Efecto del contenido de hierro en arcillas delaminadas para el tratamiento de aguas contaminadas con amoxicilina

dc.contributor.advisorMoreno Guáqueta, Sonia
dc.contributor.advisorPérez Flórez, Alejandro
dc.contributor.authorGuzmán Gómez, Cristian Camilo
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.date.accessioned2022-08-31T15:38:24Z
dc.date.available2022-08-31T15:38:24Z
dc.date.issued2022-07-06
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa presente investigación centró su atención en la síntesis y caracterización fisicoquímica de los sólidos obtenidos a partir de la modificación de arcillas naturales por procesos de delaminación, y la posterior obtención de catalizadores de hierro soportado, para ser empleados en la degradación de amoxicilina presente en agua. Para obtener soportes catalíticos con óptimas propiedades texturales y fisicoquímicas, se seleccionó como mineral de partida, una arcilla natural tipo bentonita proveniente del Valle del Cauca – Colombia. Esta fue modificada empleando tres metodologías de delaminación y caracterizada por difracción de rayos X (DRX) y sortometría de N2 a 77K. Mientras que los catalizadores fueron caracterizados además por reducción con H2 a temperatura programada. Logrando un aumento en el área superficial, buena distribución de poro y elevada dispersión de la fase activa seleccionada (Fe: 1, 3 y 5%). La actividad catalítica de los catalizadores fue evaluada en la degradación de amoxicilina presente en agua, seguida por cromatografía líquida acoplada a espectrometría de masas. Los resultados revelaron que los soportes obtenidos a través de la delaminación de la arcilla son materiales mesoporosos, con elevada área superficial y volumen de poro importante. Estas propiedades redundan en un incremento de la dispersión de la fase activa y, en consecuencia, mejor actividad catalítica en la degradación de amoxicilina. La serie de catalizadores sintetizados a partir de la bentonita delaminada empleando clorhidrol BD2.2, resulta en los materiales más activos en la degradación de amoxicilina hasta productos de menor masa molecular, comparada con los catalizadores obtenidos sobre arcilla sin modificar, y, en relación con los catalizadores con mayor porcentaje de hierro, el que logró mayor degradación (98%) al cabo de 60 minutos, fue el catalizador BD2.2 5% Fe. Este comportamiento está relacionado con las propiedades texturales exhibidas por el soporte y la reducibilidad de la fase activa del catalizador. (Texto tomado de la fuente)spa
dc.description.abstractThis current investigation focus its attention on the synthesis and physical-chemical characterization of the solids obtained from the modification of natural clays through delamination processes, and finally the obtaining of supported iron catalysts, to be used in the amoxicillin degradation present in water. To get catalytic supports with optimal properties of texture and physical-chemical, it was selected as a starting ore, a natural clay of bentonite type from Valle del Cauca – Colombia. This was modified using three delamination methodologies that were characterized by X-Ray diffraction (XRD) and sortometry of N2 at 77K. While the catalytic were characterized by reduction with H2 at programmed temperature. Achieving a rise in the superficial area, good pore distribution, and high dispersion of the active phase that had been selected before (Fe: 1, 3, and 5%). The catalytic activity of the catalysts was tested in the amoxicillin degradation present in water, followed by liquid chromatography coupled to mass spectrometry. The results revealed that the obtained supports through clay delamination are mesoporous materials with a high surface area and an important pore volume. These properties redound in the raise of the dispersion of the active phase, as and consequence, better catalytic activity in the amoxicillin degradation. The group of synthesized catalysts starting with delaminated Bentonite using hydrochloride BD2.2 results in materials more active in the amoxicillin degradation and, among the catalysts with mayor percent of iron, the one that achieved more degradation (98%) after 60 minutes, was the catalyst BD2.2 5% Fe. This behavior is related to properties of texture that showed by the support and the reducibility of the catalyst active phase.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaCatálisis Heterogéneaspa
dc.format.extentxvi, 71 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82215
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesCasallas, L., Franco, J. (2017). Tesis de pregrado. Facultad de ciencias. Universidad de Ciencias Aplicadas y Ambientales.spa
dc.relation.referencesUNICEF & WHO. Progress on Household Drinking Water, Sanitation and Hygiene 2000-2017.Unicef/Who 2019, 140.spa
dc.relation.referencesAmeta, S. C. (2018). Introduction, In: Advanced Oxidation Processes for Waste Water Treatment. Emerging Green Chemical Technology: PAHER University, Udaipur, Rajasthan, India, 1-12.spa
dc.relation.referencesYang, Y., Ok, Y. S., Kim, K. H., Kwon, E. E., & Tsang, Y. F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment, 596, 303-320.spa
dc.relation.referencesJaimes, J. y Vera, J. (2020). Los contaminantes emergentes de las aguas residuales de la industrial farmacéutica y su tratamiento por medio de la ozonización. Informador Técnico, 84 (2). https://doi.org/10.23850/22565035.2305spa
dc.relation.referencesElizalde, A., Gómez, L. M., Galar, M., Islas, H., Dublán, O., & SanJuan, N. (2016). Environmental Health Risk - Hazardous Factors to Living Species. doi:10.5772/62049spa
dc.relation.referencesRubi Juarez, H. (2020). Procesos de Oxidación Avanzada y Electroquímicos para Remover Edulcorantes Artificiales del Agua. Instituto de Ingeniería y Tecnología.spa
dc.relation.referencesMeléndez, J., García, Y., Galván, V., de León, L. D., Vargas, K., Mejía, J., & Ramírez, R. (2020). Contaminantes emergentes. Problemática ambiental asociada al uso de antibióticos. Nuevas técnicas de detección, remediación y perspectivas de legislación en América Latina. Revista de Salud Ambiental, 20(1), 53-61.spa
dc.relation.referencesWorld Health Organization (2012). Pharmaceuticals in Drinking- Water. WHO Library Cataloguing-in-Publication Data. ISBN 978 92 4 150208 5.spa
dc.relation.referencesGolovko, O., Örn, S., Sörengård, M., Frieberg, K., Nassazzi, W., Lai, F. Y., & Ahrens, L. (2021). Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Science of the Total Environment, 754, 142122.spa
dc.relation.referencesLi, F., Chen, L., Bao, Y., Zheng, Y., Huang, B., Mu, Q., ... & Wen, D. (2020). Identification of the priority antibiotics based on their detection frequency, concentration, and ecological risk in urbanized coastal water. Science of the Total Environment, 747, 141275.spa
dc.relation.referencesBotero, A., Martínez, D., Boix, C., Rincón, R., Castillo, N., Arias, L., & Hernandez, F. (2018). An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Science of the Total Environment, 642, 842-853.spa
dc.relation.referencesAus der Beek, T., Weber, F. A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., & Küster, A. (2016). Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental toxicology and chemistry, 35(4), 823-835.spa
dc.relation.referencesKumar, M., Jaiswal, S., Sodhi, K., Shree, P., Singh, D., Agrawal, P., & Shukla, P. (2019). Antibiotics bioremediation: perspectives on its ecotoxicity and resistance. Environment international, 124, 448-461.spa
dc.relation.referencesAhmed, M., Zhou, J., Ngo, H., Guo, W., Thomaidis, N., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. Journal of hazardous materials, 323, 274-298.spa
dc.relation.referencesFair, R., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in medicinal chemistry, 6, PMC-S14459.spa
dc.relation.referencesSzultka, M., Krzeminski, R., Jackowski, M., & Buszewski, B. (2014). Identification of in vitro metabolites of amoxicillin in human liver microsomes by LC–ESI/MS. Chromatographia, 77(15), 1027-1035.spa
dc.relation.referencesWHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation. November 2018 ISBN: ISBN 978-92-4-151488-0spa
dc.relation.referencesBarreto, R. (2017). Tesis de pregrado. Facultad de Ingeniería. Universidad Nacional Autónoma de México.spa
dc.relation.referencesBriceño, M., & Casas, M. (2020). Tesis de pregrado. Facultad de Ingeniería. Fundación Universidad de América.spa
dc.relation.referencesSanabria, N. (2009). Tesis de doctorado. Facultad de Ciencias. Universidad Nacional de Colombia.spa
dc.relation.referencesYang, Y., Ok, Y., Kim, K., Kwon, E., & Tsang, Y. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment, 596, 303-320.spa
dc.relation.referencesThomas, N., Dionysiou, D., & Pillai, S. (2021). Heterogeneous Fenton catalysts: A review of recent advances. Journal of Hazardous Materials, 404, 124082.spa
dc.relation.referencesNavalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26.spa
dc.relation.referencesFast, S., Gnaneswar, V., Truax, D., Martin, J., & Magbanua, B. (2017). Environmental Processes, 4, 283-302.spa
dc.relation.referencesPesqueira, J., Pereira, M., & Silva, A. (2020). Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: a review. Journal of Cleaner Production, 261, 121078spa
dc.relation.referencesGiwa, A., Yusuf, A., Balogun, H. A., Sambudi, N., Bilad, M., Adeyemi, I., & Curcio, S. (2021). Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review. Process Safety and Environmental Protection, 146, 220-256.spa
dc.relation.referencesIervolino, G., Zammit, I., Vaiano, V., & Rizzo, L. (2020). Limitations and prospects for wastewater treatment by UV and visible-light-active heterogeneous photocatalysis: a critical review. Heterogeneous Photocatalysis, 225-264.spa
dc.relation.referencesLiu, X., Sang, Y., Yin, H., Lin, A., Guo, Z., & Liu, Z. (2018). Progress in the mechanism and kinetics of Fenton reaction. MOJ Ecol. Environ. Sci, 3, 11-15.spa
dc.relation.referencesWang, J., & Bai, Z. (2017). Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chemical Engineering Journal, 312, 79-98.spa
dc.relation.referencesArslan, I. (2003). A review of the effects of dye‐assisting chemicals on advanced oxidation of reactive dyes in wastewater. Coloration Technology, 119(6), 345-353.spa
dc.relation.referencesFenton, Henry. J. (1894). Journal of the Chemical Society. 65 (1894) 899.spa
dc.relation.referencesRey Barroso, A. (2010). Tesis de doctorado. Instituto de Catálisis y Petroleoquímica (CSIC).spa
dc.relation.referencesGarcía, J., Castellanos, M., Uscátegui, Á., Fernández, J., Pedroza, A. & Daza, C.. (2012).Universitas Scientiarum, 17(3), p.303.spa
dc.relation.referencesBabuponnusami, A., Muthukumar, K. (2014). Journal of Environmental Chemical Engineering, 2(1), 557–572.doi:10.1016/j.jece.2013.10.011.spa
dc.relation.referencesHamd, W., & Dutta, J. (2020). Heterogeneous photo-Fenton reaction and its enhancement upon addition of chelating agents. Nanomaterials for the Detection and Removal of Wastewater Pollutants, 303-330.spa
dc.relation.referencesChamarro, E., Marco, A., & Esplugas, S. (2001). Use of Fenton reagent to improve organic chemical biodegradability. Water research, 35(4), 1047-1051.spa
dc.relation.referencesLuna, A., Chiavone, O., Machulek Jr, A., de Moraes, J., & Nascimento, C. (2012). Photo-Fenton oxidation of phenol and organochlorides (2, 4-DCP and 2, 4-D) in aqueous alkaline medium with high chloride concentration. Journal of environmental management, 111, 10-17.spa
dc.relation.referencesYanquin, K. C. (2019). Tesis de pregrado.Universidad Nacional del Comahue.spa
dc.relation.referencesGuggenheim, S. & Martin, R. (1995). Definition of Clay and Clay minerals, Joint Report of the AIPEA Nomenclature and CMS Nomenclature Committees, Clays and Clay Minerals 43 (1995) 255-256.spa
dc.relation.referencesAlexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28(1-2), 1–63. doi:10.1016/s0927-796x(00)00012-7spa
dc.relation.referencesRoss, C. S., & Shannon, E. V. (1926). THE MINERALS OF BENTONITE AND RELATED CLAYS AND THEIR PHYSICAL PROPERTIES1. Journal of the American Ceramic Society, 9(2), 77–96. doi:10.1111/j.1151-2916.1926.tb18305.xspa
dc.relation.referencesAmaya, J. (2019). Tesis de doctorado. Facultad de Ciencias. Universidad Nacional de Colombia.spa
dc.relation.referencesBesoain, E. Mineralogía de Arcillas y Suelos (1985). Instituto Interamericano Cooperación para la Agricultura (3) 124-150.spa
dc.relation.referencesMoore, D. M., & Reynolds, R. C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford Univ. Press, UK.spa
dc.relation.referencesCortés, J. (2019). Tesis de doctorado. Facultad de Ciencias. Universidad Nacional de Colombia.spa
dc.relation.referencesSanabria, N., Molina, R., & Moreno, S. (2012). Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the posttreatment of coffee wastewater. International journal of photoenergy, 2012.spa
dc.relation.referencesGamba Vasquez, O. A. (2010). Facultad de Ciencias. Universidad Nacional de Colombia.spa
dc.relation.referencesTobajas, M., Belver, C., & Rodriguez, J. (2017). Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures. Chemical Engineering Journal, 309, 596-606spa
dc.relation.referencesMuñoz, H. (2018). Tesis de pregrado Facultad de Ciencias. Universidad Nacional de Colombia.spa
dc.relation.referencesSuzuki, K., Toshiaki, M., Kaoru, K., Hiroshi, S., & Shozo, I. (1988). Preparation of delaminated clay having a narrow micropore distribution in the presence of hidroxyaluminum cations and polyvinil alcohol. Clays and Clay Minerals , 36 (2), 147–152. https://doi.org/10.1346/ccmn.1988.0360208spa
dc.relation.referencesPinnavaia, T. (1984). Heterogeneous Catalysis, Ed., B. L. Shapiro, Texas A & M Univ. Press, College Station, TX, p. 142.spa
dc.relation.referencesOccelli, M., Landau, S., & Pinnavai, T. (1984). Cracking Selectivity of a Delaminated Clay Catalyst. Journal of Catalysis, 90 (2), 256–260. https://doi.org/10.1016/0021-9517(84)90253-7.spa
dc.relation.referencesPinnavaia, T. J., Tzou, M.-S., Landau, S. D., & Raythatha, R. H. (1984). On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum. Journal of Molecular Catalysis, 27(1-2), 195–212. doi:10.1016/0304-5102(84)85080-4spa
dc.relation.referencesLewis, R., & Kuroda, H. (1989). Delaminated layered materials. Solid State Ionics, 32-33, 373–377. doi:10.1016/0167-2738(89)90243-9spa
dc.relation.referencesChen, J., Hausladen, M., & Yang, R. (1995). Delaminated Fe2O3-pillared clay: its preparation, characterization, and activities for selective catalytic reduction of NO by NH3. Journal of Catalysis, 151(1), 135-146.spa
dc.relation.referencesFranco, F., Pérez, L., & Pérez, J. L. (2004). The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. Journal of Colloid and Interface Science, 274(1), 107-117.spa
dc.relation.referencesLuckham, P. and S. Rossi, The Colloidal and Rheological Properties of Bentonite Suspensions. Vol. 82. 1999. 43-92.spa
dc.relation.referencesLiu, P. (2007). Polymer modified clay minerals: A review. Applied Clay Science, 38(1-2), 64-76.spa
dc.relation.referencesChen, J., Hausladen, M., & Yang, R. (1995). Delaminated Fe2O3-Pillared Clay: Its Preparation, Characterization, and Activities for Selective Catalytic Reduction of No by NH3. Journal of Catalysis, 151 (1), 135–146. https://doi.org/10.1006/jcat.1995.1016spa
dc.relation.referencesBoxiong, S., Yan, Y., Jianhong, C., & Xiaopeng, Z. (2013). Alkali metal deactivation of Mn-CeOx/Zr-delaminated-clay for the low-temperature selective catalytic reduction NOX with NH3. Microporous and Mesoporous Materials, 180 , 262–269. https://doi.org/10.1016/j.micromeso.2013.07.004spa
dc.relation.referencesTeixeira, A. P. C., Tristão, J. C., Araujo, M. H., Oliveira, L. C., Moura, F. C., Ardisson, J. D., ... & Lago, R. M. (2012). Iron: a versatile element to produce materials for environmental applications. Journal of the Brazilian Chemical Society, 23(9), 1579-1593.spa
dc.relation.referencesCornell, R., W.; Schwertmann, U.; The Iron Oxides, 1st; Wiley-VCH: New York, 1996.spa
dc.relation.referencesPenagos, P, & Barrera, A. (2019). Tesis de pregrado. Facultad de Ingeniería Química. Fundación Universidad de América.spa
dc.relation.referencesVelásquez, K. (2013). Tesis de pregrado. Universidad Autónoma del Estado de México.spa
dc.relation.referencesÑungo-Moreno, J., Carriazo, J. G., Moreno, S., & Molina, R. A. (2011). Degradación fotocatalítica de fenol empleando arcillas pilarizadas con Al-Fe y Al-Cu. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 35(136), 295-302.spa
dc.relation.referencesAyodele, O., Lim, J., & Hameed, B. (2012). Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin. Applied Catalysis A: General, 413-414, 301–309. doi:10.1016/j.apcata.2011.11.023.spa
dc.relation.referencesWeng, X., Sun, Q., Lin, S., Chen, Z., Megharaj, M., & Naidu, R. (2014). Enhancement of catalytic degradation of amoxicillin in aqueous solution using clay supported bimetallic Fe/Ni nanoparticles. Chemosphere, 103, 80–85. doi:10.1016/j.chemosphere.2013.11.spa
dc.relation.referencesZha, S., Cheng, Y., Gao, Y., Chen, Z., Megharaj, M., & Naidu, R. (2014). Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chemical Engineering Journal, 255, 141–148. doi:10.1016/j.cej.2014.06.057spa
dc.relation.referencesMachado, S., Pacheco, J., Nouws, H., Albergaria, J., & Delerue-Matos, C. (2016). Green zero-valent iron nanoparticles for the degradation of amoxicillin. International Journal of Environmental Science and Technology, 14(5), 1109–1118. doi:10.1007/s13762-016-1197-7.spa
dc.relation.referencesKalantary, R. R., Farzadkia, M., Kermani, M., & Rahmatinia, M. (2018). Heterogeneous electro-Fenton process by Nano-Fe3O4 for catalytic degradation of amoxicillin: Process optimization using response surface methodology. Journal of Environmental Chemical Engineering, 6(4), 4644–4652. doi:10.1016/j.jece.2018.06.043.spa
dc.relation.referencesZhao, J., Sun, Y., Zhang, Y., Zhang, B.-T., Yin, M., & Chen, L. (2020). Heterogeneous activation of persulfate by activated carbon supported iron for efficient amoxicillin degradation. Environmental Technology & Innovation, 101259. doi:10.1016/j.eti.2020.101259.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalCatálisis Heterogéneaspa
dc.subject.proposalArcillas delaminadasspa
dc.subject.proposalAmoxicilinaspa
dc.subject.proposalContaminantes emergentesspa
dc.subject.proposalFentonspa
dc.subject.proposalHeterogeneous Gatalysiseng
dc.subject.proposalDelaminated Clayseng
dc.subject.proposalBentonitaspa
dc.subject.proposalDelaminaciónspa
dc.subject.proposalHierrospa
dc.subject.proposalMesoporosspa
dc.subject.proposalDegradación de amoxicilinaspa
dc.subject.proposalBentoniteeng
dc.subject.proposalDelaminationeng
dc.subject.proposalIroneng
dc.subject.proposalMesoporeseng
dc.subject.proposalAmoxicillin degradationeng
dc.subject.unescoTratamiento del aguaspa
dc.subject.unescoWater treatmenteng
dc.subject.unescoArcillaspa
dc.subject.unescoClayseng
dc.titleEfecto del contenido de hierro en arcillas delaminadas para el tratamiento de aguas contaminadas con amoxicilinaspa
dc.title.translatedEffect of iron content in delaminated clays for the treatment of water contaminated with amoxicillineng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014280843.2022.pdf
Tamaño:
1.97 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Químicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: