us Geol.Surv., 1(4):421–429.spa
dc.relation.referencesHermelín, M. (1982). EL origen del Valle de Aburrá. Evolución de las ideas. Boletín Ciencias de la Tierra, (7-8):47–65.spa
dc.relation.referencesHermelín, M. (2005). Introducción. In Hermelin, M. and Fondo editorial Universidad EAFIT, editors, Desastres de origen natural en Colombia 1979-2004, chapter 1, pages 11–16. Medellín, 1 edition.spa
dc.relation.referencesHermelin, M. (2016). Geomorphological Landscapes and Landforms of Colombia. In Hermelin, M., editor, Landscapes and Landforms of Colombia, World Geomorphological Landscapes, chapter 1, pages 1–21. Springer.spa
dc.relation.referencesHoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., and Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006):927–931.spa
dc.relation.referencesHorton, R. E. (1932). Drainage basin characteristics. Eos, Transactions American Geophysical Union, 13(1):350–361.spa
dc.relation.referencesHorton, R. E. (1945). Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. GSA Bulletin, 56(3):275–370.spa
dc.relation.referencesHovius, N. and Stark, C. P. (2006). Landslide-driven erosion and topographic evolution of active mountain belts. In Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R., editor, Landslides from Massive Rock Slope Failure, pages 573–590. Springer, Dordrecht.spa
dc.relation.referencesHoward, A. D. (1994). A detachment-limited model of drainage basin evolution. Water Resources Research, 30(7):2261–2285.spa
dc.relation.referencesHunter, B. (2009). The contribution of large, slow-moving landslides to landscape evolution. PhD thesis, University of Oregon.spa
dc.relation.referencesHurst, M. D., Grieve, S. W., Clubb, F. J., and Mudd, S. M. (2019). Detection of channelhillslope coupling along a tectonic gradient. Earth and Planetary Science Letters, 522:30– 39.spa
dc.relation.referencesIGAC (2010). Convenio interadministrativo No. 4085-2009 para la generación de la Cartografía del Departamento de Antioquia, suscrita entre el Departamento de Antioquia, el Instituto Geográfico Agustín Codazzi –IGAC-, el Municipio de Medellín, el Área Metropolitana del Valle de Aburrá. Technical report.spa
dc.relation.referencesJaiswara, N. K., Kotluri, S. K., Pandey, P., and Pandey, A. K. (2020). MATLAB functions for extracting Hypsometry, Stream-length gradient index, Steepness index, Chi gradient of channel and Swath profiles from Digital Elevation Model (DEM) and other spatial data for landscape characterisation. Applied Computing and Geosciences, 7:1–12.spa
dc.relation.referencesJaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., and León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330-331:194–210.spa
dc.relation.referencesJomthanachai, S., Wong, W. P., and Khaw, K. W. (2022). An application of machine learning regression to feature selection: a study of logistics performance and economic attribute. Neural Computing and Applications, 34:15781–15805.spa
dc.relation.referencesKeller, E. A. and Pinter, N. (2002). Active Tectonics Earthwakes, Uplift, and Landscape. Prentice Hall, New Jersey, second edition.spa
dc.relation.referencesKeller, E. A. and Rockwelf, T. K. (1984). Tectonic geomorphology, Quaternary chronology, and Paleoseismicity. In Costa, J. and Fleisher, P., editors, Developments and Applications of Geomorphology, chapter 7, pages 203–239. Springer, Berlin.spa
dc.relation.referencesKellogg, J., Franco, G., and Mora-P´aez, H. (2019). Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy. In Horton, B. K. and Folguera, A., editors, Andean Tectonics, chapter 4, pages 69–102. Elsevier.spa
dc.relation.referencesKirby, E. and Whipple, K. (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology, 29(5):415–418.spa
dc.relation.referencesKirby, E. and Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44:54–75.spa
dc.relation.referencesKorup, O. (2006). Effects of large deep-seated landslides on hillslope morphology, western Southern Alps, New Zealand. Journal of Geophysical Research: Earth Surface, 111(1):1–18.spa
dc.relation.referencesKorup, O., Clague, J. J., Hermanns, R. L., Hewitt, K., Strom, A. L., and Weidinger, J. T. (2007). Giant landslides, topography, and erosion. Earth and Planetary Science Letters, 261:578–589.spa
dc.relation.referencesKorup, O., Densmore, A. L., and Schlunegger, F. (2010). The role of landslides in mountain range evolution. Geomorphology, 120:77–90.spa
dc.relation.referencesKorup, O., Schmidt, J., and McSaveney, M. J. (2005). Regional relief characteristics and denudation pattern of the western Southern Alps, New Zealand. Geomorphology, 71:402– 423.spa
dc.relation.referencesKoutsos, T. M., Menexes, G. C., and Mamolos, A. P. (2021). The use of crop yield autocorrelation data as a sustainable approach to adjust agronomic inputs. Sustainability, 13:1–18.spa
dc.relation.referencesLague, D. (2014). The stream power river incision model: Evidence, theory and beyond. Earth Surface Processes and Landforms, 39(1):38–61.spa
dc.relation.referencesLalinde, C., González, A., and Caballero, H. (2009). Evidencia Paleosísmica en el Segmento de la Falla de Sopetrán o San Jerónimo Segmento 5. Boletín de Geología, 31(2):23–34.spa
dc.relation.referencesLane, E. (1954). The Importance of Fluvial Morphology in Hydraulic Engineering. Technical report, Engineering laboratories, Colorado.spa
dc.relation.referencesLara, M., Salazar-Franco, A. M., and Silva-Tamayo, J. C. (2018). Provenance of the Cenozoic siliciclastic intramontane Amag´a Formation: Implications for the early Miocene collision between Central and South America. Sedimentary Geology, 373:147–162.spa
dc.relation.referencesLarsen, I. J. and Montgomery, D. R. (2012). Landslide erosion coupled to tectonics and river incision. Nature Geoscience, 5(7):468–473.spa
dc.relation.referencesLavé, J. and Avouac, J. P. (2000). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research, 105(B3):5735–5770.spa
dc.relation.referencesLeiva, O., Moya, H., Trejos, G., and Carvajal, J. (2012). Propuesta Metodológica Sistemática Para La Generación De Mapas Geomorfológicos Analíticos Aplicados a La Zonificación De Amenaza Por Movimientos En Masa Escala 1:100.000. Technical report, Servicio Geológico Colombiano, Bogotá.spa
dc.relation.referencesLeón, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., Valencia, V. A., Chew, D., Montes, C., Posada, G., Monsalve, G., and Pardo-Trujillo, A. (2018). Transition From Collisional to Subduction-Related Regimes: An Example From Neogene Panama-Nazca-South America Interactions. Tectonics, 37(1):119–139.spa
dc.relation.referencesLeopold, P., Heiss, G., Petschko, H., Bell, R., and Glade, T. (2011). Susceptibility maps for landslides using different modelling approaches. In Margottini, C., Canuti, P., and Sassa, K., editors, Proceedings of the Second World Landslide Forum, pages 1–5, Rome. Springer.spa
dc.relation.referencesLindsay, J. (2014). The Whitebox Geospatial Analysis Tools project and open-access GIS. In Proceedings of the GIS Research UK 22nd Annual Conference. The University of Glasgow.spa
dc.relation.referencesLópez, M. C. and Toro-Toro, M. (2020). Stratigraphy and Tectonics of the Neogene and Quaternary of the Cauca Basin of Colombia. In Gómez, J. and Pinilla-Pachon, A., editors, The geology of Colombia, volume 4, chapter 1, pages 1–42. Servicio Geológico Colombiano, Bogotá, publication edition.spa
dc.relation.referencesLu, B., Yang, W., Ge, Y., and Harris, P. (2018). Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Computers, Environment and Urban Systems, 71:41–57.spa
dc.relation.referencesMackey, B. H. (2009). The contribution of large, slow-moving landslides to landscape evolution. PhD thesis, University of Oregon.spa
dc.relation.referencesMejía, M. (1984). Geología y geoquímica de las Planchas 130 (Santa Fé de Antioquia) y 146 (Medellín Occidental). Technical report, Ingeominas, Medellín.spa
dc.relation.referencesMelton, M. A. (1957). An Analysis of the Relations Among Elements of Climate, Surface Properties, and Geomorphology.spa
dc.relation.referencesMendez, C. (2022). Introduction to GWR and MGWR.spa
dc.relation.referencesMiller, V. (1953). A quantitative geomorphologic study of drainage basin characteristics in the clinch mountain area. Technical Report, 3:271–300spa
dc.relation.referencesMolin, P., Pazzaglia, F., and Dramis, F. (2004). Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila Massif, Calabria, Southern Italy. American Journal of Science, 304:559–589.spa
dc.relation.referencesMontes, C., Bayona, G., Cardona, A., Buchs, D. M., Silva, C. A., Morón, S., Hoyos, N., Ramírez, D. A., Jaramillo, C. A., and Valencia, V. (2012). Arc-continent collision and orocline formation: Closing of the Central American seaway. Journal of Geophysical Research, 117(B04105):1–25.spa
dc.relation.referencesMontes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J., Valencia, V., Ayala, C., Pérez Angel, L., Rodriguez-Parra, L., Ramirez, V., et al. (2015). Middle miocene closure of the central american seaway. Science, 348(6231):226–229.spa
dc.relation.referencesMontes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V., and Jaramillo, C. (2010). Clockwise rotation of the santa marta massif and simultaneous paleogene to neogene deformation of the plato-san jorge and cesar-ranchería basins. Journal of South American Earth Sciences, 29(4):832–848.spa
dc.relation.referencesMontes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., and Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198:1–25.spa
dc.relation.referencesMontes, N. E. and Sandoval, A. (2001). Base de datos de fallas activas de colombia recopilación bibliográfica. Technical report, Bogotá.spa
dc.relation.referencesMontgomery, D. R. (2001). Slope distributions, threshold hillslopes, and steady-state topography. American Journal of Science, 301(4-5):432–454.spa
dc.relation.referencesMontgomery, D. R. and Brandon, M. T. (2002). Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201(3-4):481– 489.spa
dc.relation.referencesMora, A., Villagómez, D., Parra, M., Caballero, V., Spikings, R., Horton, B. K., Mora Bohórquez, J., Ketcham, R., and Arias, J. (2020). Late Cretaceous to Cenozoic Uplift of the Northern Andes: Paleogeographic Implications. In Gómez, J. and Mateus-Zabala, D., editors, The Geology of Colombia, volume 3, chapter 4, pages 89–121. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37, Bogotá.spa
dc.relation.referencesMora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M., Diederix, H., LaFemina, P., Cardona-Piedrahita, L., Lizarazo, S., Peláez-Gaviria, J. R., Díaz-Mila, F., Bohórquez-Orozco, O., Giraldo-Londoño, L., and Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 89:76–91.spa
dc.relation.referencesMoran, P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1-2):17–23.spa
dc.relation.referencesMudd, S. M. (2017). Detection of transience in eroding landscapes. Earth Surface Processes and Landforms, 42:24–41.spa
dc.relation.referencesMudd, S. M., Attal, M., Milodowski, D. T., Grieve, S. W., and Valters, D. A. (2014). A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis. Journal of Geophysical Research: Earth Surface, 119(2):138–152.spa
dc.relation.referencesMudd, S. M., Clubb, F. J., Gailleton, B., and Hurst, M. D. (2018). How concave are river channels? Earth Surface Dynamics Discussions, 6(2):1–34.spa
dc.relation.referencesNivia, A., Gálvis G., N., and Maya S., M. (1992). Geología de la plancha 242-Zarzal. ´ Technical report, INGEOMINAS.spa
dc.relation.referencesNones, M. (2020). On the main components of landscape evolution modelling of river systems. Acta Geophysica, 68:459–475.spa
dc.relation.referencesNoriega, S. (2016). Geomorfología tectónica del noroccidente de la Cordillera Central, Andes del Norte - Colombia. Tesis de maestría, Universidad Nacional de Colombia.spa
dc.relation.referencesNoriega, S., Restrepo, S., Vinasco, C., Bermúdez, M., and Min, K. (2020). Thermochronologic and geomorphometric constraints on the Cenozoic landscape evolution of the Northern Andes: Northwestern Central Cordillera, Colombia. Geomorphology, 351:1–18.spa
dc.relation.referencesNoriega-Londoño, S., Jaraba, D., Ruiz, M., Marín-Cerón, M., and Restrepo-Moreno, S. (2022). Magnetic fabric of deformed quaternary sediments: contributions to the understanding of the neotectonic activity in the surroundings of the Aburrá Valley, Central Cordillera, Colombia. Boletín Geológico, 49(1):103–123.spa
dc.relation.referencesObaid, A. K. and Allen, M. B. (2019). Landscape expressions of tectonics in the Zagros fold-and-thrust belt. Tectonophysics, 766:20–30.spa
dc.relation.referencesOguchi, T. (1997). Drainage Density and Relative Relief in Humid Steep Mountains with Frequent Slope Failure. Earth Surface Processes and Landforms, 22(2):107–120.spa
dc.relation.referencesOhmori, H. (1993). Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology, 8(4):263–277.spa
dc.relation.referencesOrdóñez, O., Pimentel, M. M., and Laux, J. (2007). Edades U-Pb del Batolito Antioqueño. Boletín Ciencias de la Tierra, (22):129–130.spa
dc.relation.referencesOuimet, W. B., Whipple, K. X., Royden, L. H., Sun, Z., and Chen, Z. (2007). The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China). Bulletin of the Geological Society of America, 119:1462–1476.spa
dc.relation.referencesPage, W. (1986). Seismic Geology and Seismicity of Northwestern Colombia. Technical report, Integral - ISA, California.spa
dc.relation.referencesParis, G., Machette, M. N., Dart, R. L., and Kathleen, M. (2000). Map and Database of Quaternary Faults and Folds in Colombia and its Offshore Regions. Technical report.spa
dc.relation.referencesPérez, J. V., Azañón, J. M., and Azor, A. (2009). CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Computers and Geosciences, 35:1214–1223.spa
dc.relation.referencesPérez-Consuegra, N., Hoyos, N., Restrepo, J. C., Escobar, J., and Hoke, G. D. (2021a). Contrasting climate controls on the hydrology of the mountainous Cauca River and its associated sedimentary basin: Implications for interpreting the sedimentary record. Geomorphology, 377:1–13.spa
dc.relation.referencesPérez-Consuegra, N., Ott, R. F., Hoke, G. D., Galve, J. P., Pérez-Peña, V., and Mora, A. (2021b). Neogene variations in slab geometry drive topographic change and drainage reorganization in the Northern Andes of Colombia. Global and Planetary Change, 206:1– 18.spa
dc.relation.referencesPérez-Peña, J. V., Al-Awabdeh, M., Azañón, J. M., Galve, J. P., Booth-Rea, G., and Notti, D. (2017). SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles. Computers and Geosciences, 104:135– 150.spa
dc.relation.referencesPérez-Peña, J. V., Azor, A., Azañón, J. M., and Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119:74–87.spa
dc.relation.referencesPerron, J. T. and Royden, L. (2013). An integral approach to bedrock river profile analysis. Earth Surface Processes and Landforms, 38:570–576.spa
dc.relation.referencesPetley, D. (2012). Global patterns of loss of life from landslides. 40:927–930.spa
dc.relation.referencesPiacentini, D., Troiani, F., Servizi, T., Nesci, O., and Veneri, F. (2020). SLIX: A GIS toolbox to support along-stream knickzones detection through the computation and mapping of the stream length-gradient (SL) index. International Journal of Geo-Information, 9(2):1– 15spa
dc.relation.referencesPonza, A., Pazzaglia, F. J., and Picotti, V. (2010). Thrust-fold activity at the mountain front of the Northern Apennines (Italy) from quantitative landscape analysis. Geomorphology, 123:211–231.spa
dc.relation.referencesRadaideh, O. M. and Mosar, J. (2019). Tectonics controls on fluvial landscapes and drainage development in the westernmost part of Switzerland: Insights from DEM-derived geomorphic indices. Tectonophysics, 768:1–29spa
dc.relation.referencesRendón, D., Toro, G., and Hermelin, M. (2006). Modelo cronoestratigráfico para el emplazamiento de los depósitos de vertiente en el Valle de Aburrá. Boletín de Ciencias de la Tierra, 18:103–118.spa
dc.relation.referencesRestrepo, J. J., Ordoñez-Carmona, O., Martens, U., and Correa, A. M. (2009). Terrenos, complejos y provincias en la Cordillera Central de Colombia. Ingeniería, Investigación y Desarrollo, 9(2):49–56.spa
dc.relation.referencesRestrepo, J. J. and Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes, 11(3):189–193.spa
dc.relation.referencesRestrepo, S., Foster, D., Bernet, M., Min, K., and Noriega, S. (2019). Morphotectonic and Orogenic Development of the Northern Andes of Colombia: A Low-Temperature Thermochronology Perspective. In Cediel, F. and Shaw, R., editors, Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction, chapter 11, pages 749–832. Springer.spa
dc.relation.referencesRestrepo-Moreno, S. A., Foster, D. A., Stockli, D. F., and Parra-Sánchez, L. N. (2009). Longterm erosion and exhumation of the ”Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth and Planetary Science Letters, 278(1- 2):1–12.spa
dc.relation.referencesRey, S., Arribas-Bel, D., and Wolf, L. (2020). Geographic data science with python.spa
dc.relation.referencesRey, S. J. and Anselin, L. (2007). PySAL: A Python Library of Spatial Analytical Methods. The Review of Regional Studies, 37(1)spa
dc.relation.referencesReyes-Harker, A., Ruiz-Valdivieso, C. F., Mora, A., Ramírez-Arias, J. C., Rodriguez, G., De La Parra, F., Caballero, V., Parra, M., Moreno, N., Horton, B. K., Saylor, J. E., Silva, A., Valencia, V., Stockli, D., and Blanco, V. (2015). Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia, volume 99.spa
dc.relation.referencesRodríguez G., G. and Zapata G., G. (2012). Características del plutonismo Mioceno superior en el segmento Norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del Noroccidente Colombiano. Boletín de Ciencias de la Tierra, (31):5–22.spa
dc.relation.referencesRowe, F. and Arribas-Bel, D. (2023). Spatial Modelling for Data Scientists.spa
dc.relation.referencesRuiz, D. and Aristizábal, E. (2018). Landslide susceptibility assessment in mountainous and tropical scarce-data regions using remote sensing data: A case study in the Colombian Andes.spa
dc.relation.referencesSaenz, E. (2003). Fission track thermochronology and denudational response to tectonics in the north of the Colombian Central Cordillera. Master thesis, Shimane University.spa
dc.relation.referencesSassolas-Serrayet, T., Cattin, R., and Ferry, M. (2018). The shape of watersheds. Nature Communications, 9(1):1–8.spa
dc.relation.referencesSchumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America., 67(1):56.spa
dc.relation.referencesScotti, V. N., Molin, P., Faccenna, C., Soligo, M., and Casas-Sainz, A. (2014). The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): Quantitative geomorphological analysis and geochronology. Geomorphology, 206:37–57.spa
dc.relation.referencesSeeber, L. and Gornitz, V. (1983). River profiles along the Himalayan Arc as indicators of active tectonics. Tectonophysics, 92:335–367.spa
dc.relation.referencesSepúlveda, S. A. and Petley, D. N. (2015). Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Natural Hazards and Earth System Sciences, 15:1821–1833.spa
dc.relation.referencesSGC (2015). Mapa Geológico de Colombia 2015. Escala 1:1.000.000.spa
dc.relation.referencesShahzad, F. and Gloaguen, R. (2011). TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 1: Drainage network preprocessing and stream profile analysis. Computers and Geosciences, 37:250–260.spa
dc.relation.referencesSharma, G., Champati, P. K., and Mohanty, S. (2018). Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India. Geomorphology, 301:108–120.spa
dc.relation.referencesSierra, G., Estrada, J. J., and Macdonald, W. (1995). Estudio paleomagnético en rocas terciarias de la cuenca del Rio Cauca, departamento de Caldas : implicaciones tectónicas. Revista Universidad EAFIT, 31(100):79–109.spa
dc.relation.referencesSilva Tamayo, J. C., Sierra, G. M., and Correa, L. G. (2008). Tectonic and climate driven fluctuations in the stratigraphic base level of a Cenozoic continental coal basin, northwestern Andes. Journal of South American Earth Sciences, 26:369–382.spa
dc.relation.referencesSklar, L. and Dietrich, E. (1998). River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply. Geophysical Monograph, 107:237–260.spa
dc.relation.referencesSmart, J. S. and Surkan, A. J. (1967). The relation between mainstream length and area in drainage basins. Water Resources Research, 3(4):963–974.spa
dc.relation.referencesSmith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9):655–668.spa
dc.relation.referencesSnyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J. (2000). Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. 112:1250–1263.spa
dc.relation.referencesSnyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J. (2003). Channel response to tectonic forcing: Field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California. Geomorphology, 53:97–127.spa
dc.relation.referencesSorensen, C. S. and Yanites, B. J. (2019). Latitudinal trends in modern fluvial erosional efficiency along the Andes. Geomorphology, 329:170–183.spa
dc.relation.referencesSousa, L., Vargas, E., Sousa, R., and Chaminé, H. (2020). Hydrological Risks in Natural Hazards Focused on the Role of the Water: Studies on Landslides. In Fernandes, F., Malheiro, A., and Chaminé, H., editors, Advances in Natural Hazards and Hydrological Risks: Meeting the Challenge, chapter 9, pages 43–47. Springer.spa
dc.relation.referencesStrahler, A. (1952). Hypsometric (Area-Altitude) analysis of erosional topography. Geological Society Of America Bulletin, 63(11):1117–1142.spa
dc.relation.referencesStrahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. Handbook of applied hydrology.spa
dc.relation.referencesStrahler, A. N. (1997). Quantitative geomorphology, pages 898–912. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesStruth, L. (2016). Evolution of fluvial drainage during mountain building in the Eastern Cordillera of the Colombian Andes. PhD thesis, Universitat Autónoma de Barcelona.spa
dc.relation.referencesStruth, L., Giachetta, E., Willett, S. D., Owen, L. A., and Tesón, E. (2020). Quaternary drainage network reorganization in the Colombian Eastern Cordillera plateau. Earth Surface Processes and Landforms, 45:1789–1804.spa
dc.relation.referencesSuter, F., Martínez, J. I., and Vélez, M. I. (2011). Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity? Sedimentary Geology, 235:188–199.spa
dc.relation.referencesSuter, F., Sartori, M., Neuwerth, R., and Gorin, G. (2008). Structural imprints at the front of the Chocó-Panamá indenter: Field data from the North Cauca Valley Basin, Central Colombia. Tectonophysics, 460:134–157.spa
dc.relation.referencesSyracuse, E. M., Maceira, M., Prieto, G. A., Zhang, H., and Ammon, C. J. (2016). Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444:139– 149.spa
dc.relation.referencesTaboada, A., Rivera, L., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., and Rivera, C. (2000). Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia). Tectonics, 19(5):787–813.spa
dc.relation.referencesTacconi , C., Segoni, S., Casagli, N., and Catani, F. (2016). Geomorphic indexing of landslide dams evolution. Engineering Geology, 208:1–10.spa
dc.relation.referencesThapa, R. and Estoque, R. (2012). Geographically Weighted Regression in Geospatial Analysis. In Murayama, Y., editor, Progress in Geospatial Analysis, chapter 6, pages 85–96. Springer Japan.spa
dc.relation.referencesToro, G. E., Rendón, D. A., and Montes, L. (2008). Levantamiento de los andes en el norte de la Cordillera Central de Colombia: Una aproximación geomorfólogica, estructural y cronológica (trazas de fisión). Boletín Ciencias de la Tierra, (22):125–126.spa
dc.relation.referencesToussaint, J. F. and Restrepo, J. J. (1994). The Colombian Andes During Cretaceous Times. Cretaceous Tectonics of the Andes, pages 61–100.spa
dc.relation.referencesUNGRD (2020). Avanza respuesta del Gobierno Nacional ante avenida torrencial que afectó al municipio de Piedecuesta, Santander.spa
dc.relation.referencesVargas, C. A. and Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the panama arc-indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3):2025–2046.spa
dc.relation.referencesVillagómez, D. and Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia : Early Cretaceous – Tertiary evolution of the Northern Andes. Lithos, 160-161:228–249.spa
dc.relation.referencesVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., and Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3):875–896.spa
dc.relation.referencesVinasco, C. (2019). The Romeral Shear Zone. In Cediel, F. and Shaw, R., editors, Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction, chapter 12, pages 833–8376. Springer.spa
dc.relation.referencesVoight, B. (1990). The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection. Journal of Volcanology and Geothermal Research, 44:349–386.spa
dc.relation.referencesWagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., and Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13):6616–6623.spa
dc.relation.referencesWang, Y., Zheng, D., Zhang, H., Li, C., Xiao, L., Li, Y., and Hao, Y. (2019). The distribution of active rock uplift in the interior of the western Qilian Shan, NE Tibetan Plateau: Inference from bedrock channel profiles. Tectonophysics, 759(March):15–29.spa
dc.relation.referencesWang, Z., Cui, P., an Yu, G., and Zhang, K. (2012). Stability of landslide dams and development of knickpoints. Environmental Earth Sciences, 65:1067–1080.spa
dc.relation.referencesWhipple, K. X., Forte, A. M., DiBiase, R. A., Gasparini, N. M., and Ouimet, W. B. (2017). Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. Journal of Geophysical Research: Earth Surface, 122:248–273.spa
dc.relation.referencesWhipple, K. X. and Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research, 104(B8):17661–17674.spa
dc.relation.referencesWhipple, K. X. and Tucker, G. E. (2002). Implications of sediment-flux-dependent river incision models for landscape evolution. Journal of Geophysical Research, 107(B2):1–20.spa
dc.relation.referencesWilches-Chaux, G. (2005). El terremoto, la avalancha y los deslizamientos de la cuenca del río Páez (Cauca), 1994. In Hermelin, M. and EAFIT, F. e. U., editors, Desastres de origen natural en Colombia 1979-2004, chapter 10, pages 121–134. Medellín,spa
dc.relation.referencesWilford, D. J., Sakals, M. E., Innes, J. L., Sidle, R. C., and Bergerud, W. A. (2004). Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides, 1(1):61–66.spa
dc.relation.referencesWillett, S. (2017). Preservation or piracy: Diagnosing low-relief, high-elevation surface formation mechanisms [Forum Comment]. Geological Society of America, 45(8):e421.spa
dc.relation.referencesWillett, S. D., McCoy, S. W., Taylor Perron, J., Goren, L., and Chia-Yu, C. (2014). Dynamic reorganization of River Basins. Science, 343:1117–1127spa
dc.relation.referencesWillett, S. D., Slingerland, R., and Hovius, N. (2001). Uplift, shortening, and steady state topography in active mountain belts. American Journal of Science, 301:455–485.spa
dc.relation.referencesWistuba, M. (2014). Slope-Channel Coupling as a Factor in the Evolution of Mountains. Springer, Poland.spa
dc.relation.referencesWobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D. (2006). Tectonics from topography: Procedures, promise, and pitfalls. Special Paper of the Geological Society of America, 398:55–74.spa
dc.relation.referencesWood, J. L., Harrison, S., Reinhardt, L., and Taylor, F. E. (2020). Landslide databases for climate change detection and attribution. Geomorphology, 355:1–15.spa
dc.relation.referencesYang, R., Willett, S. D., and Goren, L. (2015). In situ low-relief landscape formation as a result of river network disruption. Nature, 520:526–529.spa
dc.relation.referencesYang, S. H., Liao, J. J., Pan, Y. W., and Shih, P. T. Y. (2020). Landslide site delineation from geometric signatures derived with the Hilbert-Huang transform for cases in Southern Taiwan. Open Geosciences, 12(1):928–945.spa
dc.relation.referencesYen-Chieh, C., Quocheng, S., and Kuang-Yu, C. (2003). Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56:109–137.spa
dc.relation.referencesZapata, S., Zapata-Henao, M., Cardona, A., Jaramillo, C., Silvestro, D., and Oboh-Ikuenobe, F. (2021). Long-term topographic growth and decay constrained by 3D thermo-kinematic modeling: Tectonic evolution of the Antioquia Altiplano, Northern Andes. Global and Planetary Change, 203:1–18spa
dc.relation.referencesZhao, R., Zhan, L., Yao, M., and Yang, L. (2020). A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2.5. Sustainable Cities and Society, 56:1–9.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.proposalDrainage basineng
dc.subject.proposalLandslideeng
dc.subject.proposalDebris floweng
dc.subject.proposalSusceptibilityeng
dc.subject.proposalLandscape evolutioneng
dc.subject.proposalCuenca de drenajespa
dc.subject.proposalDeslizamientospa
dc.subject.proposalAvenida torrencialspa
dc.subject.proposalEvolución del paisaje.spa
dc.subject.wikidataGeomorfología
dc.titleApproach for analyzing landslide and torrential flow susceptibility conditions in relation to landscape evolution in the northern Colombian Andeseng
dc.title.translatedAproximación al análisis de las condiciones de susceptibilidad a deslizamientos y avenidas torrenciales en relación con la evolución del paisaje en el norte de los Andes colombianosspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1116803116.2023.pdf
Tamaño:
176.84 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Medio Ambiente y Desarrollo

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: