Modelos pronósticos de hospitalización y mortalidad de pacientes adultos con enfermedad renal crónica en terapia de reemplazo renal en Colombia

dc.contributor.advisorGuevara Cruz, Oscar Alexanderspa
dc.contributor.advisorSánchez Pedraza, Ricardospa
dc.contributor.advisorSanabria Arenas, Mauriciospa
dc.contributor.authorPrado Baquero, Sergio Andrésspa
dc.contributor.orcidSergio Andrés Prado Baquero [0000000281544178]spa
dc.coverage.countryColombiaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.date.accessioned2025-10-29T18:58:17Z
dc.date.available2025-10-29T18:58:17Z
dc.date.issued2025
dc.descriptionilustraciones, diagramasspa
dc.description.abstractIntroducción: En Colombia aumenta progresivamente la tasa de mortalidad de los pacientes con enfermedad renal crónica avanzada en terapia de reemplazo renal y aumenta las tasas de hospitalización, motivo por el cual se desarrollan y validan unos modelos pronósticos de mortalidad a tres años y de hospitalización a un año. Métodos: Búsqueda de literatura sobre factores pronósticos; selección de variables por panel de expertos con metodología Delphi modificada; cohortes retrospectivas de pacientes con enfermedad renal crónica avanzada del año 2014 para la creación de modelos pronósticos de mortalidad y hospitalización. Validación interna mediante bootstrapping y validación externa con cohortes retrospectivas de pacientes de los años 2015-2017; evaluación de discriminación (índice-C Harrell), calibración (gráficas de calibración), rendimiento diagnóstico (curva ROC) y utilidad clínica (análisis de decisiones); metodología según el marco de referencia PROGRESS. Resultados: Modelo de mortalidad a tres años: 2.343 pacientes, 983 (41,95%) mujeres, edad 61,6 años (IQR= 21,6); índice-C: 0,9404; Calibración: p=0,649; AUC-ROC: 0,7454 [IC95% 0,7199–0,7709]; beneficio neto con umbral de probabilidad: 12%. Validación interna: índice-C: 0,9447; Calibración: p=0,542; AUC-ROC: 0,7382 [IC95% 0,7117-0,7647]; beneficio neto con umbral de probabilidad: 11%. Validación externa: 3.688 pacientes, 560 (42,30%) mujeres, edad 61,5 años (IQR= 20,9); índice-C: 0,9463; Calibración: p=0,184; AUC-ROC: 0,7423 [IC95%: 0,7228–0,7619]; beneficio neto con umbral de probabilidad: 13,5%. Modelo de hospitalización a un año: 2.819 pacientes, edad 62,1 años (IQR: 21,6), 42,36% mujeres; índice-C: 0,8962; Calibración: p=0,948; AUC-ROC: 0,5958 [IC95% 0,5711–0,6204]; beneficio neto con umbral de probabilidad: 25%. Validación interna: índice-C: 0,8959; Calibración: p=0,776; AUC-ROC: 0,6060 [IC95% 0,5825–0,6313]; beneficio neto con umbral de probabilidad: 24%. Validación externa: 4.054 pacientes, edad 61,0 años (IQR: 20,6), 43,62 % mujeres; índice-C: 0,9089; Calibración: p=0,135; AUC-ROC: 0,6155 [IC95%: 0,5985–0,6325]; beneficio neto con umbral de probabilidad: 25%. Conclusión: Se obtiene un modelo de mortalidad con rendimiento diagnóstico moderado y un modelo de hospitalización con rendimiento diagnóstico leve, ambos elaborados y validados y muestras colombianas. (Texto tomado de la fuente).spa
dc.description.abstractIntroduction: In Colombia, death and hospitalization rates of patients with advanced chronic kidney disease undergoing renal replacement therapy are progressively increasing. Consequently, three-year mortality and one-year hospitalization prognostic models were developed and validated Methods: Literature search for prognostic factors, variable selection through a modified Delphi expert panel, retrospective cohorts of patients with advanced chronic kidney disease from 2014 for development of mortality and hospitalization prognostic models. Internal validation was performed using bootstrapping, external validation with retrospective patient cohorts from 2015-2017. Evaluation included discrimination (Harrell's C-index), calibration (calibration plots), diagnostic performance (ROC curve), and clinical utility (decision analysis). Based on the PROGRESS framework Results: Three-year mortality model: 2.343 patients, 983 (41,95%) women, median age 61,6 years (IQR= 21,6); C-index: 0,9404; Calibration: p=0,649; AUC-ROC: 0,7454 [95% CI 0,7199–0,7709]; net benefit with probability threshold: 12%. Internal validation: C-index: 0,9447; Calibration: p=0,542; AUC-ROC: 0,7382 [95% CI 0,7117-0,7647]; net benefit with probability threshold: 11%. External validation: 3.688 patients, 560 (42,30%) women, median age 61,5 years (IQR= 20,9); C-index: 0,9463; Calibration: p=0,184; AUC-ROC: 0,7423 [95% CI: 0,7228–0,7619]; net benefit with probability threshold: 13,5%. One-year hospitalization model: 2.819 patients, median age 62,1 years (IQR: 21,6), 42,36% women; C-index: 0,8962; Calibration: p=0,948; AUC-ROC: 0,5958 [95% CI 0,5711–0,6204]; net benefit with probability threshold: 25%. Internal validation: C-index: 0,8959; Calibration: p=0,776; AUC-ROC: 0,6060 [95% CI 0,5825–0,6313]; net benefit with probability threshold: 24%. External validation: 4.054 patients, mean age 61,0 years (IQR: 20,6), 43,62% women; C-index: 0,9089; Calibration: p=0,135; AUC-ROC: 0,6155 [95% CI: 0,5985–0,6325]; net benefit with probability threshold: 25% Conclusion: A mortality prognostic model with moderate diagnostic performance and a hospitalization prognostic model with mild diagnostic performance were obtained, both developed and validated in the Colombian samples.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Epidemiología Clínicaspa
dc.description.researchareaPronósticospa
dc.format.extentxvi, 127 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89074
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Investigaciones Clínicasspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Epidemiología Clínicaspa
dc.relation.indexedBiremespa
dc.relation.referencesRomagnani P, Remuzzi G, Glassock R, Levin A, Jager KJ, Tonelli M, et al. Chronic kidney disease. Nat Rev Dis Prim [Internet]. 2017;3:17088. Available from: https://dx.doi.org/10.1038/nrdp.2017.88
dc.relation.referencesFoundation NK. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. 2013;3(1).
dc.relation.referencesLevey AS, Eckardt KU, Dorman NM, Christiansen SL, Hoorn EJ, Ingelfinger JR, et al. Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int [Internet]. 2020;97(6):1117–29. Available from: https://doi.org/10.1016/j.kint.2020.02.010
dc.relation.referencesBello A, Lunney M, Levin A, Osman M, Ye F, Ashuntantang G, et al. Global Kidney Health Atlas: A report by the International Society og Nephrology on the Global Burden of End-Stage Kidney and Capacity for Kdney Replacement Therapy and Conservative Care across World Countries and Regions [Internet]. Brussels, Belgium; 2019. Available from: https://www.theisn.org/wp-content/uploads/2021/05/GKHAtlas_2019_WebFIle-1.pdf
dc.relation.referencesAbbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019: Chronic kidney disease — Level 3 cause. Lancet [Internet]. 2020;396:S152–3. Available from: https://www.thelancet.com/pb-assets/Lancet/gbd/summaries/diseases/chronic-kidney-disease.pdf
dc.relation.referencesFerrari AJ, Santomauro DF, Aali A, Abate YH, Abbafati C, Abbastabar H, et al. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systema. Lancet. 2024;403(10440):2133–61.
dc.relation.referencesAbbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22.
dc.relation.referencesVollset SE, Ababneh HS, Abate YH, Abbafati C, Abbasgholizadeh R, Abbasian M, et al. Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403(10440):2204–56.
dc.relation.referencesBikbov B, Purcell CA, Levey AS, Smith M, Abdoli A, Abebe M, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709–33.
dc.relation.referencesLuxardo R, Kramer A, González-Bedat MC, Massy ZA, Jager KJ, Rosa-Diez G, et al. The epidemiology of renal replacement therapy in two different parts of the world: The Latin American Dialysis and Transplant Registry versus the European Renal Association-European Dialysis and Transplant Association Registry. Rev Panam Salud Publica/Pan Am J Public Heal. 2018;42:1–11.
dc.relation.referencesMerchán LA. Situación de la Enfermedad Renal Crónica En Colombia. Fondo Colomb enfermedades alto costo [Internet]. 2013;2:56–89. Available from: https://www.cuentadealtocosto.org/site/images/Publicaciones/2018/Libro_Situacion_ERC_en_Colombia_2017.pdf
dc.relation.referencesFondo Colombiano de Enfermedades de Alto Costo. Informe especial: Magnitud, tendencia y acceso a los servicios de salud en las personas con enfermedad renal crónica en el marco del aseguramiento en Colombia. 2022;1–16.
dc.relation.referencesUnited States Renal Data System. USRDS Annual Data Report. Vol. 2, American Journal of Kidney Diseases. 2021.
dc.relation.referencesInstitute for Health Metrics and Evaluation. GBD 2021 Cause and Risk Summary: Chronic kidney disease - Level 3 cause [Internet]. Vol. 000. 2024. Available from: https://www.healthdata.org/research-analysis/diseases-injuries-risks/factsheets/2021-chronic-kidney-disease-level-3-disease
dc.relation.referencesNaghavi M, Ong KL, Aali A, Ababneh HS, Abate YH, Abbafati C, et al. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403(10440):2100–32.
dc.relation.referencesLee CC, Hsu CC, Lin MH, Chen KH, Wu IW. Hospitalization in patients with dialysis in Taiwan: A nationwide population-based observational study. J Formos Med Assoc [Internet]. 2022;121:S39–46. Available from: https://doi.org/10.1016/j.jfma.2021.12.020
dc.relation.referencesAriza JG, Walton SM, Suarez AM, Sanabria M, Vesga JI. An initial evaluation of expanded hemodialysis on hospitalizations, drug utilization, costs, and patient utility in Colombia. Ther Apher Dial. 2021;25(5):621–7.
dc.relation.referencesSanabria M, Devia M, Hernández G, Astudillo K, Trillos C, Uribe M, et al. Outcomes of a peritoneal dialysis program in remote communities within Colombia. Perit Dial Int. 2015;35(1):52–61.
dc.relation.referencesAbbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1223–49.
dc.relation.referencesEpifânio APS, Balbino KP, Ribeiro SMR, Franceschini SCC, Hermsdorff HHM. Clinical-nutritional, inflammatory and oxidative stress predictors in hemodialysis mortality: a review. Nutr hosp [Internet]. 2018;35(2):461–8. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112018000200461&lng=es&nrm=iso&tlng=en
dc.relation.referencesEubank BH, Mohtadi NG, Lafave MR, Wiley JP, Bois AJ, Boorman RS, et al. Using the modified Delphi method to establish clinical consensus for the diagnosis and treatment of patients with rotator cuff pathology. BMC Med Res Methodol [Internet]. 2016;16(1):1–15. Available from: http://dx.doi.org/10.1186/s12874-016-0165-8
dc.relation.referencesDalkey N, Helmer O. Memorandum RM-727/1-ABRIDGED: An experimental application of the Delphi method to a use of experts. Santa Mónica: The RAND corporation; 1962. p. 1–27.
dc.relation.referencesNiederberger M, Spranger J. Delphi Technique in Health Sciences: A Map. Front Public Heal. 2020;8(September):1–10.
dc.relation.referencesLevin A, Agarwal R, Herrington WG, Heerspink HL, Mann JFE, Shahinfar S, et al. International consensus definitions of clinical trial outcomes for kidney failure: 2020. Kidney Int. 2020;98(4):849–59.
dc.relation.referencesvan Smeden M, Reitsma JB, Riley RD, Collins GS, Moons KG. Clinical prediction models: diagnosis versus prognosis. J Clin Epidemiol [Internet]. 2021;132:142–5. Available from: http://dx.doi.org/10.1016/j.jclinepi.2021.01.009
dc.relation.referencesHemingway H, Croft P, Perel P, Hayden JA, Abrams K, Timmis A, et al. Prognosis research strategy (PROGRESS) 1: A framework for researching clinical outcomes. BMJ. 2013;346(February):1–11.
dc.relation.referencesSteyerberg EW. Statistics for Biology and Health: Clinical Prediction Models, A Practical Approach to Development, Validation and Updating. Second edi. Gail M, Samet JM, editors. Cham: Springer; 2019. 1–555 p.
dc.relation.referencesRiley RD, Ensor J, Snell KIE, Harrell FE, Martin GP, Reitsma JB, et al. Calculating the sample size required for developing a clinical prediction model. BMJ [Internet]. 2020;368(March):1–12. Available from: http://dx.doi.org/doi:10.1136/bmj.m441
dc.relation.referencesRiley RD, Collins GS, Ensor J, Archer L, Booth S, Mozumder SI, et al. Minimum sample size calculations for external validation of a clinical prediction model with a time-to-event outcome: supplemental material. Stat Med. 2022;41(7):s1–4.
dc.relation.referencesRiley RD, J E, KIE S. Calculating the sample size required for developing a clinical prediction model: Supplementary Material. Bmj. 2020;(441):1–6.
dc.relation.referencesGreene T, Beck GJ, Gassman JJ, Gotch FA, Kusek JW, Levey AS, et al. Design and statistical issues of The Hemodialysis (HEMO) Study. Control Clin Trials. 2000;21(5):502–25.
dc.relation.referencesSu CT, Yabes J, Pike F, Weiner DE, Beddhu S, Burrowes JD, et al. Changes in anthropometry and mortality in maintenance hemodialysis patients in the HEMO study. Am J Kidney Dis [Internet]. 2013;62(6):1141–50. Available from: http://dx.doi.org/10.1053/j.ajkd.2013.05.015
dc.relation.referencesKleinbaum DG, Klein M. Survival Analysis: A self-Learning Text. Statistics for Biology and Health. Third edit. Gail M, Krickeberg K, Samet J, Tsiatis A, Wong W, editors. New York: Springer International Publishing; 2012.
dc.relation.referencesSteyerberg EW, Vergouwe Y. Towards better clinical prediction models: Seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925–31.
dc.relation.referencesSteyenberg E, Moons KGM, Van Der Windt DA, Hayden JA, Perel P, Schroter S, et al. Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research. PLoS Med. 2013;10(2):1–9.
dc.relation.referencesVickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. 2006;26(6):565–74.
dc.relation.referencesVickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ. 2016;352:3–7.
dc.relation.referencesRepublica de Colombia. Ministerio de Salud y Protección Social. RESOLUCIÓN NÚMERO 8430 DE 1993: Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Ministerio de Salud Colombia; 1993 p. 1–19.
dc.relation.referencesWorld Medical Asociation (AMM). Declaración de Helsinki de la AMM - Principios éticos para las investigaciones médicas en seres humanos. World Med Assoc Inc [Internet]. 2013;1–8. Available from: http://www.wma.net/es/30publications/10policies/b3/
dc.relation.referencesDalkey NC. Memorandum RM-5888-PR The delphi method: An experimental study of group opinion. Santa Mónica: The RAND corporation; 1969.
dc.relation.referencesDalkey N, Helmer O. An experimental apllication of Delphi method to use of experts [Internet]. Management Science. 1963. p. 458–67. Available from: https://www.rand.org/content/dam/rand/pubs/research_memoranda/2009/RM727.1.pdf
dc.relation.referencesSharifi M, Mousavi-Roknabadi RS, Ebrahimi V, Sadegh R, Dehbozorgi A, Hosseini-Marvast SR, et al. Prognostic Features for Overall Survival in Male Diabetic Patients Undergoing Hemodialysis Using Elastic Net Penalized Cox Regression; A Machine Learning Approach. Arch Iran Med [Internet]. 2025;28(1):9–17. Available from: https://doi.org/10.34172/aim.27746
dc.relation.referencesSantos J, Oliveira P, Malheiro J, Campos A, Correia S, Cabrita A, et al. Predicting 6-month mortality in incident elderly dialysis patients: A simple prognostic score. Kidney Blood Press Res. 2020;45(1):38–50.
dc.relation.referencesTran NTD, Balezeaux M, Granal M, Fouque D, Ducher M, Fauvel JP. Prediction of all-cause mortality for chronic kidney disease patients using four models of machine learning. Nephrol Dial Transplant. 2023;38(7):1691–9.
dc.relation.referencesFu Y, Sun H, Guo Z, Xu L, Yang X, Wang L, et al. A risk score model to predict in-hospital mortality of patients with end-stage renal disease and acute myocardial infarction. Intern Emerg Med. 2021;16(4):905–12.
dc.relation.referencesChen J, Li Y, Liu P, Wu H, Su G. A nomogram to predict the in-hospital mortality of patients with congestive heart failure and chronic kidney disease. ESC Hear Fail. 2022;9(5):3167–76.
dc.relation.referencesOkubo A, Doi T, Morii K, Nishizawa Y, Yamashita K, Shigemoto K, et al. Predicting 3-year all-cause mortality in patients undergoing hemodialysis using machine learning. J Nephrol [Internet]. 2025;38(3):1017–24. Available from: https://doi.org/10.1007/s40620-025-02236-2
dc.relation.referencesWang Y, Zhou Y, Huang C, Wang Y, Lou L, Zhao L, et al. Development of a prediction model for in-hospital mortality in immunocompromised chronic kidney diseases patients with severe infection. BMC Nephrol. 2025;26(1).
dc.relation.referencesChristodoulou E, van Smeden M, Edlinger M, Timmerman D, Wanitschek M, Steyerberg EW, et al. Adaptive sample size determination for the development of clinical prediction models. Diagnostic Progn Res. 2021;5(1):1–24.
dc.relation.referencesSnell KIE, Archer L, Ensor J, Bonnett LJ, Debray TPA, Phillips B, et al. External validation of clinical prediction models: simulation-based sample size calculations were more reliable than rules-of-thumb. J Clin Epidemiol [Internet]. 2021;135:79–89. Available from: https://doi.org/10.1016/j.jclinepi.2021.02.011
dc.relation.referencesTran DNT, Ducher M, Fouque D, Fauvel JP. External validation of a 2-year all-cause mortality prediction tool developed using machine learning in patients with stage 4–5 chronic kidney disease. J Nephrol [Internet]. 2024;37(8):2267–74. Available from: https://doi.org/10.1007/s40620-024-02011-9
dc.relation.referencesFan X, Wang L. Comparability of jackknife and bootstrap results: An investigation for a case of canonical correlation analysis. J Exp Educ. 1996;64(2):173–89.
dc.relation.referencesVan Calster B, McLernon DJ, Van Smeden M, Wynants L, Steyerberg EW, Bossuyt P, et al. Calibration: The Achilles heel of predictive analytics. BMC Med. 2019;17(1):1–7.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva públicaspa
dc.subject.decsÍndice de Severidad de la Enfermedadspa
dc.subject.decsSeverity of Illness Indexeng
dc.subject.decsMortalidad Hospitalariaspa
dc.subject.decsHospital Mortalityeng
dc.subject.decsInsuficiencia Renal Crónicaspa
dc.subject.decsRenal Insufficiency, Chroniceng
dc.subject.proposalEnfermedad renal crónica avanzadaspa
dc.subject.proposalPronósticospa
dc.subject.proposalMortalidadspa
dc.subject.proposalHospitalizaciónspa
dc.subject.proposalValidaciónspa
dc.subject.proposalAdvanced chronic kidney diseaseeng
dc.subject.proposalPrognosiseng
dc.subject.proposalMortalityeng
dc.subject.proposalHospitalizationeng
dc.subject.proposalValidationeng
dc.titleModelos pronósticos de hospitalización y mortalidad de pacientes adultos con enfermedad renal crónica en terapia de reemplazo renal en Colombiaspa
dc.title.translatedPrognostic models for mortality and hospitalization in adults with chronic kidney disease on renal replacement therapy in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121906729.2025.pdf
Tamaño:
3.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Epidemiología Clínica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: