Análisis Multi-ómico de la Biosíntesis y Diversidad de Alcaloides Tropánicos en el Género Brugmansia
dc.contributor.advisor | Bermúdez Santana, Clara Isabel | |
dc.contributor.advisor | Roda Fornaguera, Federico | |
dc.contributor.author | Pardo Riaño, Ronald Andrés | |
dc.contributor.researchgroup | GEME y RNomica Teórica y Computacional | |
dc.date.accessioned | 2025-09-16T14:37:01Z | |
dc.date.available | 2025-09-16T14:37:01Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, fotografías, mapas | spa |
dc.description.abstract | Los alcaloides tropánicos (TAs) son uno de los grupos de metabolitos especializados en defensa frente a la herbivoría y producidos por algunos géneros de la familia de las solanáceas. Para la medicina moderna, las plantas que los producen representan un recurso esencial, por atender una gama de efectos farmacológicos asociados al sistema nervioso central. Los TAs son típicamente obtenidos del cultivo de algunas especies endémicas de Australia, lo que ha orientado recientemente la investigación en fuentes alternativas y sostenibles para su obtención, así como el uso de las ciencias ómicas para elucidar su biosíntesis y el origen de su diversidad. Los enfoques biotecnológicos de producción crecen recientemente y se empieza a entender la ruta metabólica, llenando vacíos en su regulación, señalización y transporte, a través de genomas de referencia cada vez mejor anotados de especies productoras de TAs, un reto recurrente en el trabajo con organismos no modelo. En este trabajo se presenta la promisoria diversidad de TAs dentro del género Brugmansia y un enfoque novedoso para la búsqueda de metabolitos y genes candidatos de la ruta biosintética, combinando cromatografía líquida acoplada a espectrometría de masas (LC-MS/MS) y secuenciación de RNA. El análisis incluyó 18 taxones (40 accesiones) de este género, incluyendo las siete especies descritas y nueve cultivares de origen ancestral y uso medicinal en Colombia. Se logró identificar de forma putativa la escopolamina y la atropina en diversas muestras, así como dos isómeros previamente clasificados como "unknown", mediante un análisis detallado de los patrones de fragmentación suave y fuerte de TAs usando herramientas bioinformáticas. Se construyó y aplicó una base de datos ad hoc denominada ATP(O), basada en compuestos tipo (A)lcaloide, (T)ropánicos, (P)recursores y (O)tros metabolitos, con la cual fue posible analizar perfiles metabolómicos a través de 102 datos metabólicos representativos del género. A nivel transcriptómico, se logró mapear genes candidatos de la ruta biosintética de los TAs de acuerdo con la literatura disponible y se evidenció una compartimentalización en tejidos mediante un análisis de presencia y ausencia de transcritos entre hojas y raíces. Además, se realizaron agrupamientos de coexpresión para identificar posibles candidatos de genes relacionados con funciones enzimáticas, de transporte y señalización. Finalmente, se presentan por primera vez los perfiles químicos y transcriptómicos de cultivares medicinales tradicionales en comparación con especies reconocidas por su valor ornamental, contribuyendo al conocimiento de la diversidad funcional del género Brugmansia. (Texto tomado de la fuente) | spa |
dc.description.abstract | Tropane alkaloids (TAs) are specialized metabolites involved in defense against herbivory and produced bycertain genera within the Solanaceae family. For modern medicine, plants producing these compounds are essential due to their wide range of armacological effects on the central nervous system. TAs are traditionally extracted from a limited group of endemic species from Australia, which has recently shifted research interest toward sustainable and alternative sources, as well as the use of omics sciences to elucidate their biosynthesis and origins of diversity. Biotechnological production approaches remain scarce and inefficient, but research on this field is increasing to fill knowledge gaps in the metabolic pathway and its regulation, especially through the report of well-annotated reference genomes from TA-producing species—a common challenge analysing non-model organisms. High-throughput, integrative approaches have been key to overcoming these limitations in several studies. This work explores the promising diversity of TAs in the genus Brugmansia, using a novel strategy that combines liquid chromatography–mass spectrometry (LC-MS/MS) and RNA sequencing. The study comprises 18 taxa (40 accessions), including all seven described species and nine ancestral medicinal cultivars from Colombia. Scopolamine and atropine were putatively identified in several samples, as well as two isomers previously reported as “unknown” based on detailed fragmentation pattern analysis (both soft and hard ionization modes) supported by bioinformatic tools. A custom database—ATP(O)—was developed and applied, focusing on (A)lkaloids, (T)ropane alkaloids, (P)recursors, and (O)ther compounds, allowing the annotation of metabolic profiles of 102 features. At the transcriptomic level, the study successfully mapped candidate genes of the TA biosynthetic pathway based on an exhaustive review of the literature. Comparative analyses between roots and leaves revealed transcript-specific patterns consistent with tissue compartmentalization of the pathway. Co-expression clustering allowed the identification of novel candidate genes possibly involved in enzymatic activity, transport, and signaling. Finally, this is the first report comparing chemical and ranscriptomic profiles of traditional medicinal cultivars with those of primarily ornamental Brugmansia species, contributing to the understanding of functional diversity within this genus. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias - Bioquímica (Modalidad Investigación) | |
dc.description.researcharea | Metabolismo Evolutivo | |
dc.format.extent | xv, 109 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88796 | |
dc.publisher | Univerisdad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | |
dc.relation.references | Algradi, A. M.; Liu, Y.; Yang, B.-Y. & Kuang, H.-X.: , 2021; Review on the genus brugmansia: traditional usage, phytochemistry, pharmacology, and toxicity; Journal of ethnopharmacology; 279: 113910. | |
dc.relation.references | Alseekh, S.; Wu, S.; Brotman, Y. & Fernie, A. R.: , 2018; Guidelines for sample normalization to minimize batch variation for large-scale metabolic profiling of plant natural genetic variance; Plant Metabolomics: Methods and Protocols: 33--46. | |
dc.relation.references | Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; C. Ewald, J.; Fraser, P. D.; Giavalisco, P.; Hall, R. D. et al.: , 2021; Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices; Nature methods; 18 (7): 747--756. | |
dc.relation.references | Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W. & Lipman, D. J.: , 1990; Basic local alignment search tool; Journal of Molecular Biology; 215 (3): 403--410. | |
dc.relation.references | Andrews, S. et al.: , 2010; Fastqc: a quality control tool for high throughput sequence data; accessed: 2024-10-13. | |
dc.relation.references | Bedewitz, M. A.; Góngora-Castillo, E.; Uebler, J. B.; Gonzales-Vigil, E.; Wiegert-Rininger, K. E.; Childs, K. L.; Hamilton, J. P.; Vaillancourt, B.; Yeo, Y.-S.; Chappell, J. et al.: , 2014; A root-expressed l-phenylalanine: 4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in atropa belladonna; The Plant Cell; 26 (9): 3745--3762. | |
dc.relation.references | Bedewitz, M. A.; Jones, A. D.; D’Auria, J. C. & Barry, C. S.: , 2018; Tropinone synthesis via an atypical polyketide synthase and p450-mediated cyclization; Nature communications; 9 (1): 5281. | |
dc.relation.references | Berkov, S.; Doncheva, T.; Philipov, S. & Alexandrov, K.: , 2005; Ontogenetic variation of the tropane alkaloids in datura stramonium; Biochemical systematics and ecology; 33 (10): 1017--1029. | |
dc.relation.references | Berkov, S.; Zayed, R. & Doncheva, T.: , 2006; Alkaloid patterns in some varieties of datura stramonium; Fitoterapia; 77 (3): 179--182. | |
dc.relation.references | Böcker, S.; Letzel, M. C.; Lipták, Z. & Pervukhin, A.: , 2009; Sirius: decomposing isotope patterns for metabolite identification; Bioinformatics; 25 (2): 218--224. | |
dc.relation.references | Bolger, A. M.; Lohse, M. & Usadel, B.: , 2014; Trimmomatic: a flexible trimmer for illumina sequence data; Bioinformatics; 30 (15): 2114--2120. | |
dc.relation.references | Bourebaba, L.; Bedjou, F.; Röcken, M. & Marycz, K.: , 2019; Nortropane alkaloids as pharmacological chaperones in the rescue of equine adipose-derived mesenchymal stromal stem cells affected by metabolic syndrome through mitochondrial potentiation, endoplasmic reticulum stress mitigation and insulin resistance alleviation; Stem cell research & therapy; 10: 1--20. | |
dc.relation.references | Bristol, M. L.: , 1969; Tree datura drugs of the colombian sibundoy; Botanical Museum Leaflets, Harvard University; 22 (5): 165--227. | |
dc.relation.references | Buchfink, B.; Xie, C. & Huson, D. H.: , 2015; Fast and sensitive protein alignment using diamond; Nature methods; 12 (1): 59--60. | |
dc.relation.references | Cantarel, B. L.; Korf, I.; Robb, S. M.; Parra, G.; Ross, E.; Moore, B. & Yandell, M.: , 2008; Fmaker: an easy-to-use annotation pipeline designed for emerging model organism genomes; Genome research; 18 (1): 188--196. | |
dc.relation.references | Casciaro, B.; Mangiardi, L.; Cappiello, F.; Romeo, I.; Loffredo, M. R.; Iazzetti, A.; Calcaterra, A.; Goggiamani, A.; Ghirga, F.; Mangoni, M. L. et al.: , 2020; Naturally-occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections; Molecules; 25 (16): 3619 | |
dc.relation.references | Christen, P.; Bieri, S. & Berkov, S.: , 2013; Methods of analysis: Tropane alkaloids from plant origin; Natural products: 1009--1048. | |
dc.relation.references | Csűös, M.: , 2010; Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood; Bioinformatics; 26 (15): 1910--1912. | |
dc.relation.references | De Castro Korgi, R.: , 2010; El Universo LaTeX; Universidad Nacional de Colombia, Bogota DC; 2a edición; ISBN 958701060-4. | |
dc.relation.references | De-la Cruz, I.; Hallab, A.; Olivares-Pinto, U.; Tapia-López, R.; Velázquez-Márquez, S.; Piñero, D.; Oyama, K.; Usadel, B. & Núñez-Farfán, J.: , 2021; Genomic signatures of the evolution of defence against its natural enemies in the poisonous and medicinal plant datura stramonium (solanaceae); Scientific Reports; 11 (1): 882. | |
dc.relation.references | De-la Cruz, I. M.; Oyama, K. & Núñez-Farfán, J.: , 2024; The chromosome-scale genome and the genetic resistance machinery against insect herbivores of the mexican toloache, datura stramonium; G3: Genes, Genomes, Genetics; 14 (2): jkad288. | |
dc.relation.references | Doncheva, T.; Philipov, S. & Kostova, N.: , 2004; Alkaloids from datura stramonium l; Comptes Rendus de l’Academie Bulgare des Sciences, vol. 57, p. 5: 41; 57 (5): 5--41. | |
dc.relation.references | Doncheva, T.; Berkov, S. & Philipov, S.: , 2006; Comparative study of the alkaloids in tribe datureae and their chemosystematic significance; Biochemical Systematics and Ecology; 34 (6): 478--488. | |
dc.relation.references | Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J. & Böcker, S.: , 2015; Searching molecular structure databases with tandem mass spectra using csi: Fingerid; Proceedings of the National Academy of Sciences; 112 (41): 12580--12585. | |
dc.relation.references | Dupin, J. & Smith, S. D.: , 2018; Phylogenetics of datureae (solanaceae), including description of the new genus trompettia and re--circumscription of the tribe; Taxon; 67 (2): 359--375. | |
dc.relation.references | Dutertre, Q.; Guy, P. A.; Sutour, S.; Peitsch, M. C.; Ivanov, N. V.; Glauser, G. & von Reuss, S.: , 2024; Identification of granatane alkaloids from duboisia myoporoides (solanaceae) using molecular networking and semisynthesis; Journal of Natural Products; 87 (8): 1914--1920. | |
dc.relation.references | D’Alessandro, R.; Celano, R.; Piccinelli, A. L.; D’Amelia, V. & Docimo, T.: , 2024; The spread of invasive and poisonous plants: A lesson from alkaloids; Applied Sciences; 14 (17): 8058. | |
dc.relation.references | Edgar, R. C.: , 2004; Muscle: multiple sequence alignment with high accuracy and high throughput; Nucleic acids research; 32 (5): 1792--1797. | |
dc.relation.references | El Bazaoui, A.; Bellimam, M. A. & Soulaymani, A.: , 2011; Nine new tropane alkaloids from datura stramonium l. identified by gc/ms; Fitoterapia; 82 (2): 193--197. | |
dc.relation.references | ElNaker, N. A.; Daou, M.; Ochsenkühn, M. A.; Amin, S. A.; Yousef, A. F. & Yousef, L. F.: , 2021; A metabolomics approach to evaluate the effect of lyophilization versus oven drying on the chemical composition of plant extracts; Scientific reports; 11 (1): 22679. | |
dc.relation.references | Emms, D. M. & Kelly, S.: , 2019; Orthofinder: phylogenetic orthology inference for comparative genomics; Genome biology; 20: 1--14. | |
dc.relation.references | Ewels, P.; Magnusson, M.; Lundin, S. & Käller, M.: , 2016; Multiqc: summarize analysis results for multiple tools and samples in a single report; Bioinformatics; 32 (19): 3047--3048. | |
dc.relation.references | Fu, L.; Niu, B.; Zhu, Z.; Wu, S. & Li, W.: , 2012; Cd-hit: accelerated for clustering the next-generation sequencing data; Bioinformatics; 28 (23): 3150--3152. | |
dc.relation.references | Gadzikowska, M. & Grynkiewicz, G.: , 2001; Tropane alkaloids in pharmaceutical and phytochemical analysis; Acta Poloniae Pharmaceutica; 58 (6): 481--492. | |
dc.relation.references | García Barriga, H.: , 1986; Aplicabilidad de las plantas medicinales en la terapéutica moderna; Revista Academia Colombiana de Ciencias Exactas, físicas y Naturales; 16 (4): 1988. | |
dc.relation.references | González-Gómez, L.; Morante-Zarcero, S.; Pereira, J. A.; Câmara, J. S. & Sierra, I.: , 2022; Improved analytical approach for determination of tropane alkaloids in leafy vegetables based on μ-quechers combined with hplc-ms/ms; Toxins; 14 (10): 650. | |
dc.relation.references | Gou, Y.; Jing, Y.; Song, J.; Nagdy, M. M.; Peng, C.; Zeng, L.; Chen, M.; Lan, X.; Htun, Z. L. L.; Liao, Z. et al.: , 2024; A novel bhlh gene responsive to low nitrogen positively regulates the biosynthesis of medicinal tropane alkaloids in atropa belladonna; International journal of biological macromolecules; 266: 131012. | |
dc.relation.references | Goyal, S.: , 2013; Ecological role of alkaloids; Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes: 149--171. | |
dc.relation.references | Grabherr, M. G.; Haas, B. J.; Yassour, M.; Levin, J. Z.; Thompson, D. A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q. et al.: , 2011; Full-length transcriptome assembly from rna-seq data without a reference genome; Nature biotechnology; 29 (7): 644--652. | |
dc.relation.references | Griffin, W. J. & Lin, G. D.: , 2000; Chemotaxonomy and geographical distribution of tropane alkaloids; Phytochemistry; 53 (6): 623--637. | |
dc.relation.references | Gross, J. H.: , 2017; Mass spectrometry: a textbook; Springer; 3a edición; doi:10.1007/978-3-319-54398-7. | |
dc.relation.references | Grynkiewicz, G. & Gadzikowska, M.: , 2008; -tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs.; Pharmacological Reports; 60 (4): 439. | |
dc.relation.references | Haas, B.: , 2021; Transdecoder; https://github.com/TransDecoder/TransDecoder; accessed: 2021-09-03. | |
dc.relation.references | Haas, B. J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P. D.; Bowden, J.; Couger, M. B.; Eccles, D.; Li, B.; Lieber, M. et al.: , 2013; De novo transcript sequence reconstruction from rna-seq using the trinity platform for reference generation and analysis; Nature protocols; 8 (8): 1494--1512. | |
dc.relation.references | Hashim, S. E.; Basar, N.; Abd Samad, A.; Jamil, S.; Bakar, M. B.; Jamalis, J.; Abd-Aziz, N.; Wagiran, A.; Razak, M. R. M. A. & Samad, A. F. A.: , 2024; Advancing alkaloid-based medicines: medical applications, scalable production and synthetic innovations; Phytochemistry Reviews: 1--29. | |
dc.relation.references | Henry, R. J.: , 2022; Progress in plant genome sequencing; Applied Biosciences; 1 (2): 113--128. | |
dc.relation.references | Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K. et al.: , 2010; Massbank: a public repository for sharing mass spectral data for life sciences; Journal of mass spectrometry; 45 (7): 703--714. | |
dc.relation.references | Hu, X.; Liu, W.; Yan, Y.; Deng, H. & Cai, Y.: , 2023; Tropinone reductase: A comprehensive review on its role as the key enzyme in tropane alkaloids biosynthesis; International Journal of Biological Macromolecules: 127377. | |
dc.relation.references | Ibrahim, M.; Siddique, S.; Rehman, K.; Husnain, M.; Hussain, A.; Akash, M. S. H. & Azam, F.: , 2018; Comprehensive analysis of phytochemical constituents and ethnopharmacological investigation of genus datura; Critical Reviews™ in Eukaryotic Gene Expression; 28 (3). | |
dc.relation.references | Jakabová, S.; Vincze, L.; Farkas, Á.; Kilár, F.; Boros, B. & Felinger, A.: , 2012; Determination of tropane alkaloids atropine and scopolamine by liquid chromatography--mass spectrometry in plant organs of datura species; Journal of Chromatography A; 1232: 295--301. | |
dc.relation.references | Jauhal, A. A. & Newcomb, R. D.: , 2021; Assessing genome assembly quality prior to downstream analysis: N50 versus busco; Molecular Ecology Resources; 21 (5): 1416--1421. | |
dc.relation.references | Jirschitzka, J.; Schmidt, G. W.; Reichelt, M.; Schneider, B.; Gershenzon, J. & D’Auria, J. C.: , 2012; Plant tropane alkaloid biosynthesis evolved independently in the solanaceae and erythroxylaceae; Proceedings of the National Academy of Sciences; 109 (26): 10304--10309. | |
dc.relation.references | Kanehisa, M. & Goto, S.: , 2000; Kegg: kyoto encyclopedia of genes and genomes; Nucleic acids research; 28 (1): 27--30. | |
dc.relation.references | Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M. & Ishiguro-Watanabe, M.: , 2023; Kegg for taxonomy-based analysis of pathways and genomes; Nucleic acids research; 51 (D1): D587--D592. | |
dc.relation.references | Kohnen-Johannsen, K. L. & Kayser, O.: , 2019; Tropane alkaloids: chemistry, pharmacology, biosynthesis and production; Molecules; 24 (4): 796. | |
dc.relation.references | Kramer, L.; Jayanty, S.; Reckhow, D. A. & Sathuvalli, V.: , 2023; Identification of tropane alkaloid chemotypes and genotypes in hyoscyamus niger l.; Journal of the American Society for Horticultural Science; 148 (6): 304--314. | |
dc.relation.references | Lechner, M.; Findeiß, S.; Steiner, L.; Marz, M.; Stadler, P. F. & Prohaska, S. J.: , 2011; Proteinortho: detection of (co-) orthologs in large-scale analysis; BMC bioinformatics; 12: 1--9. | |
dc.relation.references | Li, H. & Durbin, R.: , 2009; Fast and accurate short read alignment with burrows--wheeler transform; bioinformatics; 25 (14): 1754--1760. | |
dc.relation.references | Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. et al.: , 2009; 1000 genome project data processing subgroup. the sequence alignment/map format and samtools; Bioinformatics; 25 (16): 2078--2079. | |
dc.relation.references | Li, T.; Wang, Y.-H.; Liu, J.-X.; Feng, K.; Xu, Z.-S. & Xiong, A.-S.: , 2019; Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops; Critical reviews in biotechnology; 39 (5): 680--692. | |
dc.relation.references | Li, W. & Godzik, A.: , 2006; Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences; Bioinformatics; 22 (13): 1658--1659. | |
dc.relation.references | Lockwood, T. E.: , 1979; The ethnobotany of brugmansia.; Journal of Ethnopharmacology; 1 (2): 147--164. | |
dc.relation.references | Lounasmaa, M. & Tamminen, T.: , 1993; The tropane alkaloids; The alkaloids: chemistry and pharmacology; 44: 1--114. | |
dc.relation.references | Lu, Y.; Pang, Z. & Xia, J.: , 2023; Comprehensive investigation of pathway enrichment methods for functional interpretation of lc--ms global metabolomics data; Briefings in Bioinformatics; 24 (1): bbac553. | |
dc.relation.references | Lucinda, N.; Inoue-Nagata, A. K.; Kitajima, E. W. & Nagata, T.: , 2010; Complete genome sequence of brugmansia suaveolens mottle virus, a potyvirus from an ornamental shrub; Archives of virology; 155: 1729--1732. | |
dc.relation.references | Maisl, C.; Doppler, M.; Seidl, B.; Bueschl, C. & Schuhmacher, R.: , 2023; Untargeted plant metabolomics: Evaluation of lyophilization as a sample preparation technique; Metabolites; 13 (6): 686. | |
dc.relation.references | Marín-Sáez, J.; Romero-González, R. & Frenich, A. G.: , 2017; Multi-analysis determination of tropane alkaloids in cereals and solanaceaes seeds by liquid chromatography coupled to single stage exactive-orbitrap; Journal of Chromatography a; 1518: 46--58. | |
dc.relation.references | MEJíA, L. M. Á.: , 2008; Borrachero, cacao sabanero o floripondio (brugmansia spp.), un grupo de plantas por redescubrir en la biodiversidad latinoamericana.; Cultura y Droga; 13 (15): 77--93. | |
dc.relation.references | Misra, B. B.; Misra, A. & Jayaprakasha, G. K.: , 2019; Tools for metabolomics analysis: an overview; Current protocols in bioinformatics; 65 (1): e86. | |
dc.relation.references | Moghe, G. D. & Last, R. L.: , 2015; Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism; Plant Physiology; 169 (3): 1512--1523. | |
dc.relation.references | Morales-Merida, B. E.; Grimaldi-Olivas, J. C.; Cruz-Mendívil, A.; Villicaña, C.; Valdez-Torres, J. B.; Heredia, J. B.; León-Chan, R. G.; Lightbourn-Rojas, L. A.; Monribot-Villanueva, J. L.; Guerrero-Analco, J. A. et al.: , 2024; Integrating proteomics and metabolomics approaches to elucidate the mechanism of responses to combined stress in the bell pepper (capsicum annuum); Plants; 13 (13): 1861. | |
dc.relation.references | Moreno-Pedraza, A.; Gabriel, J.; Treutler, H.; Winkler, R. & Vergara, F.: , 2019; Effects of water availability in the soil on tropane alkaloid production in cultivated datura stramonium; Metabolites; 9 (7): 131. | |
dc.relation.references | Munro, C.; Zapata, F.; Howison, M.; Siebert, S. & Dunn, C. W.: , 2022; Evolution of gene expression across species and specialized zooids in siphonophora; Molecular Biology and Evolution; 39 (2): msac027. | |
dc.relation.references | [Network] Network, S. G.: , ; Sol genomics network (sgn). | |
dc.relation.references | Nocquet, P.-A. & Opatz, T.: , 2016; Total synthesis of (±)-scopolamine: Challenges of the tropane ring; European Journal of Organic Chemistry; 2016 (6): 1156--1164. | |
dc.relation.references | Olmstead, R. G.; Bohs, L.; Migid, H. A.; Santiago-Valentin, E.; Garcia, V. F. & Collier, S. M.: , 2008; A molecular phylogeny of the solanaceae; Taxon; 57 (4): 1159--1181. | |
dc.relation.references | Organization, W. H.: , 2024; The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2023 (including the 23rd WHO Model List of Essential Medicines and the 9th WHO Model List of Essential Medicines for Children); World Health Organization. | |
dc.relation.references | Palazón, J.; Navarro-Ocaña, A.; Hernandez-Vazquez, L. & Mirjalili, M. H.: , 2008; Application of metabolic engineering to the production of scopolamine; Molecules; 13 (8): 1722--1742. | |
dc.relation.references | Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N. & Xia, J.: , 2022; Using metaboanalyst 5.0 for lc--hrms spectra processing, multi-omics integration and covariate adjustment of global metabolomics data; Nature protocols; 17 (8): 1735--1761. | |
dc.relation.references | Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A. F.; MacDonald, P. E.; Wishart, D. S.; Li, S. et al.: , 2024; Metaboanalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation; Nucleic Acids Research: gkae253. | |
dc.relation.references | Patro, R.; Duggal, G. & Kingsford, C.: , 2015; Salmon: accurate, versatile and ultrafast quantification from rna-seq data using lightweight-alignment; BioRxiv; 10: 021592. | |
dc.relation.references | Pinzon, W.; Vega, H.; Gonzalez, J. & Pinzon, A.: , 2019; Mathematical framework behind the reconstruction and analysis of genome scale metabolic models; Archives of Computational Methods in Engineering; 26: 1593--1606. | |
dc.relation.references | Price, M. N.; Dehal, P. S. & Arkin, A. P.: , 2010; Fasttree 2--approximately maximum-likelihood trees for large alignments; PloS one; 5 (3): e9490. | |
dc.relation.references | Qiang, W.; Xia, K.; Zhang, Q.; Zeng, J.; Huang, Y.; Yang, C.; Chen, M.; Liu, X.; Lan, X. & Liao, Z.: , 2016; Functional characterisation of a tropine-forming reductase gene from brugmansia arborea, a woody plant species producing tropane alkaloids; Phytochemistry; 127: 12--22. | |
dc.relation.references | Qiu, F.; Yang, C.; Yuan, L.; Xiang, D.; Lan, X.; Chen, M. & Liao, Z.: , 2018; A phenylpyruvic acid reductase is required for biosynthesis of tropane alkaloids; Organic Letters; 20 (24): 7807--7810. | |
dc.relation.references | R Core Team: , 2024; R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; Vienna, Austria; URL https://www.R-project.org/. | |
dc.relation.references | Rabinowitz, J. D.: , 2007; Cellular metabolomics of escherchia coli; Expert Review of Proteomics; 4 (2): 187--198. | |
dc.relation.references | Rai, A.; Saito, K. & Yamazaki, M.: , 2017; Integrated omics analysis of specialized metabolism in medicinal plants. | |
dc.relation.references | Rao, X. & Dixon, R. A.: , 2019; Co-expression networks for plant biology: why and how; Acta biochimica et biophysica Sinica; 51 (10): 981--988. | |
dc.relation.references | Rieseberg, T. P.; Dadras, A.; Fürst-Jansen, J. M.; Ashok, A. D.; Darienko, T.; De Vries, S.; Irisarri, I. & De Vries, J.: , 2023; Crossroads in the evolution of plant specialized metabolism; en Seminars in Cell & Developmental Biology, tomo 134; Elsevier; págs. 37--58. | |
dc.relation.references | Robins, R. J.; Parr, A. J.; Bent, E. G. & Rhodes, M. J.: , 1991; Studies on the biosynthesis of tropane alkaloids in datura stramonium l. transformed root cultures: 1. the kinetics of alkaloid production and the influence of feeding intermediate metabolites; Planta; 183: 185--195. | |
dc.relation.references | Robinson, M. D.; McCarthy, D. J. & Smyth, G. K.: , 2010; edger: a bioconductor package for differential expression analysis of digital gene expression data; bioinformatics; 26 (1): 139--140. | |
dc.relation.references | Roden, L.; Gorzolka, K.; Lämmerhirt, H.; Zuther, E. & Kopka, J.: , 2021; Current status and future directions of mass spectrometry-based metabolomics workflows for plant systems biology; Phytochemistry Reviews; 20: 1--24. | |
dc.relation.references | Roessner, U.; Wagner, C.; Kopka, J.; Trethewey, R. N. & Willmitzer, L.: , 2000; Simultaneous analysis of metabolites in potato tuber by gas chromatography--mass spectrometry; the plant journal; 23 (1): 131--142. | |
dc.relation.references | Roessner, U.; Luedemann, A.; Brust, D.; Fiehn, O.; Linke, T.; Willmitzer, L. & Fernie, A. R.: , 2001; Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems; The Plant Cell; 13 (1): 11--29. | |
dc.relation.references | Rojas, S.; Madrinan, S.; Stahl, M. & Harter, K. J.: , 2023; Cultural use of tropane alkaloids of brugmansia species and cultivars in colombia depends on local plant growth environment rather than genetic diversity; bioRxiv: 2023--11. | |
dc.relation.references | RStudio Team: , 2024; RStudio: Integrated Development Environment for R; RStudio, PBC; URL https://posit.co. | |
dc.relation.references | Sadre, R.; Anthony, T. M.; Grabar, J. M.; Bedewitz, M. A.; Jones, A. D. & Barry, C. S.: , 2022; Metabolomicsguided discovery of cytochrome p450s involved in pseudotropine-dependent biosynthesis of modified tropane alkaloids; Nature Communications; 13 (1): 3832. | |
dc.relation.references | Schlesinger, D.; Rikanati, R. D.; Volis, S.; Faigenboim, A.; Vendramin, V.; Cattonaro, F.; Hooper, M.; Oren, E.; Taylor, M.; Sitrit, Y. et al.: , 2019; Alkaloid chemodiversity in mandragora spp. is associated with loss-of-functionality of moh6h, a hyoscyamine 6β-hydroxylase gene; Plant Science; 283: 301--310. | |
dc.relation.references | Schlesinger, D.; Rikanati, R. D.; Faigenboim, A.; Vendramin, V.; Cattonaro, F.; Inbar, M. & Lewinsohn, E.: , 2021; Tropane alkaloid biosynthesis in datura innoxia mill. roots and their differential transport to shoots; Phytochemistry Letters; 43: 219--225. | |
dc.relation.references | Schultes, R. E.: , 1955; A new narcotic genus from the amazon slope of the colombian andes; Botanical Museum Leaflets, Harvard University; 17 (1): 1--11. | |
dc.relation.references | Scossa, F. & Fernie, A. R.: , 2020; The evolution of metabolism: How to test evolutionary hypotheses at the genomic level; Computational and Structural Biotechnology Journal; 18: 482--500. | |
dc.relation.references | Smyth, T.: , 2012; Huanduj: Brugmansia. | |
dc.relation.references | Song, Y.; Huang, J.-P.; Wang, Y.-J. & Huang, S.-X.: , 2024; Chromosome level genome assembly of endangered medicinal plant anisodus tanguticus; Scientific Data; 11 (1): 161. | |
dc.relation.references | Srinivasan, P. & Smolke, C. D.: , 2020; Biosynthesis of medicinal tropane alkaloids in yeast; Nature; 585 (7826): 614--619. | |
dc.relation.references | Su, H.; Ding, X.; Liao, B.; Zhang, D.; Huang, J.; Bai, J.; Xu, S.; Zhang, J.; Xu, W.; Qiu, X. et al.: , 2023; Comparative chloroplast genomes provided insights into the evolution and species identification on the datureae plants; Frontiers in Plant Science; 14: 1270052. | |
dc.relation.references | Sumner, L. W.; Amberg, A.; Barrett, D.; Beale, M. H.; Beger, R.; Daykin, C. A.; Fan, T. W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J. L. et al.: , 2007; Proposed minimum reporting standards for chemical analysis: chemical analysis working group (cawg) metabolomics standards initiative (msi); Metabolomics; 3: 211--221. | |
dc.relation.references | theexpresswire: , 2021; Global scopolamine market growth 2021, revenue, scope, regionalproduction, demand by region, main consumer, size, majorcompetition, industry environment and forecast by 2021-2025; https://www.theexpresswire.com/; posted online May, 2021. | |
dc.relation.references | Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D. R.; Pimentel, H.; Salzberg, S. L.; Rinn, J. L. & Pachter, L.: , 2012; Differential gene and transcript expression analysis of rna-seq experiments with tophat and cufflinks; Nature protocols; 7 (3): 562--578. | |
dc.relation.references | Ullrich, S. F.; Hagels, H. & Kayser, O.: , 2017; Scopolamine: a journey from the field to clinics; Phytochemistry Reviews; 16: 333--353. | |
dc.relation.references | Wang, J. H.; Byun, J. & Pennathur, S.: , 2010; Analytical approaches to metabolomics and applications to systems biology; en Seminars in nephrology, tomo 30; Elsevier; págs. 500--511. | |
dc.relation.references | Wang, S.; Alseekh, S.; Fernie, A. R. & Luo, J.: , 2019; The structure and function of major plant metabolite modifications; Molecular Plant; 12 (7): 899--919. | |
dc.relation.references | Wang, Y.-J.; Tain, T.; Yu, J.-Y.; Li, J.; Xu, B.; Chen, J.; D’Auria, J. C.; Huang, J.-P. & Huang, S.-X.: , 2023; Genomic and structural basis for evolution of tropane alkaloid biosynthesis; Proceedings of the National Academy of Sciences; 120 (17): e2302448120. | |
dc.relation.references | Wang, Z.; Chen, S.; Zheng, P.; Ren, Z.; Zhang, H.; Zhang, J.; Shao, B.; Wu, C. & Jiang, H.: , 2024; Emerging tropane alkaloids: Global development and potential health threats; Food Quality and Safety; 8: fyad043. | |
dc.relation.references | Wen, M.; Zeng, J.; Qiu, F.; Zhang, F. & Liao, Z.: , 2024; De novo synthesis of anticholinergic hyoscyamine and scopolamine in nicotiana benthamiana based on elucidating tropane alkaloid biosynthetic pathway of anisodus luridus; Agronomy; 14 (11): 2460. | |
dc.relation.references | Yang, J.; Wu, Y.; Zhang, P.; Ma, J.; Yao, Y. J.; Ma, Y. L.; Zhang, L.; Yang, Y.; Zhao, C.; Wu, J. et al.: , 2023; Multiple independent losses of the biosynthetic pathway for two tropane alkaloids in the solanaceae family; Nature Communications; 14 (1): 8457. | |
dc.relation.references | Yepes, S.: , 1953; Introdución a la etnobotânica colombiana; Publicación de la Sociedad Colombiana de Etnologia; 1. | |
dc.relation.references | Yin, S.; Hu, J.; Mohamed, K. H.; Hu, X.; Gao, W.; Li, Y.; Hu, W. & Ding, C.: , 2025; Ethnobotany, phytochemistry, pharmacology, and toxicology of the genus datura (solanaceae); Natural Product Research: 1--16. | |
dc.relation.references | Zhang, B. & Horvath, S.: , 2005; A general framework for weighted gene co-expression network analysis; Statistical applications in genetics and molecular biology; 4 (1). | |
dc.relation.references | Zhang, F.; Qiu, F.; Zeng, J.; Xu, Z.; Tang, Y.; Zhao, T.; Gou, Y.; Su, F.; Wang, S.; Sun, X. et al.: , 2023; Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the solanaceae family; Nature Communications; 14 (1): 1446. | |
dc.relation.references | Zhang, P.; Li, Y.; Liu, G.; Sun, X.; Zhou, Y.; Deng, X.; Liao, Q. & Xie, Z.: , 2014; Simultaneous determination of atropine, scopolamine, and anisodamine from hyoscyamus niger l. in rat plasma by high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetics study; Journal of separation science; 37 (19): 2664--2674. | |
dc.relation.references | Zhou, Q.; Su, X.; Jing, G.; Chen, S. & Ning, K.: , 2018; Rna-qc-chain: comprehensive and fast quality control for rna-seq data; BMC genomics; 19: 1--10. | |
dc.relation.references | Zhou, W.; Wang, C.; Hao, X.; Chen, F.; Huang, Q.; Liu, T.; Xu, J.; Guo, S.; Liao, B.; Liu, Z. et al.: , 2024; A chromosome-level genome assembly of anesthetic drug--producing anisodus acutangulus provides insights into its evolution and the biosynthesis of tropane alkaloids; Plant Communications; 5 (1). | |
dc.relation.references | Zhou, W.; Wang, C.; Hao, X.; Chen, F.; Huang, Q.; Liu, T.; Xu, J.; Guo, S.; Liao, B.; Liu, Z. et al.: , 2024; A chromosome-level genome assembly of anesthetic drug--producing anisodus acutangulus provides insights into its evolution and the biosynthesis of tropane alkaloids; Plant Communications; 5 (1). | |
dc.relation.references | Ziegler, J. & Facchini, P. J.: , 2008; Alkaloid biosynthesis: metabolism and trafficking; Annual Review of Plant Biology; 59: 735--769. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.subject.ddc | 580 - Plantas | |
dc.subject.lemb | Metabolismo vegetal | spa |
dc.subject.lemb | Plants - metabolism | eng |
dc.subject.other | Brumansias | spa |
dc.subject.other | Brugmansia | eng |
dc.subject.other | Transcriptómica | spa |
dc.subject.other | Transcriptomics | eng |
dc.subject.proposal | Brugmansia | spa |
dc.subject.proposal | lcaloide tropánico | spa |
dc.subject.proposal | diversidad metabólica | spa |
dc.subject.proposal | espectrometría de masas | spa |
dc.subject.proposal | transcriptómica | spa |
dc.subject.proposal | ruta metabólica | spa |
dc.title | Análisis Multi-ómico de la Biosíntesis y Diversidad de Alcaloides Tropánicos en el Género Brugmansia | spa |
dc.title.translated | Multi-omics Analysis of the Biosynthesis and Diversity of Tropane Alkaloids in the Genus Brugmansia | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Bibliotecarios | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis Maestria Ciencias Bioquimica - Ronald Pardo (2).pdf
- Tamaño:
- 18.24 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: