Factores de emisiones de gases del sector porcicola en el departamento de Antioquia

dc.contributor.advisorGonzález Cadavid, Verónica
dc.contributor.advisorOsorio Saraz, Jairo Alexander
dc.contributor.authorCastrillón Mejía, Natalia
dc.contributor.researchgroupIngeniería Agrícolaspa
dc.coverage.cityAntioquia (Colombia)
dc.date.accessioned2021-07-26T19:55:34Z
dc.date.available2021-07-26T19:55:34Z
dc.date.issued2021
dc.description.abstractEl crecimiento explosivo de las explotaciones confinadas de cerdos en todo el mundo ha generado preocupación en muchos investigadores sobre el impacto ambiental, la salud, la productividad ganadera y la generación de biogases asociados a este tipo de producción a gran escala. El objetivo de este trabajo fue estudiar la concentración y las emisiones de gas metano de diez tipologías constructivas diferentes en función de las variables climáticas, constructivas y de confort térmico. Para lograr el objetivo se plantearon las características constructivas más relevantes para mejorar el confort térmico de los animales, disminuir las emisiones de gases, y proponer las tipologías por grupo etareo en función del piso térmico y características constructivas que mejor se adaptan a las condiciones de producción animal. Adicionalmente se visitaron 10 granjas de etapa de ceba ubicadas en el departamento de Antioquia - Colombia, entre 800-2300 metros sobre el nivel del mar, únicamente fue posible encontrar tipologías que trabajaban con ventilación natural. En los alojamientos de los animales se realizaron mediciones climáticas con sensores manuales con cuyos resultados se calcularon los índices de humedad y temperatura de globo negro (BGHI) y el Índice de Humedad y Temperatura (THI) para cada una de las instalaciones, encontrando resultados entre los rangos 78 ± 5 - 68 ± 2; y 79 ± 4 - 69 ± 3 respectivamente. Las medidas de metano se tomaron con sensores ubicados en puntos intermedios de las áreas de entrada y salida de ventilación y se analizó el comportamiento de la concentración y emisión de metano de las instalaciones junto con la correlación y evolución temporal de las variables climáticas, índices de confort y tipologías constructivas. La información se analizó mediante estadística descriptiva, análisis de varianza (ANOVA) y análisis de componentes principales (PCA). Se encontraron resultados como: un promedio de tasa de Emisión de CH4 (ER) por instalación (Kg año -1) de 607.9, Potencial de Calentamiento Global (GWP) por instalación (Kg año-1) de 15197.42 y correlaciones significativas entre RE, frecuencia de limpieza (CF), unidad animal (AU), flujo de aire (Q), densidad animal (DA) y humedad relativa (HR). Esta es la primera investigación con este alcance reportada en Colombia, la cual será importante para futuras investigaciones y políticas gubernamentales. (Tomado de la fuente)spa
dc.description.abstractThe explosive growth of pig production at high densities in confined farms around the world has raised concerns among many researchers about the environmental impact, health and productivity of livestock and the production of biogases associated with this type of largescale production. The objective of this work was to study the concentration and emissions of methane gas from ten different construction typologies based on climatic, constructive and animal welfare variables. To achieve the objective, the most relevant constructive characteristics were proposed that allow improving the thermal comfort conditions of the animals, reducing gas emissions; and propose the typologies by age group according to the thermal floor and construction characteristics that best adapt to the conditions of animal production. Additionally, 10 fattening stage farms were visited located in the department of Antioquia - Colombia, between 800-2300 meters above sea level, it was only possible to find typologies that worked with natural ventilation, Measurements to climatic variables were carried out in the housing of the animals with manual sensors, with the results the humidity and temperature indices of the black globe (BGHI) and the Humidity and Temperature Index (THI) were calculated for each of the facilities, finding results between the ranges 78 ± 5-68 ± 2 and 79 ± 4-69 ± 3 respectively. Methane measurements were taken with sensors located at intermediate points of the ventilation inlet and outlet areas and the behavior of the concentration and emission of methane from the facilities was analyzed together with the correlation and temporal evolution of the climatic variables, indices of comfort and construction typologies. The information was analyzed using descriptive statistics, analysis of variance (ANOVA) and principal component analysis (PCA). Results were found such as an average CH4 Emission rate (ER) per facility (Kg year -1) of 607.9, Global Warming Potential (GWP) per facility (Kg year-1) of 15197.42 and significant correlations between RE, cleaning frequency (CF), animal unit (AU), air flow (Q), animal density (DA) and relative humidity (RH). This is the first investigation reported in Colombia, which will be important for future investigations and government policies. (Tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaster en Medio Ambiente y Desarrollospa
dc.description.researchareaBioclimática aplicada a la agroindustriaspa
dc.format.extent107 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79847
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Medio Ambiente y Desarrollospa
dc.relation.referencesAmeen, R. F. M., & Mourshed, M. (2019). Urban sustainability assessment framework development: The ranking and weighting of sustainability indicators using analytic hierarchy process. Sustainable Cities and Society, 44(October 2018), 356–366. https://doi.org/10.1016/j.scs.2018.10.020spa
dc.relation.referencesBjerg, B., Brandt, P., Sørensen, K., Pedersen, P., & Zhang, G. (2019). Review of methods to mitigate heat stress among sows. 2019 ASABE Annual International Meeting, June. https://doiorg/10.13031/aim.201900741spa
dc.relation.referencesBjerg, B., Demeyer, P., Hoyaux, J., Didara, M., Grönroos, J., Hassouna, M., Amon, B., Bartzanas, T., Sándor, R., Fogarty, M., Klas, S., Schiavon, S., Juskiene, V., Radeski, M., Attard, G., Aarnink, A., Gülzari, Ş. Ö., Kuczyński, T., Fangueiro, D., … Norton, T. (2019). Review of legal requirements on ammonia and greenhouse gases emissions from animal production buildings in european countries. 2019 ASABE Annual International Meeting, June, 23. https://doi.org/10.13031/aim.201901070spa
dc.relation.referencesBriukhanov, A., Subbotin, I., Uvarov, R., & Vasilev, E. (2017). Method of designing of manure utilization technology. Agronoy Research, 15(3), 658–663.spa
dc.relation.referencesBroucek, J. (2018). Nitrous Oxide Release from Poultry and Pig Housing. 27(2), 467–479. https://doi.org/10.15244/pjoes/75871spa
dc.relation.referencesCastrillón, N., González, V., Osorio, J. A., Montoya, A. P., & Correa, G. (2020). Assessment of the methane emission for different typologies of fattening swine facilities in the department of antioquia Colombia. Agronomy Research, 18(Special Issue 2), 1189–1202. https://doi.org/10.15159/AR.20.108spa
dc.relation.referencesCecchin, D., Pereira, C. R., Campos, A. T., Ferraz, P. F. P., Amaral, P. I. S., Sousa, F. A., Hüther, C. M., & Cruz, V. M. F. (2019). Behavior of swine hosted in facilities with different construction typologies. Journal of Animal Behaviour and Biometeorology, 7(1), 6–10. https://doi.org/10.31893/2318-1265jabb.v7n1p6-10spa
dc.relation.referencesCecchin, D, Campos, A., Cruz, V., Sousa, F., Amaral, P., & Yanagi Junior, T. (2017). Air quality in swine growing and finishing facilities with different building typologies TT - Qualidade do ar em instalações para suínos em crescimento e terminação com diferentes tipologias construtivas. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(5), 339–343. https://doi.org/10.1590/1807-1929/agriambi.v21n5p339-343spa
dc.relation.referencesCecchin, Daiane, Da Cruz, V. F., Campos, A. T., Sousa, F. A., Amaral, P. I. S., Da Silva Ramos Freitas, L. C., & Andrade, R. R. (2017). Thermal environment in growing and finishing pig facilities of different building typologies. Journal of Animal Behaviour and Biometeorology, 5(4), 118–123. https://doi.org/10.14269/2318-1265/jabb.v5n4p118-123spa
dc.relation.referencesCIGR. (2006). ANIMAL HOUSING IN HOT CLIMATES: A multidisciplinary view (I. de A. Nääs & D. J. Moura (eds.)). CIGR. de Oliveira Júnior, A. J., de Souza, S. R. L., da Cruz, V. F., Vicentin, T. A., & Glavina, A. S. G. (2018). Development of an android APP to calculate thermal comfort indexes on animals and people. Computers and Electronics in Agriculture, 151(October 2017), 175–184. https://doi.org/10.1016/j.compag.2018.05.014spa
dc.relation.referencesde Vries, M., & de Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Science, 128(1–3), 1–11. https://doi.org/10.1016/j.livsci.2009.11.007spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE). (2016). 3rd National Agricultural Survey, Colombia. Dominica, I., Suharjito, Noviantri, V., & Utama, D. N. (2018). Thermal comfort modelling based on house’s architecture using ghost point quadratic explicit method. International Review of Civil Engineering, 9(4), 141–147. https://doi.org/10.15866/irece.v9i4.14417spa
dc.relation.referencesFerrari, S., Costa, A., & Guarino, M. (2013). Heat stress assessment by swine related vocalizations. Livestock Science, 151(1), 29–34. https://doi.org/10.1016/j.livsci.2012.10.013spa
dc.relation.referencesGabriel, D., Allen, A., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., & Del Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507(7493), 488–491. https://doi.org/10.1038/nature13164spa
dc.relation.referencesGerber, P. ., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Facing climate change through livestock.spa
dc.relation.referencesGitz, V., Meybeck, A., Lipper, L., Young, C., & Braatz, S. (2016). Climate change and food security: Risks and responses. In Food and Agriculture Organization of the United Nations. https://doi.org/10.1080/14767058.2017.1347921spa
dc.relation.referencesGobernación de Antioquia. (2014). Anuario estadístico del sector agropecuario en el departamento de Antioquia. Hansen, R., & Bjerg, B. (2018). Natural ventilation’s ability to prevent high indoor temperatures. m(April).spa
dc.relation.referencesHuerta_Crispin, R., & Gas, J. (2012). Manual de Buenas Prácticas de Producción Porcina. Lineamientos generales para el pequeño y mediano productor de cerdos. In Manual de Buenas Prácticas de Producción Porcina. Lineamientos generales para el pequeño y mediano productor de cerdos.spa
dc.relation.referencesIDEAM, PNUD, MADS, DNP, C. (2015). National Inventory of Greenhouse Gases (GHG) Colombia 2012. Instituto Colombiano de Hidrología Meteorología y Estudios Ambientales - IDEAM. (2005). Atlas climatológico de Colombia. Atlas Climatológico de Colombia, 219. http://www.ideam.gov.co/spa
dc.relation.referencesJackson, P., Guy, J. H., Sturm, B., Bull, S., & Edwards, S. A. (2018). An innovative concept building design incorporating passive technology to improve resource efficiency and welfare of finishing pigs. Biosystems Engineering, 174, 190–203. https://doi.org/10.1016/j.biosystemseng.2018.07.008spa
dc.relation.referencesLenerts, A., Popluga, D., & Naglis-Liepa, K. (2019). Benchmarking the GHG emissions intensities of crop and livestock–derived agricultural commodities produced in Latvia. Agronomy Research, 17(5), 1942–1952. https://doi.org/10.15159/AR.19.148spa
dc.relation.referencesMachado, S. T., Nääs, I. D. A., Dos Reis, J. G. ., Caldara, F. R., & Santos, R. C. (2016a). Sows and piglets thermal comfort: A comparative study of the tiles used in the farrowing housing. Engenharia Agricola, 36(6), 996–1004. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n6p996-1004/2016spa
dc.relation.referencesMachado, S. T., Nääs, I. D. A., Dos Reis, J. G. M., Caldara, F. R., & Santos, R. C. (2016b). Sows and piglets thermal comfort: A comparative study of the tiles used in the farrowing housing. Engenharia Agricola, 36(6), 996–1004. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n6p996-1004/2016spa
dc.relation.referencesMayorga, E. J., Renaudeau, D., Ramirez, B. C., Ross, J. W., & Baumgard, L. H. (2019). Heat stress adaptations in pigs. Animal Frontiers, 9(1), 54–61. https://doi.org/10.1093/af/vfy035spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural (MADR). (2019). National Agroclimatic Report May 2019. In Ministerio de Agricultura y Desarrollo Rural (MADR) (Vol. 53).spa
dc.relation.referencesMonteny, G. J., Bannink, A., & Chadwick, D. (2006). Greenhouse gas abatement strategies for animal husbandry. Agriculture, Ecosystems and Environment, 112(2–3), 163–170. https://doi.org/10.1016/j.agee.2005.08.015spa
dc.relation.referencesMyer, R., & Bucklin, R. (2012). Influence of Hot-Humid Environment on Growth Performance and Reproduction of Swine 1 Methods to Minimize Heat Stress. University of Florida, IFAS Extension. AN 107, 1–8.spa
dc.relation.referencesNations Food and Agriculture - FAO. (2011). World Livestock 2011 - Livestock in food security World. In FAO. https://doi.org/10.1080/00036841003742587spa
dc.relation.referencesNoya, I., Villanueva-Rey, P., González-García, S., Fernandez, M. D., Rodriguez, M. R., & Moreira, M. T. (2017). Life Cycle Assessment of pig production: A case study in Galicia. Journal of Cleaner Production, 142, 4327–4338. https://doi.org/10.1016/j.jclepro.2016.11.160spa
dc.relation.referencesNoya, Isabel, Aldea, X., Gasol, C. M., González-García, S., Amores, M. J., Colón, J., Ponsá, S., Roman, I., Rubio, M. A., Casas, E., Moreira, M. T., & Boschmonart-Rives, J. (2016). Carbon and water footprint of pork supply chain in Catalonia: From feed to final products. Journal of Environmental Management, 171, 133–143. https://doi.org/10.1016/j.jenvman.2016.01.039spa
dc.relation.referencesOCDE/FAO. (2018). OCDE-FAO Perspectivas Agrícolas 2013-2022. UNIVERSIDAD AUTÓNOMA CHAPINGO.spa
dc.relation.referencesOsorio-Saraz, J. A., Ferreira-Tinoco, I. D. fatima, Gates, R. S., Oliveira-Rocha, K. S., Combatt-Caballero, E. M., & Campos-de-Sousa, F. (2014). Adaptation and validation of a methdology for determing ammonia flux generated by litter in naturally ventilated poultry houses. Dyna, 81(187), 137–143. https://doi.org/10.15446/dyna.v81n187.40806spa
dc.relation.referencesPetersen, S. O., Olsen, A. B., Elsgaard, L., Triolo, J. M., & Sommer, S. G. (2016). Estimation of methane emissions from slurry pits below pig and cattle confinements. PLoS ONE, 11(8), 1–16. https://doi.org/10.1371/journal.pone.0160968spa
dc.relation.referencesPezzopane, J. R. M., Nicodemo, M. L. F., Bosi, C., Garcia, A. R., & Lulu, J. (2019). Animal thermal comfort indexes in silvopastoral systems with different tree arrangements. Journal of Thermal Biology, 79(November 2018), 103–111. https://doi.org/10.1016/j.jtherbio.2018.12.015spa
dc.relation.referencesPhilippe, F X., Laitat, M., Nicks, B., & Cabaraux, J. F. (2012). Ammonia and greenhouse gas emissions during the fattening of pigs kept on two types of straw floor. Agriculture, Ecosystems and Environment, 150, 45–53. https://doi.org/10.1016/j.agee.2012.01.006spa
dc.relation.referencesPhilippe, F X, Laitat, M., Wavreille, J., Nicks, B., & Cabaraux, J. F. (2013). Influence of permanent use of feeding stalls as living area on ammonia and greenhouse gas emissions for group-housed gestating sows kept on straw deep-litter. Livestock Science, 155(2–3), 397–406. https://doi.org/10.1016/j.livsci.2013.05.005spa
dc.relation.referencesPhilippe, F X, & Nicks, B. (2015). Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems and Environment, 199, 10–25. https://doi.org/10.1016/j.agee.2014.08.015spa
dc.relation.referencesPhilippe, François Xavier, Cabaraux, J. F., & Nicks, B. (2011). Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agriculture, Ecosystems and Environment, 141(3–4), 245–260. https://doi.org/10.1016/j.agee.2011.03.012spa
dc.relation.referencesPietrosemoli, S., & Tang, C. (2020). Animal welfare and production challenges associated with pasture pig systems: A review. Agriculture (Switzerland), 10(6), 1–34. https://doi.org/10.3390/agriculture10060223spa
dc.relation.referencesPorkcolombia, & PigCHAMP. (2015). Guia de mejores técnicas disponibles para el sector porcícola en Colombia. (p. 34). Reckmann, K., Traulsen, I., & Krieter, J. (2013). Life Cycle Assessment of pork production: A data inventory for the case of Germany. Livestock Science, 157(2–3), 586–596. https://doi.org/10.1016/j.livsci.2013.09.001spa
dc.relation.referencesReimert, I., Rodenburg, T. B., Ursinus, W. W., Kemp, B., & Bolhuis, J. E. (2014). Selection based on indirect genetic effects for growth, environmental enrichment and coping style affect the immune status of pigs. PLoS ONE, 9(10). https://doi.org/10.1371/journal.pone.0108700spa
dc.relation.referencesRhodes, T., Appleby, M., Chinn, K., Douglas, L., Firkins, L., Houpt, K., Irwin, C., McGlone, J., Dundberg, P., Tokach, L., & Wills, R. (2005). A comprehensive review of housing for pregnant sows Members - Task Force Report. Javma, 227(10), 1580–1590.spa
dc.relation.referencesRodrigues, N. E. B., Zangeronimo, M. G., & Fialho, E. T. (2010). Suínos Sob Estresse Térmico. Revista Eletrônica Nutritime, 7(2), 1197–1211.spa
dc.relation.referencesRoss, J. W., Hale, B. J., Gabler, N. K., Rhoads, R. P., Keating, A. F., & Baumgard, L. H. (2015). Physiological consequences of heat stress in pigs. Animal Production Science, 55(11–12), 1381–1390. https://doi.org/10.1071/AN15267spa
dc.relation.referencesSalomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M. M. B., LeRoy Miller, H. jr, & Chen, Z. (2007). Climate change 2007: The Physical Science Basis. In Cambridge University Press, Cambridge, United Kingdom and New York (Issues 1–4). https://doi.org/10.1007/s11270-007-9372-6spa
dc.relation.referencesSedorovich, D. M., Rotz, A., & Richard, T. L. (2007). Greenhouse gas emissions from dairy farms. 2007 ASABE Annual International Meeting, Technical Papers, 9, 14. https://doi.org/10.13031/2013.23112spa
dc.relation.referencesSeibert, L., & Norwood, F. B. (2011). Production costs and animal welfare for four stylized hog production systems. Journal of Applied Animal Welfare Science, 14(1), 1–17. https://doi.org/10.1080/10888705.2011.527596spa
dc.relation.referencesSharpe, R. ., Harper, L. ., & Simmons, J. . (2001). Methane emission from swine houses in North Carolina. Chemosphere Global Change Science, 3, 1–6.spa
dc.relation.referencesSousa, F. C., Tinôco, I. F. F., Barbari, M., Baptista, F., Souza, C. F., Saraz, A. O., Coelho, D. J. R., & Silva, A. L. (2018). Diagnosis of air quality in broilers production facilities in hot climates. Agronomy Research, 16(2), 582–592. https://doi.org/10.15159/AR.18.070spa
dc.relation.referencesSteinfeld, H., & Gerber, P. (2010). Livestock production and the global environment: Consume less or produce better? Proceedings of the National Academy of Sciences, 107(43), 18237–18238. https://doi.org/10.1073/pnas.1012541107 USDA. (2011). Department of agriculture national agricultural statistics service agricultural - Agricultural Statistics 2010. 1–9.spa
dc.relation.referencesXIONG, Y., MENG, Q. shi, GAO, J., TANG, X. fang, & ZHANG, H. fu. (2017). Effects of relative humidity on animal health and welfare. Journal of Integrative Agriculture, 16(8), 1653–1658. https://doi.org/10.1016/S2095-3119(16)61532-0spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcMedio Ambientespa
dc.subject.ddczootecniaspa
dc.subject.lembGases de invernadero
dc.subject.lembCría de cerdos
dc.subject.proposalIndice de confort animalspa
dc.subject.proposalBienestar animalspa
dc.subject.proposalEmisiones de metanospa
dc.subject.proposalGases de efecto invernaderospa
dc.subject.proposalPorciculturaspa
dc.subject.proposalAnimal comfort indexeng
dc.subject.proposalThermal stresseng
dc.subject.proposalAnimal welfareeng
dc.subject.proposalMethane emissionseng
dc.subject.proposalGreenhouse gaseseng
dc.subject.proposalNatural ventilationeng
dc.subject.proposalPig farmingeng
dc.titleFactores de emisiones de gases del sector porcicola en el departamento de Antioquiaspa
dc.title.translatedGas emission factors of the swine production in the department of Antioquiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
42151807.2021.pdf
Tamaño:
2.49 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Medio Ambiente y Desarrollo

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: