Estudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularis

dc.contributor.advisorOspina Giraldo, Luis Fernando
dc.contributor.advisorMena Barreto Silva, Fátima Regina
dc.contributor.authorRey Padilla, Diana Patricia
dc.contributor.cvlacDiana Patricia Rey Padilla [0001395740]spa
dc.contributor.googlescholarDiana Patricia Rey Padilla [3HljxewAAAAJ&hl=es]spa
dc.contributor.orcidDiana Patricia Rey [000000034517631X]spa
dc.contributor.researchgateDiana Rey [Diana-Rey]spa
dc.contributor.researchgroupPrincipios Bioactivos en Plantas Medicinalesspa
dc.contributor.researchgroupGrupo de Investigación en Tecnología de Productos Naturales Tecpronaspa
dc.date.accessioned2023-08-08T14:26:24Z
dc.date.available2023-08-08T14:26:24Z
dc.date.issued2023-10-31
dc.descriptionilustraciones, diagramasspa
dc.description.abstractIntroducción: La diabetes mellitus tipo 2 es una enfermedad de alta prevalencia e incidencia a nivel mundial, se estima que la población afectada por esta enfermedad siga en aumento en el transcurso de los próximos años, esta patología se caracteriza por una hiperglicemia crónica que si no es controlada conlleva a complicaciones cardiovasculares, neuropáticas, neurológicas, entre otras. Aunque actualmente se cuenta con varios tratamientos para el control de la glicemia y prevenir la aparición de las complicaciones asociadas a la misma, se sigue en búsqueda de nuevos tratamientos. Gran parte de la población mundial acude a la utilización de plantas medicinales para el tratamiento de sus enfermedades y aunque se ha reportado en la literatura el efecto antidiabético de varias plantas medicinales, es necesario profundizar en estudios que permitan establecer su actividad terapéutica, una de las especies en las que se ha evidenciado esta actividad, es la Passiflora ligularis, sin embargo se desconoce los metabolitos asociados a este efecto y su mecanismo de acción por ello se plantearon los siguientes objetivos. Los objetivos planteados fueron: evaluar el efecto antidiabético de un extracto de hojas de Passiflora ligularis (P. ligularis), identificar los metabolitos responsables de la actividad antidiabética de dicho extracto y la dilucidar un posible mecanismo de acción de los metabolitos responsables de dicha actividad antidiabética. (Texto tomado de la fuente)spa
dc.description.abstractIntroduction: Type 2 diabetes mellitus is a disease of high prevalence and incidence worldwide, it is estimated that the population affected by this disease will continue to increase in the coming years, this pathology is characterized by chronic hyperglycemia that if not controlled leads to cardiovascular, neuropathic, neurological complications, among others. Although there are currently several treatments to control glycemia and prevent the appearance of complications associated with it, the search for new treatments continues. A large part of the world population resorts to the use of medicinal plants for the treatment of their diseases and although the antidiabetic effect of various medicinal plants has been reported in the literature, it is necessary to deepen studies that allow establishing their therapeutic activity, one of the species in which this activity has been evidenced, is Passiflora ligularis, however the metabolites associated with this effect and its mechanism of action are unknown, therefore the following objectives were set. The proposed objectives were: evaluate the antidiabetic effect of an extract of Passiflora ligularis (P. ligularis) leaves, to identify the metabolites responsible for the antidiabetic activity of said extract and to elucidate a possible mechanism of action of the metabolites responsible for said antidiabetic activity.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Farmacéuticasspa
dc.description.methodsse realizó la preparación tanto del extracto acuoso como de la fracción etanólica de hojas de Passiflora ligularis, luego, se cuantificaron los flavonoides presentes en tanto en estos dos, mediante cromatografía liquida de alta resolución (CLAR), en un sistema LC Agilent 1260 Infinity acoplado a un detector de matriz de diodos (DAD). Posteriormente se evaluó la actividad antidiabética en ratones con diabetes inducida por dieta rica en grasa y dosis baja de estreptozotocina, se determinó la glicemia a los 7, 14 y 21 días de tratamiento y luego de los 21 días se realizó un test de tolerancia oral a la glucosa (TTOG), la determinación de insulina sérica y el sacrificio de los animales. Posterior al sacrificio se realizó un análisis histopatológico en páncreas, hígado y riñón y se determinaron los parámetros de estrés oxidativo y perfil lipídico de los animales diabéticos tratados y no tratados. Posteriormente en ratas normoglicémicas se efectuó un TTOG para determinar el efecto antihiperglicemiante y el contenido de glucógeno hepático y muscular de diferentes dosis de la fracción etanólica, por último, se evaluó el efecto y el posible mecanismo de acción de la isoquercetina y astragalina en la captación de glucosa en músculo sóleo aislado y en el aumento del calcio intracelular en islotes β-pancreáticos aislados para aumentar la secreción de insulinaspa
dc.description.researchareaFarmacología experimentalspa
dc.format.extentxxi, 144 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84473
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticasspa
dc.relation.referencesAbdelhameed, R. F. A., Ibrahim, A. K., Elfaky, M. A., Habib, E. S., Mahamed, M. I., Mehanna, E. T., Darwish, K. M., Khodeer, D. M., Ahmed, S. A., & Elhady, S. S. (2021). Antioxidant and anti-inflammatory activity of Cynanchum acutum L. isolated flavonoids using experimentally induced type 2 diabetes mellitus: biological and in silico investigation for NF-κB pathway/miR-146a expression modulation. Antioxidants, 10(11), 1713. https://doi.org/10.3390/antiox10111713spa
dc.relation.referencesAguilar-Bryan, L., Clement, J. P., Gonzalez, G., Kunjilwar, K., Babenko, A., & Bryan, J. (1998). Toward understanding the assembly and structure of K ATP channels. Physiological Reviews, 78(1), 227–245. https://doi.org/10.1152/physrev.1998.78.1.227spa
dc.relation.referencesAgyemang, K., Han, L., Liu, E., Zhang, Y., Wang, T., & Gao, X. (2013). Anti-diabetic research: pharmacological effects of its phytochemical constituents. Evidence-Based Complementary and Alternative Medicine, 654643. https://doi.org/10.1155/2013/654643spa
dc.relation.referencesAlam, Md. M., Meerza, D., & Naseem, I. (2014). Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sciences, 109(1), 8–14. https://doi.org/10.1016/j.lfs.2014.06.005spa
dc.relation.referencesAl-Awar, A., Kupai, K., Veszelka, M., Szucs, G., Attieh, Z., Murlasits, Z., Török, S., Pósa, A., & Varga, C. (2016). Experimental diabetes mellitus in different animal models. Journal of Diabetes Research, 2016. https://doi.org/10.1155/2016/9051426spa
dc.relation.referencesAlgariri, K., Meng, K. Y., Atangwho, I. J., Asmawi, M. Z., Sadikun, A., Murugaiyah, V., & Ismail, N. (2013). Hypoglycemic and anti-hyperglycemic study of Gynura procumbens leaf extracts. Asian Pacific Journal of Tropical Biomedicine, 3(5), 358–366. https://doi.org/10.1016/S2221-1691(13)60077-5spa
dc.relation.referencesAlgoblan, A., Alalfi, M., & Khan, M. (2014). Mechanism linking diabetes mellitus and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 587. https://doi.org/10.2147/DMSO.S67400spa
dc.relation.referencesAL-Ishaq, Abotaleb, Kubatka, Kajo, & Büsselberg. (2019). Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430. https://doi.org/10.3390/biom9090430spa
dc.relation.referencesAlkhalidy, H., Moore, W., Wang, A., Luo, J., McMillan, R. P., Wang, Y., Zhen, W., Hulver, M. W., & Liu, D. (2018). Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. The Journal of Nutritional Biochemistry, 58, 90–101. https://doi.org/10.1016/j.jnutbio.2018.04.014spa
dc.relation.referencesAltunkaynak, B. Z., & Ozbek, E. (2009). Overweight and structural alterations of the liver in female rats fed a high-fat diet: a stereological and histological study. The Turkish Journal of Gastroenterology : The Official Journal of Turkish Society of Gastroenterology, 20(2), 93–103.spa
dc.relation.referencesAmerican Diabetes Association. (2022). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022. Diabetes Care, 45(Supplement_1), S17–S38. https://doi.org/10.2337/dc22-S002spa
dc.relation.referencesAmerican Diabetes Association (ADA). (2017). Lifestyle management. Diabetes Care, 40(Supplement_1), S33–S43. https://doi.org/10.2337/dc17-S007spa
dc.relation.referencesAmerican Diabetes Association (ADA). (2021a). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care, 44(Supplement 1), S15–S33. https://doi.org/10.2337/dc21-S002spa
dc.relation.referencesAmerican Diabetes Association (ADA). (2021b). Introduction: standards of medical care in diabetes—2021. Diabetes Care, 44(Supplement 1), S1–S2. https://doi.org/10.2337/dc21-Sintspa
dc.relation.referencesAmir Siddiqui, M., Badruddeen, Akhtar, J., Uddin, S., Chandrashekharan, S. M., Ahmad, M., Khan, M. I., & Khalid, M. (2022). Chrysin modulates protein kinase IKKε/TBK1, insulin sensitivity and hepatic fatty infiltration in diet‐induced obese mice. Drug Development Research, 83(1), 194–207. https://doi.org/10.1002/ddr.21859spa
dc.relation.referencesAndrade-Cetto, A., & Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology, 99(3), 325–348. https://doi.org/10.1016/j.jep.2005.04.019spa
dc.relation.referencesAndrikopoulos, S., Blair, A. R., Deluca, N., Fam, B. C., & Proietto, J. (2008). Evaluating the glucose tolerance test in mice. American Journal of Physiology-Endocrinology and Metabolism, 295(6), E1323–E1332. https://doi.org/10.1152/ajpendo.90617.2008spa
dc.relation.referencesAntunes, L. C., Elkfury, J. L., Jornada, M. N., Foletto, K. C., & Bertoluci, M. C. (2016). Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats. Archives of Endocrinology and Metabolism, 60(2), 138–142. https://doi.org/10.1590/2359-3997000000169spa
dc.relation.referencesAnurag, P., & Anuradha, C. V. (2002). Metformin improves lipid metabolism and attenuates lipid peroxidation in high fructose-fed rats. Diabetes, Obesity and Metabolism, 4(1), 36–42. https://doi.org/10.1046/j.1463-1326.2002.00178.xspa
dc.relation.referencesAnusooriya, P., Malarvizhi, D., Gopalakrishnan, V. K., & Devaki, K. (2014). antioxidant and antidiabetic effect of aqueous fruit extract of Passiflora ligularis Juss. on streptozotocin induced diabetic rats. International Scholarly Research Notices, 2014, 1–10. https://doi.org/10.1155/2014/130342spa
dc.relation.referencesAragón Novoa, D. M., Ospina Giraldo, L. F., Ramos Rodríguez, F. A., Castellanos Hernández, L., Costa Modesti, G., & Barreto Silva, F. R. M. (2021). Passiflora ligularis Juss. (granadilla): farmacológicos de una estudios químicos y planta con potencial terapéutico (D. M. Aragón Novoa, Ed.; First). Universidad Nacional de Colombia - Sede Bogotá.spa
dc.relation.referencesAraújo Galdino, O., de Souza Gomes, I., Ferreira de Almeida Júnior, R., Conceição Ferreira de Carvalho, M. I., Abreu, B. J., Abbott Galvão Ururahy, M., Cabral, B., Zucolotto Langassner, S. M., Costa de Souza, K. S., & Augusto de Rezende, A. (2022). The nephroprotective action of Passiflora edulis in streptozotocin-induced diabetes. Scientific Reports, 12(1), 17546. https://doi.org/10.1038/s41598-022-21826-9spa
dc.relation.referencesArkhammar, P., Juntti-Berggren, L., Larsson, O., Welsh, M., Nanberg, E., Sjoholm, A., Kohler, M., & Berggren, P. O. (1994). Protein kinase C modulates the insulin secretory process by maintaining a proper function of the β-cell voltage-activated Ca2+channels. Journal of Biological Chemistry, 269(4), 2743–2749.spa
dc.relation.referencesAschner, P., Mauricio Muñoz, O., Giron, D., Garcia, O. M., Fernandez Ávila, D. G., Casas, L. A., Bohórquez, L. F., Arángo T., C. M., Carvajal, L., Ramírez, D. A., Sarmiento, J. G., Colon, C. A., Correa G., N. F., Alarcón R., P., & Bústamante S., A. A. (2016). Clinical practice guideline for the prevention, early detection, diagnosis, management and follow up of type 2 diabetes mellitus in adults. Colombia Medica, 109–130. https://doi.org/10.25100/cm.v47i2.2207spa
dc.relation.referencesAshcroft, F. M., Proks, P., Smith, P. A., Ämmälä, C., Bokvist, K., & Rorsman, P. (1994). Stimulus-secretion coupling in pancreatic β cells. Journal of Cellular Biochemistry, 55(S1994A), 54–65. https://doi.org/10.1002/jcb.240550007spa
dc.relation.referencesAshcroft, F. M., & Rorsman, P. (2013). K(ATP) channels and islet hormone secretion: new insights and controversies. Nature Reviews Endocrinology, 9(11), 660–669. https://doi.org/10.1038/nrendo.2013.166spa
dc.relation.referencesBailey, C. J. (2017). Metformin: historical overview. Diabetologia, 60(9), 1566–1576. https://doi.org/10.1007/s00125-017-4318-zspa
dc.relation.referencesBalibrea, J., & Arias-Díaz, J. (2007). Modelos animales de intolerancia a la glucosa y diabetes tipo 2. Diabetes, 22(2), 160–168.spa
dc.relation.referencesBarber, E., Houghton, M. J., & Williamson, G. (2021). Flavonoids as human intestinal α-glucosidase inhibitors. Foods, 10(8), 1939. https://doi.org/10.3390/foods10081939spa
dc.relation.referencesBardy, G., Virsolvy, A., Quignard, J. F., Ravier, M. A., Bertrand, G., Dalle, S., Cros, G., Magous, R., Richard, S., & Oiry, C. (2013). Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells. British Journal of Pharmacology, 169(5), 1102–1113. https://doi.org/10.1111/bph.12194spa
dc.relation.referencesBarge, S., Deka, B., Kashyap, B., Bharadwaj, S., Kandimalla, R., Ghosh, A., Dutta, P. P., Samanta, S. K., Manna, P., Borah, J. C., & Talukdar, N. C. (2021). Astragalin mediates the pharmacological effects of Lysimachia candida Lindl on adipogenesis via downregulating PPARG and FKBP51 signaling cascade. Phytotherapy Research, 35(12), 6990–7003. https://doi.org/10.1002/ptr.7320spa
dc.relation.referencesBarnes, A. S. (2011). The epidemic of obesity and diabetes: trends and treatments. Texas Heart Institute Journal, 38(2), 142–144.spa
dc.relation.referencesBatra, S., & Sjögren, C. (1983). Effect of estrogen treatment of calcium uptake by the rat uterine smooth muscle. Life Sciences, 32(4), 315–319.spa
dc.relation.referencesBelfiore, A., Malaguarnera, R., Vella, V., Lawrence, M. C., Sciacca, L., Frasca, F., Morrione, A., & Vigneri, R. (2017). Insulin receptor isoforms in physiology and disease: an updated view. Endocrine Reviews, 38(5), 379–431. https://doi.org/10.1210/er.2017-00073spa
dc.relation.referencesBenes, C., Poitout, V., Marie, J.-C., Matin-Perez, J., Roisin, M.-P., & Fagard, R. (1999). Mode of regulation of the extracellular signal-regulated kinases in the pancreatic β-cell line MIN6 and their implication in the regulation of insulin gene transcription. Biochemical Journal, 340(1), 219–225. https://doi.org/10.1042/bj3400219spa
dc.relation.referencesBensaude, O. (2011). Inhibiting eukaryotic transcription. Which compound to choose? How to evaluate its activity? Transcription, 2(3), 103–108. https://doi.org/10.4161/trns.2.3.16172spa
dc.relation.referencesBerger, C., & Zdzieblo, D. (2020). Glucose transporters in pancreatic islets. Pflügers Archiv - European Journal of Physiology, 472(9), 1249–1272. https://doi.org/10.1007/s00424-020-02383-spa
dc.relation.referencesBerridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews Molecular Cell Biology, 4(7), 517–529. https://doi.org/10.1038/nrm1155spa
dc.relation.referencesBlackman, S. M., Cooke, D. W., & Hopkins, J. (2013). Diabetes. 1, 649–658. https://doi.org/10.1016/B978-0-12-378630-2.00035-9spa
dc.relation.referencesBonfanti, D. H., Alcazar, L. P., Arakaki, P. A., Martins, L. T., Agustini, B. C., de Moraes Rego, F. G., & Frigeri, H. R. (2015). ATP-dependent potassium channels and type 2 diabetes mellitus. Clinical Biochemistry, 48(7–8), 476–482. https://doi.org/10.1016/j.clinbiochem.2014.12.026spa
dc.relation.referencesBösenberg, L. H., & van Zyl, D. G. (2008). The mechanism of action of oral antidiabetic drugs: A review of recent literature. Journal of Endocrinology, Metabolism and Diabetes of South Africa, 13(3), 80–88. https://doi.org/10.1080/22201009.2008.10872177spa
dc.relation.referencesBrahmachari, G. (2011). Bio-flavonoids with promising anti- diabetic potentials: A critical survey. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry - Research Signpost, 661(2), 187–212.spa
dc.relation.referencesBrereton, M. F., Iberl, M., Shimomura, K., Zhang, Q., Adriaenssens, A. E., Proks, P., Spiliotis, I. I., Dace, W., Mattis, K. K., Ramracheya, R., Gribble, F. M., Reimann, F., Clark, A., Rorsman, P., & Ashcroft, F. M. (2014). Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nature Communications, 5(1), 4639. https://doi.org/10.1038/ncomms5639spa
dc.relation.referencesCalisti, L., & Tognetti, S. (2005). Measure of glycosylated hemoglobin. Acta Bio-Medica : Atenei Parmensis, 76 Suppl 3, 59–62.spa
dc.relation.referencesCarvajal de Pabón, L. M., Turbay, S., Rojano, B., Álvarez, L. M., Restrepo, S. L., Álvarez, J. M., Bonilla, K. C., Clara Ochoa, O., & Sánchez, N. (2011). Algunas especies de Passiflora y su capacidad antioxidante. Revista Cubana de Plantas Medicinales, 16(4), 354–363.spa
dc.relation.referencesCastro, A. J. G., Frederico, M. J. S., Cazarolli, L. H., Mendes, C. P., Bretanha, L. C., Schmidt, É. C., Bouzon, Z. L., de Medeiros Pinto, V. A., da Fonte Ramos, C., Pizzolatti, M. G., & Silva, F. R. M. B. (2015). The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(1), 51–61. https://doi.org/10.1016/j.bbagen.2014.10.001spa
dc.relation.referencesCastro Gomes, A. J., Cazarolli, L. H., Bretanha, L. C., Sulis, P. M., Rey Padilla, D. P., Aragón Novoa, D. M., Dambrós, B. F., Pizzolatti, M. G., & Mena Barreto Silva, F. R. (2018). The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels. Archives of Biochemistry and Biophysics, 648(April), 20–26. https://doi.org/10.1016/j.abb.2018.04.015spa
dc.relation.referencesCatterall, W. A. (2011). Voltage-Gated Calcium Channels. Cold Spring Harbor Perspectives in Biology, 3(8), a003947–a003947. https://doi.org/10.1101/cshperspect.a003947spa
dc.relation.referencesCazarolli, L. H., Folador, P., Moresco, H. H., Brighente, I. M. C., Pizzolatti, M. G., & Silva, F. R. M. B. (2009). Mechanism of action of the stimulatory effect of apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside on 14C-glucose uptake. Chemico-Biological Interactions, 179(2–3), 407–412. https://doi.org/10.1016/j.cbi.2008.11.012spa
dc.relation.referencesCazarolli, L. H., Folador, P., Pizzolatti, M. G., & Mena Barreto Silva, F. R. (2009a). Signaling pathways of kaempferol-3-neohesperidoside in glycogen synthesis in rat soleus muscle. Biochimie, 91(7), 843–849. https://doi.org/10.1016/j.biochi.2009.04.004spa
dc.relation.referencesCazarolli, L. H., Kappel, V. D., Pereira, D. F., Moresco, H. H., Brighente, I. M. C., Pizzolatti, M. G., & Silva, F. R. M. B. (2012). Anti-hyperglycemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola. Fitoterapia, 83(7), 1176–1183. https://doi.org/10.1016/j.fitote.2012.07.003spa
dc.relation.referencesCazarolli, L. H., Pereira, D. F., Kappel, V. D., Folador, P., Figueiredo, M. D. S. R. B., Pizzolatti, M. G., & Silva, F. R. M. B. (2013). Insulin signaling: A potential signaling pathway for the stimulatory effect of kaempferitrin on glucose uptake in skeletal muscle. European Journal of Pharmacology, 712(1–3), 1–7. https://doi.org/10.1016/j.ejphar.2013.02.029spa
dc.relation.referencesCazarolli, L. H., Zanatta, L., Jorge, A. P., de Sousa, E., Horst, H., Woehl, V. M., Pizzolatti, M. G., Szpoganicz, B., & Silva, F. R. M. B. (2006). Follow-up studies on glycosylated flavonoids and their complexes with vanadium: Their anti-hyperglycemic potential role in diabetes. Chemico-Biological Interactions, 163(3), 177–191. https://doi.org/10.1016/j.cbi.2006.07.010spa
dc.relation.referencesCazarolli, L., Zanatta, L., Alberton, E., Reis Bonorino Figueiredo, M., Folador, P., Damazio, R., Pizzolatti, M., & Mena Barreto Silva, F. (2008). Flavonoids: Cellular and molecular mechanism of action in glucose homeostasis. Mini-Reviews in Medicinal Chemistry, 8(10), 1032–1038. https://doi.org/10.2174/138955708785740580spa
dc.relation.referencesChang, Y.-C., & Chuang, L.-M. (2010). The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. American Journal of Translational Research, 2(3), 316–331.spa
dc.relation.referencesChen, S., Chen, J., Li, S., Guo, F., Li, A., Wu, H., Chen, J., Pan, Q., Liao, S., Liu, H., & Pan, Q. (2021). High-fat diet-induced renal proximal tubular inflammatory injury: emerging risk factor of chronic kidney disease. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.786599spa
dc.relation.referencesChippy, J., Lincy, J., & Mathew, G. (2016). Evaluation of anti-diabetic activity of leaves of Passiflora ligularis on alloxan induced diabetes mellitus in albino rats. International Journal of Pharmacy and Pharmaceutical Research, 6(4), 518–522.spa
dc.relation.referencesChoi, B. H., & Hahn, S. J. (2010). Kv1.3: a potential pharmacological target for diabetes. Acta Pharmacologica Sinica, 31(9), 1031–1035. https://doi.org/10.1038/aps.2010.133spa
dc.relation.referencesChoi, J., Kang, H. J., Kim, S. Z., Kwon, T. O., Jeong, S. Il, & Jang, S. Il. (2013). Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Archives of Pharmacal Research, 36(7), 912–917. https://doi.org/10.1007/s12272-013-0090-xspa
dc.relation.referencesChoi, S. B., Park, C. H., Choi, M. K., Jun, D. W., & Park, S. (2004). Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Bioscience, Biotechnology, and Biochemistry, 68(11), 2257–2264. https://doi.org/10.1271/bbb.68.2257spa
dc.relation.referencesComan, C., Rugina, O. D., & Socaciu, C. (2012). Plants and natural compounds with antidiabetic action. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 314. https://doi.org/10.15835/nbha4017205spa
dc.relation.referencesCosta, G. M., Gazola, A. C., Zucolotto, S. M., Castellanos, L., Ramos, F. A., Reginatto, F. H., & Schenkel, E. P. (2016). Chemical profiles of traditional preparations of four south american Passiflora species by chromatographic and capillary electrophoretic techniques. Revista Brasileira de Farmacognosia, 26(4), 451–458. https://doi.org/10.1016/j.bjp.2016.02.005spa
dc.relation.referencesDa Silva Xavier, G. (2018). The cells of the islets of langerhans. Journal of Clinical Medicine, 7(3), 54. https://doi.org/10.3390/jcm7030054spa
dc.relation.referencesDabla, P. K. (2010). Renal function in diabetic nephropathy. World Journal of Diabetes, 1(2), 48. https://doi.org/10.4239/wjd.v1.i2.48spa
dc.relation.referencesDash, S., Pattnaik, G., Kar, B., Sahoo, N., & Bhattacharya, S. (2021). An approach towards method development to investigate the anti-diabetic activity on experimental animals. Current Trends in Biotechnology and Pharmacy, 15(3), 330–348. https://doi.org/10.5530/ctbp.2021.3.34spa
dc.relation.referencesde Almeida, V. L., Silva, C. G., & Campana, P. R. V. (2021). Flavonoids of Passiflora: isolation, structure elucidation, and biotechnological application (pp. 263–310). https://doi.org/10.1016/B978-0-323-91095-8.00004-0spa
dc.relation.referencesDejager, S., Penfornis, A., Blickle, J.-F., Fiquet, B., & Quere, S. (2014). How are patients with type 2 diabetes and renal disease monitored and managed? Insights from the observational OREDIA study. Vascular Health and Risk Management, 341. https://doi.org/10.2147/VHRM.S60312spa
dc.relation.referencesDhawan, K., Dhawan, S., & Sharma, A. (2004). Passiflora: a review update. Journal of Ethnopharmacology, 94(1), 1–23. https://doi.org/10.1016/j.jep.2004.02.023spa
dc.relation.referencesDi Magno, L., Di Pastena, F., Bordone, R., Coni, S., & Canettieri, G. (2022). The mechanism of action of biguanides: new answers to a complex question. Cancers, 14(13), 3220. https://doi.org/10.3390/cancers14133220spa
dc.relation.referencesDíaz Horta, O. (2003). El ion calcio: su regulación y función en la célula ß pancreática. Revista Cubana de Endocrinología, 14(3), 0–0. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-29532003000300008&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesDoi, K., Yamanouchi, J., Kume, E., & Yasoshima, A. (1997). Morphologic changes in hepatocyte nuclei of streptozotocin (SZ)-induced diabetic mice. Experimental and Toxicologic Pathology, 49(3–4), 295–299. https://doi.org/10.1016/S0940-2993(97)80041-3spa
dc.relation.referencesDowarah, J., & Singh, V. P. (2020). Anti-diabetic drugs recent approaches and advancements. Bioorganic & Medicinal Chemistry, 28(5), 115263. https://doi.org/10.1016/j.bmc.2019.115263spa
dc.relation.referencesDrozdowski, L., & Thomson, A. (2006). Intestinal sugar transport. World Journal of Gastroenterology, 12(11), 1657. https://doi.org/10.3748/wjg.v12.i11.1657spa
dc.relation.referencesDu, Y., & Wei, T. (2014). Inputs and outputs of insulin receptor. Protein & Cell, 5(3), 203–213. https://doi.org/10.1007/s13238-014-0030-7spa
dc.relation.referencesDuan, Y., Dai, H., An, Y., Cheng, L., Shi, L., Lv, Y., Li, H., Wang, C., He, C., Zhang, H., Huang, Y., Fu, W., Meng, Y., & Zhao, B. (2022). Mulberry leaf flavonoids inhibit liver inflammation in type 2 diabetes rats by regulating TLR4/MyD88/NF-κB signaling pathway. Evidence-Based Complementary and Alternative Medicine, 2022, 1–10. https://doi.org/10.1155/2022/3354062spa
dc.relation.referencesDuarte, I. de A. E., Milenkovic, D., Borges, T. K. dos S., Rosa, A. J. de M., Morand, C., Oliveira, L. de L. de, & Costa, A. M. (2020). Acute effects of the consumption of Passiflora setacea juice on metabolic risk factors and gene expression profile in humans. Nutrients, 12(4), 1104. https://doi.org/10.3390/nu12041104spa
dc.relation.referencesEcheverry, S. M., Rey, D., Valderrama, I. H., Araujo, B. V. de, & Aragón, D. M. (2021). Development of a self-emulsifying drug delivery system (SEDDS) to improve the hypoglycemic activity of Passiflora ligularis leaves extract. In Journal of Drug Delivery Science and Technology (Vol. 64). https://doi.org/10.1016/j.jddst.2021.102604spa
dc.relation.referencesEcheverry, S. M., Valderrama, I. H., Costa, G. M., Ospina-Giraldo, L. F., & Aragón, D. M. (2018). Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. Journal of Applied Pharmaceutical Science, 8(5), 10–18. https://doi.org/10.7324/JAPS.2018.8502spa
dc.relation.referencesEid, H. M., Martineau, L. C., Saleem, A., Muhammad, A., Vallerand, D., Benhaddou-Andaloussi, A., Nistor, L., Afshar, A., Arnason, J. T., & Haddad, P. S. (2010). Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Molecular Nutrition and Food Research, 54(7), 991–1003. https://doi.org/10.1002/mnfr.200900218spa
dc.relation.referencesEisenreich, A., & Leppert, U. (2017). Update on the protective renal effects of metformin in diabetic nephropathy. Current Medicinal Chemistry, 24(31). https://doi.org/10.2174/0929867324666170404143102spa
dc.relation.referencesFallah, Z., Tajbakhsh, M., Alikhani, M., Larijani, B., Faramarzi, M. A., Hamedifar, H., Mohammadi-Khanaposhtani, M., & Mahdavi, M. (2022). A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. Journal of Molecular Structure, 1255, 132469. https://doi.org/10.1016/j.molstruc.2022.132469spa
dc.relation.referencesFang, P., Yu, M., Min, W., Wan, D., Han, S., Shan, Y., Wang, R., Shi, M., Zhang, Z., & Bo, P. (2018). Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats. Life Sciences, 196, 156–161. https://doi.org/10.1016/j.lfs.2018.01.022spa
dc.relation.referencesFarzaei, F., Morovati, M. R., Farjadmand, F., & Farzaei, M. H. (2017). A mechanistic review on medicinal plants used for diabetes mellitus in traditional persian medicine. Journal of Evidence-Based Complementary and Alternative Medicine, 22(4), 944–955. https://doi.org/10.1177/2156587216686461spa
dc.relation.referencesFazakerley, D. J., Krycer, J. R., Kearney, A. L., Hocking, S. L., & James, D. E. (2019). Muscle and adipose tissue insulin resistance: malady without mechanism?. Journal of Lipid Research, 60(10), 1720–1732. https://doi.org/10.1194/jlr.R087510spa
dc.relation.referencesFloch, J.-P. le, Escuyer, P., Baudin, E., Baudon, D., & Perlemuter, L. (1990). Blood glucose area under the curve: methodological aspects. Diabetes Care, 13(2), 172–175. https://doi.org/10.2337/diacare.13.2.172spa
dc.relation.referencesFolador, P., Cazarolli, L. H., Gazola, A. C., Reginatto, F. H., Schenkel, E. P., & Silva, F. R. M. B. (2010). Potential insulin secretagogue effects of isovitexin and swertisin isolated from Wilbrandia ebracteata roots in non-diabetic rats. Fitoterapia, 81(8), 1180–1187. https://doi.org/10.1016/j.fitote.2010.07.022spa
dc.relation.referencesFrederico, M. J. S., Castro, A. J. G., Mascarello, A., Mendes, C. P., Kappel, V. D., Stumpf, T. R., Leal, P. C., Nunes, R. J., Yunes, R. A., & Silva, F. R. M. B. (2012). Acylhydrazones contribute to serum glucose homeostasis through dual physiological targets. Current Topics in Medicinal Chemistry, 12(19), 2049–2058. https://dx.doi.org/10.2174/1568026611212190003spa
dc.relation.referencesFrederico, M., Gomes Castro, A., Menegaz, D., de Bernardis Murat, C., Pires Mendes, C., Mascarello, A., Nunes, R., & Silva, F. R. M. B. (2017). Mechanism of Action of Novel Glibenclamide Derivatives on Potassium and Calcium Channels for Insulin Secretion. Current Drug Targets, 18(6), 641–650. https://doi.org/10.2174/1389450117666160615084752spa
dc.relation.referencesFrederico, M. J. S., Castro, A. J. G., Pinto, V. A. M., Ramos, C. D. F., Monteiro, F. B. F., Mascarello, A., Nunes, R. J., & Silva, F. R. M. B. (2018). Mechanism of action of camphoryl-benzene sulfonamide derivative on glucose uptake in adipose tissue. Journal of Cellular Biochemistry, 119(6), 4408–4419. https://doi.org/10.1002/jcb.26506spa
dc.relation.referencesFriedrichsen, M., Mortensen, B., Pehmøller, C., Birk, J. B., & Wojtaszewski, J. F. P. (2013). Exercise-induced AMPK activity in skeletal muscle: Role in glucose uptake and insulin sensitivity. In Molecular and Cellular Endocrinology (Vol. 366, Issue 2, pp. 204–214). Elsevier Ireland Ltd. https://doi.org/10.1016/j.mce.2012.06.013spa
dc.relation.referencesFröde, T. S., & Medeiros, Y. S. (2008). Animal models to test drugs with potential antidiabetic activity. Journal of Ethnopharmacology, 115(2), 173–183. https://doi.org/10.1016/j.jep.2007.10.038spa
dc.relation.referencesFurman, B. L. (2015). Streptozotocin-induced diabetic models in mice and rats. In Current Protocols in Pharmacology (pp. 5.47.1-5.47.20). John Wiley & Sons, Inc. https://doi.org/10.1002/0471141755.ph0547s70spa
dc.relation.referencesGeorge, P., & McCrimmon, R. (2012). Diazoxide. Practical Diabetes, 29(1), 36–37.spa
dc.relation.referencesGhasemi, A., Khalifi, S., & Jedi, S. (2014). Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiologica Hungarica, 101(4), 408–420. https://doi.org/10.1556/APhysiol.101.2014.4.2spa
dc.relation.referencesGiacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545spa
dc.relation.referencesGilbert, E. R., Fu, Z., & Liu, D. (2011). Development of a nongenetic mouse model of type 2 diabetes. Experimental Diabetes Research, 2011, 1–12. https://doi.org/10.1155/2011/416254spa
dc.relation.referencesGilon, P., Chae, H.-Y., Rutter, G. A., & Ravier, M. A. (2014). Calcium signaling in pancreatic β-cells in health and in type 2 diabetes. Cell Calcium, 56(5), 340–361. https://doi.org/10.1016/j.ceca.2014.09.001spa
dc.relation.referencesGinsberg, H. N., Zhang, Y.-L., & Hernandez-Ono, A. (2005). Regulation of plasma triglycerides in insulin resistance and diabetes. Archives of Medical Research, 36(3), 232–240. https://doi.org/10.1016/j.arcmed.2005.01.005spa
dc.relation.referencesGoldberg, I. J. (2001). Diabetic dyslipidemia: Causes and consequences. The Journal of Clinical Endocrinology & Metabolism, 86(3), 965–971. https://doi.org/10.1210/jcem.86.3.7304spa
dc.relation.referencesGomes Castro, A. J., Silva Frederico, M. J., Cazarolli, L. H., Bretanha, L. C., Tavares, L. de C., Buss, Z. da S., Dutra, M. F., Pacheco de Souza, A. Z., Pizzolatti, M. G., & Silva, F. R. M. B. (2014). Betulinic acid and 1,25(OH)2 vitamin D3 share intracellular signal transduction in glucose homeostasis in soleus muscle. The International Journal of Biochemistry & Cell Biology, 48, 18–27. https://doi.org/10.1016/j.biocel.2013.11.020spa
dc.relation.referencesGorovits, N., & Charron, M. J. (2003). What we know about facilitative glucose transporters. Biochemistry and Molecular Biology Education, 31(3), 163–172.spa
dc.relation.referencesGoss, M. J., Nunes, M. L. O., Machado, I. D., Merlin, L., Macedo, N. B., Silva, A. M. O., Bresolin, T. M. B., & Santin, J. R. (2018). Peel flour of Passiflora edulis Var. Flavicarpa supplementation prevents the insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats. Biomedicine & Pharmacotherapy, 102, 848–854. https://doi.org/10.1016/j.biopha.2018.03.137spa
dc.relation.referencesGulliford, M. C., Charlton, J., & Latinovic, R. (2006). Risk of diabetes associated with prescribed glucocorticoids in a large population. Diabetes Care, 29(12), 2728–2729. https://doi.org/10.2337/dc06-1499spa
dc.relation.referencesGuo, X., Wang, Y., Wang, K., Ji, B., & Zhou, F. (2018). Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. Journal of Zhejiang University-SCIENCE B, 19(7), 559–569. https://doi.org/10.1631/jzus.B1700254spa
dc.relation.referencesGupta, J., Gupta, A., & Kumar, A. (2018). Role of dietary flavonoids having antidiabetic properties and their protective mechanism. IJCRCPS, 5(1), 13–21. https://doi.org/10.22192/ijcrcps.2018.05.01.004spa
dc.relation.referencesGupta, R. K., Kumar, D., Chaudhary, A. K., Maithani, M., & Singh, R. (2012). Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. Journal of Ethnopharmacology, 139(3), 801–806. https://doi.org/10.1016/j.jep.2011.12.021spa
dc.relation.referencesGustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K. H., Magnusson, K. E., & Strâlfors, P. (1999). Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 13(14), 1961–1971. http://www.ncbi.nlm.nih.gov/pubmed/10544179spa
dc.relation.referencesHagenacker, T., Hillebrand, I., Büsselberg, D., & Schäfers, M. (2010). Myricetin reduces voltage activated potassium channel currents in DRG neurons by a p38 dependent mechanism. Brain Research Bulletin, 83(5), 292–296. https://doi.org/10.1016/j.brainresbull.2010.07.010spa
dc.relation.referencesHaligur, M., Topsakal, S., & Ozmen, O. (2012). Early Degenerative effects of diabetes mellitus on pancreas, liver, and kidney in rats: An immunohistochemical study. Experimental Diabetes Research, 2012, 1–10. https://doi.org/10.1155/2012/120645spa
dc.relation.referencesHan, Y., Tang, S., Liu, Y., Li, A., Zhan, M., Yang, M., Song, N., Zhang, W., Wu, X., Peng, C., Zhang, H., & Yang, S. (2021). AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death & Disease, 12(10), 925. https://doi.org/10.1038/s41419-021-04184-8spa
dc.relation.referencesHassan, Z., Yam, M. F., Ahmad, M., & Yusof, A. P. M. (2010). Antidiabetic properties and mechanism of action of Gynura procumbens water extract in streptozotocin-induced diabetic rats. Molecules, 15(12), 9008–9023. https://doi.org/10.3390/molecules15129008spa
dc.relation.referencesHawley, J. A., Hargreaves, M., & Zierath, J. R. (2006). Signalling mechanisms in skeletal muscle: Role in substrate selection and muscle adaptation. Essays in Biochemistry, 42, 1–12. https://doi.org/10.1042/bse0420001spa
dc.relation.referencesHenquin, J.-C. (2011). The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β-cells. Diabetes Research and Clinical Practice, 93, S27–S31. https://doi.org/10.1016/S0168-8227(11)70010-9spa
dc.relation.referencesHiriart, M., & Aguilar-Bryan, L. (2008). Channel regulation of glucose sensing in the pancreatic β-cell. American Journal of Physiology-Endocrinology and Metabolism, 295(6), E1298–E1306. https://doi.org/10.1152/ajpendo.90493.2008.spa
dc.relation.referencesHo, G. T. T., Kase, E. T., Wangensteen, H., & Barsett, H. (2017). Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. Journal of Agricultural and Food Chemistry, 65(13), 2677–2685. https://doi.org/10.1021/acs.jafc.6b05582spa
dc.relation.referencesHong, H. C., Li, S. L., Zhang, X. Q., Ye, W. C., & Zhang, Q. W. (2013). Flavonoids with α-glucosidase inhibitory activities and their contents in the leaves of Morus atropurpurea. Chinese Medicine (United Kingdom), 8(1), 1. https://doi.org/10.1186/1749-8546-8-19spa
dc.relation.referencesHsia, D. S., Grove, O., & Cefalu, W. T. (2016). An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Current Opinion in Endocrinology & Diabetes and Obesity, 1. https://doi.org/10.1097/MED.0000000000000311spa
dc.relation.referencesHuang, G., Tang, B., Tang, K., Dong, X., Deng, J., Liao, L., Liao, Z., Yang, H., & He, S. (2014). Isoquercitrin inhibits the progression of liver cancer in vivo and in vitro via the MAPK signalling pathway. Oncology Reports, 31(5), 2377–2384. https://doi.org/10.3892/or.2014.3099spa
dc.relation.referencesHuang, J., Imamura, T., Babendure, J. L., Lu, J.-C., & Olefsky, J. M. (2005). Disruption of microtubules ablates the specificity of insulin signaling to GLUT4 translocation in 3T3-L1 adipocytes. Journal of Biological Chemistry, 280(51), 42300–42306. https://doi.org/10.1074/jbc.M510920200spa
dc.relation.referencesHuang, X.-L., He, Y., Ji, L.-L., Wang, K.-Y., Wang, Y.-L., Chen, D.-F., Geng, Y., OuYang, P., & Lai, W.-M. (2017). Hepatoprotective potential of isoquercitrin against type 2 diabetes-induced hepatic injury in rats. Oncotarget, 8(60). https://doi.org/10.18632/oncotarget.21074spa
dc.relation.referencesHughes, E., Lee, A. K., & Tse, A. (2006). Dominant role of sarcoendoplasmic reticulum Ca2+-ATPase pump in Ca2+ homeostasis and exocytosis in rat pancreatic beta-cells. Endocrinology, 147(3), 1396–1407. https://doi.org/10.1210/en.2005-1023spa
dc.relation.referencesHuopio, H., Shyng, S.-L., Otonkoski, T., & Nichols, C. G. (2002). KATP channels and insulin secretion disorders. American Journal of Physiology-Endocrinology and Metabolism, 283(2), E207–E216. https://doi.org/10.1152/ajpendo.00047.2002spa
dc.relation.referencesIbtissem, B. A., Hajer, B. S., Ahmed, H., Awatef, E., Choumous, K., Ons, B., Mounir, Z. K., & Najiba, Z. (2017). Oxidative stress and histopathological changes induced by methylthiophanate, a systemic fungicide, in blood, liver and kidney of adult rats. African Health Sciences, 17(1), 154. https://doi.org/10.4314/ahs.v17i1.20spa
dc.relation.referencesJanssen, B. J. A., De Celle, T., Debets, J. J. M., Brouns, A. E., Callahan, M. F., & Smith, T. L. (2004). Effects of anesthetics on systemic hemodynamics in mice. American Journal of Physiology-Heart and Circulatory Physiology, 287(4), H1618–H1624. https://doi.org/10.1152/ajpheart.01192.2003spa
dc.relation.referencesJayachandran, M., Zhang, T., Ganesan, K., Xu, B., & Chung, S. S. M. (2018). Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. European Journal of Pharmacology, 829, 112–120. https://doi.org/10.1016/j.ejphar.2018.04.015spa
dc.relation.referencesJing, X., Li, D.-Q., Olofsson, C. S., Salehi, A., Surve, V. v., Caballero, J., Ivarsson, R., Lundquist, I., Pereverzev, A., Schneider, T., Rorsman, P., & Renström, E. (2005). CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 115(1), 146–154. https://doi.org/10.1172/JCI22518spa
dc.relation.referencesJitrapakdee, S., Wutthisathapornchai, A., Wallace, J. C., & MacDonald, M. J. (2010). Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia, 53(6), 1019–1032. https://doi.org/10.1007/s00125-010-1685-0spa
dc.relation.referencesJoseph, J., Anand, K., Malindisa, S. T., Oladipo, A. O., & Fagbohun, O. F. (2021). Exercise, CaMKII, and type 2 diabetes. EXCLI Journal, 20, 386–399. https://doi.org/10.17179/excli2020-3317spa
dc.relation.referencesJung, K. Y., Kim, K. M., & Lim, S. (2014). Therapeutic approaches for preserving or restoring pancreatic β-cell function and mass. Diabetes & Metabolism Journal, 38(6), 426. https://doi.org/10.4093/dmj.2014.38.6.426spa
dc.relation.referencesKamp, T. J., & Hell, J. W. (2000). Regulation of cardiac L-type calcium channels by protein kinase a and protein kinase C. Circulation Research, 87(12), 1095–1102. https://doi.org/10.1161/01.RES.87.12.1095spa
dc.relation.referencesKandandapani, S., Balaraman, A. K., & Ahamed, H. N. (2015). Extracts of passion fruit peel and seed of Passiflora edulis (Passifloraceae) attenuate oxidative stress in diabetic rats. Chinese Journal of Natural Medicines, 13(9), 680–686. https://doi.org/10.1016/S1875-5364(15)30066-2spa
dc.relation.referencesKaneko, Y. K., & Ishikawa, T. (2015). Diacylglycerol signaling pathway in pancreatic β-cells: an essential role of diacylglycerol kinase in the regulation of insulin secretion. Biological & Pharmaceutical Bulletin, 38(5), 669–673. https://doi.org/10.1248/bpb.b15-00060spa
dc.relation.referencesKanzaki, M. (2006). Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocrine Journal, 53(3), 267–293. https://doi.org/10.1507/endocrj.KR-65spa
dc.relation.referencesKappel, V. D., Cazarolli, L. H., Pereira, D. F., Postal, B. G., Madoglio, F. A., Buss, Z. da S., Reginatto, F. H., & B. Silva, F. R. M. (2013). Beneficial effects of banana leaves (Musa x paradisiaca) on glucose homeostasis: Multiple sites of action. Revista Brasileira de Farmacognosia, 23(4), 706–715. https://doi.org/10.1590/S0102-695X2013005000062spa
dc.relation.referencesKappel, V. D., Cazarolli, L. H., Pereira, D. F., Postal, B. G., Zamoner, A., Reginatto, F. H., & Silva, F. R. M. B. (2013a). Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. Journal of Pharmacy and Pharmacology, 65(8), 1179–1186. https://doi.org/10.1111/jphp.12066spa
dc.relation.referencesKappel, V. D., Frederico, M. J. S., Postal, B. G., Mendes, C. P., Cazarolli, L. H., & Silva, F. R. M. B. (2013b). The role of calcium in intracellular pathways of rutin in rat pancreatic islets: Potential insulin secretagogue effect. European Journal of Pharmacology, 702(1–3), 264–268. https://doi.org/10.1016/j.ejphar.2013.01.055spa
dc.relation.referencesKappel, V. D., Pereira, D. F., Cazarolli, L. H., Guesser, S. M., da Silva, C. H. B., Schenkel, E. P., Reginatto, F. H., & Silva, F. R. M. B. (2012). Short and long-term effects of Baccharis articulata on glucose homeostasis. Molecules, 17(6), 6754–6768. https://doi.org/10.3390/molecules17066754spa
dc.relation.referencesKaram, I., Ma, N., Yang, Y.-J., & Li, J.-Y. (2018). Induce hyperlipidemia in rats using high fat diet investigating blood lipid and histopathology. Journal of Hematology and Blood Disorders, 4(1). https://doi.org/10.15744/2455-7641.4.104spa
dc.relation.referencesKe, M., Hu, X. Q., Ouyang, J., Dai, B., & Xu, Y. (2012). The effect of astragalin on the VEGF production of cultured Müller cells under high glucose conditions. Bio-Medical Materials and Engineering, 22(1–3), 113–119. https://doi.org/10.3233/BME-2012-0696spa
dc.relation.referencesKhan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., & al Kaabi, J. (2020). Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. Journal of Epidemiology and Global Health, 10(1), 107–111. https://doi.org/10.2991/jegh.k.191028.001spa
dc.relation.referencesKhlifi, R., Dhaouefi, Z., Toumia, I. Ben, Lahmar, A., Sioud, F., Bouhajeb, R., Bellalah, A., & Chekir-Ghedira, L. (2020). Erica multiflora extract rich in quercetin-3-O-glucoside and kaempferol-3-O-glucoside alleviates high fat and fructose diet-induced fatty liver disease by modulating metabolic and inflammatory pathways in Wistar rats. The Journal of Nutritional Biochemistry, 86, 108490. https://doi.org/10.1016/j.jnutbio.2020.108490spa
dc.relation.referencesKim, B., Cho, B., & Jang, S. (2018). Anti-obesity effects of Diospyros lotus leaf extract in mice with high-fat diet-induced obesity. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2018.3941spa
dc.relation.referencesKim, M. S., & Kim, S. H. (2011). Inhibitory effect of astragalin on expression of lipopolysaccharide induced inflammatory mediators through NF-κB in macrophages. Archives of Pharmacal Research, 34(12), 2101–2107. https://doi.org/10.1007/s12272-011-1213-xspa
dc.relation.referencesKittl, M., Beyreis, M., Tumurkhuu, M., Fürst, J., Helm, K., Pitschmann, A., Gaisberger, M., Glasl, S., Ritter, M., & Jakab, M. (2016). Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells. Cellular Physiology and Biochemistry, 39(1), 278–293. https://doi.org/10.1159/000445623spa
dc.relation.referencesKjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., & Lantier, L. (2018). AMPK in skeletal muscle function and metabolism. The FASEB Journal, 32(4), 1741–1777. https://doi.org/10.1096/fj.201700442Rspa
dc.relation.referencesKoh, D. S., Cho, J. H., & Chen, L. (2012). Paracrine interactions within islets of Langerhans. Journal of Molecular Neuroscience, 48(2), 429–440. https://doi.org/10.1007/s12031-012-9752-2spa
dc.relation.referencesKrisman, C. (1962). A method for the colorimetric estimation of glycogen with lodine. Analytical Biochemistry, 4(1), 17–23.spa
dc.relation.referencesKyriazis, G. A., Smith, K. R., Tyrberg, B., Hussain, T., & Pratley, R. E. (2014). Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology, 155(6), 2112–2121. https://doi.org/10.1210/en.2013-2015spa
dc.relation.referencesLacy, P. E., & Kostianovsky, M. D. (1967). Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes, 6(1), 35–39.spa
dc.relation.referencesLenzen, S. (2008). The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216–226. https://doi.org/10.1007/s00125-007-0886-7spa
dc.relation.referencesLi, H., Park, H.-M., Ji, H.-S., Han, J., Kim, S.-K., Park, H.-Y., & Jeong, T.-S. (2020). Phenolic-enriched blueberry-leaf extract attenuates glucose homeostasis, pancreatic β-cell function, and insulin sensitivity in high-fat diet–induced diabetic mice. Nutrition Research, 73, 83–96. https://doi.org/10.1016/j.nutres.2019.09.005spa
dc.relation.referencesLi, R., Bilik, D., Brown, M. B., Zhang, P., Ettner, S. L., Ackermann, R. T., Crosson, J. C., & Herman, W. H. (2013). Medical costs associated with type 2 diabetes complications and comorbidities. The American Journal of Managed Care, 19(5), 421–430.spa
dc.relation.referencesLi, Y., Wang, P., Xu, J., & Desir, G. V. (2006). Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+ -dependent mechanism. American Journal of Physiology-Cell Physiology, 290(2), C345–C351. https://doi.org/10.1152/ajpcell.00091.2005spa
dc.relation.referencesLiu, M., Weiss, M. A., Arunagiri, A., Yong, J., Rege, N., Sun, J., Haataja, L., Kaufman, R. J., & Arvan, P. (2018). Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes, Obesity and Metabolism, 20, 28–50. https://doi.org/10.1111/dom.13378spa
dc.relation.referencesLlanos, P., Contreras-Ferrat, A., Georgiev, T., Osorio-Fuentealba, C., Espinosa, A., Hidalgo, J., Hidalgo, C., & Jaimovich, E. (2015). The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. American Journal of Physiology-Endocrinology and Metabolism, 308(4), E294–E305. https://doi.org/10.1152/ajpendo.00189.2014spa
dc.relation.referencesLochner, A., & Moolman, J. A. (2006). The many faces of H89: A review. Cardiovascular Drug Reviews, 24(3–4), 261–274. https://doi.org/10.1111/j.1527-3466.2006.00261.xspa
dc.relation.referencesLowry, O. H., Rosebrough, N. J., Randall, R. J., & Farr, L. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/0304-3894(92)87011-4spa
dc.relation.referencesLuna, B., & Feinglos, M. N. (2001). Oral agents in the management of type 2 diabetes mellitus. American Family Physician, 63(9), 1747–1756.spa
dc.relation.referencesLytton, J., Westlin, M., & Hanley, M. R. (1991). Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. Journal of Biological Chemistry, 266(26), 17067–17071.spa
dc.relation.referencesMa, Q., Guo, Y., Sun, L., & Zhuang, Y. (2017). Anti-diabetic effects of phenolic extract from rambutan peels (Nephelium lappaceum) in high-fat diet and streptozotocin-induced diabetic mice. Nutrients, 9(8), 801. https://doi.org/10.3390/nu9080801spa
dc.relation.referencesMa, Z., Piao, T., Wang, Y., & Liu, J. (2015). Astragalin inhibits IL-1β-induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting NF-κB and MAPK activation. International Immunopharmacology, 25(1), 83–87. https://doi.org/10.1016/j.intimp.2015.01.018spa
dc.relation.referencesMacDonald, P. E., Joseph, J. W., & Rorsman, P. (2005). Glucose-sensing mechanisms in pancreatic β-cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1464), 2211–2225. https://doi.org/10.1098/rstb.2005.1762spa
dc.relation.referencesMacDonald, P. E., & Wheeler, M. B. (2003). Voltage-dependent K+ channels in pancreatic beta cells: Role, regulation and potential as therapeutic targets. Diabetologia, 46(8), 1046–1062. https://doi.org/10.1007/s00125-003-1159-8spa
dc.relation.referencesMcCarty, M. F. (2006). PKC-mediated modulation of L-type calcium channels may contribute to fat-induced insulin resistance. Medical Hypotheses, 66(4), 824–831. https://doi.org/10.1016/j.mehy.2004.08.034spa
dc.relation.referencesMcTaggart, J. S., Clark, R. H., & Ashcroft, F. M. (2010). Symposium review: The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. The Journal of Physiology, 588(17), 3201–3209. https://doi.org/10.1113/jphysiol.2010.191767spa
dc.relation.referencesMendez, C. F., Leibiger, I. B., Leibiger, B., Høy, M., Gromada, J., Berggren, P.-O., & Bertorello, A. M. (2003). Rapid association of protein kinase C-ϵ with insulin granules is essential for insulin exocytosis. Journal of Biological Chemistry, 278(45), 44753–44757. https://doi.org/10.1074/jbc.M308664200spa
dc.relation.referencesMinisterio de la Protección Social. (2016). Guía de práctica clínica para el diagnóstico, tratamiento y seguimiento de la diabetes mellitus tipo 2 en la población mayor de 18 años (1st ed.).spa
dc.relation.referencesMiralles, F., & Portha, B. (2001). Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. Diabetesspa
dc.relation.referencesMiranda, D., Fischer, G., Carranza, C., Magnitskiy, S., Casierra, F., Piedrahíta, W., & Flórez, L. E. (2009). Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba. In D. Miranda, G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra, W. Piedrahíta, & L. E. Flórez (Eds.), Paper Knowledge . Toward a Media History of Documents (1ra Ed). Sociedad Colombiana de Ciencias Hortícolasspa
dc.relation.referencesMirhoseini, M., Baradaran, A., & Rafieian-kopaei, M. (2013). Medicinal plants, diabetes mellitus and urgent needs. Journal of HerbMed Pharmacology. 2(2), 53–54spa
dc.relation.referencesMiroddi, M., Calapai, G., Navarra, M., Minciullo, P. L., & Gangemi, S. (2013). Passiflora incarnata L.: Ethnopharmacology, clinical application, safety and evaluation of clinical trials. Journal of Ethnopharmacology, 150(3), 791–804. https://doi.org/10.1016/j.jep.2013.09.047spa
dc.relation.referencesMonzón, G., Castellanos, L., Meneses, C., Forero, A. M., Rodríguez, J., Aragón, M., Jiménez, C., & Ramos, F. A. (2021). Identification of α-amylase and α-glucosidase inhibitors and ligularoside a, a new triterpenoid saponin from Passiflora ligularis Juss (sweet granadilla) leaves, by a nuclear magnetic resonance- based metabolomic study. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.0c07850spa
dc.relation.referencesMoon, M. K., Hur, K.-Y., Ko, S.-H., Park, S.-O., Lee, B.-W., Kim, J. H., Rhee, S. Y., Kim, H. J., Choi, K. M., & Kim, N.-H. (2017). Combination therapy of oral hypoglycemic agents in patients with type 2 diabetes mellitus. Diabetes & Metabolism Journal, 41(5), 357. https://doi.org/10.4093/dmj.2017.41.5.357spa
dc.relation.referencesMorimoto M. S. (2000). Mecanismos moleculares que intervienen en la regulación de la síntesis de insulina por glucosa. Revista del Hospital General Manuel Gea González, 3(3), 118-120.spa
dc.relation.referencesMounika, K. L. S. (2015). In silico evaluation of alpha glucosidase and alpha amylase inhibitory activity of chemical constituents from Psoralea corylifolia. International Journal of ChemTech Research, 8(11), 532–538.spa
dc.relation.referencesNakrani, M. N., Wineland, R. H., & Anjum, F. (2021). Physiology, Glucose Metabolism. Treasure Island (FL): StatPearls Publishing.spa
dc.relation.referencesNerdy, N., & Ritarwan, K. (2019). Hepatoprotective activity and nephroprotective activity of peel extract from three varieties of the passion fruit (Passiflora sp.) in the albino rat. Open Access Macedonian Journal of Medical Sciences, 7(4), 536–542. https://doi.org/10.3889/oamjms.2019.153spa
dc.relation.referencesNeumiller, J. J. (2009). Differential chemistry (structure), mechanism of action, and pharmacology of GLP-1 receptor agonists and DPP-4 inhibitors. Journal of the American Pharmacists Association, 49(5), S16–S29. https://doi.org/10.1331/JAPhA.2009.09078spa
dc.relation.referencesNordlie, R. C., Foster, J. D., & Lange, A. J. (1999). Regulation of glucose production by the liver. Annual Review of Nutrition, 19(1), 379–406. https://doi.org/10.1146/annurev.nutr.19.1.379spa
dc.relation.referencesNoshahr, Z. S., Salmani, H., Khajavi Rad, A., & Sahebkar, A. (2020). Animal models of diabetes-associated renal injury. Journal of Diabetes Research, 2020, 1–16. https://doi.org/10.1155/2020/9416419spa
dc.relation.referencesNugent, D. A., Smith, D. M., & Jones, H. B. (2008). A review of islet of Langerhans degeneration in rodent models of type 2 diabetes. Toxicologic Pathology, 36(4), 529–551. https://doi.org/10.1177/0192623308318209spa
dc.relation.referencesO’Brien, T., Nguyen, T. T., & Zimmerman, B. R. (1998). Hyperlipidemia and diabetes mellitus. Mayo Clinic Proceedings, 73(10), 969–976. https://doi.org/10.4065/73.10.969spa
dc.relation.referencesOgunbayo, O. A., Harris, R. M., Waring, R. H., Kirk, C. J., & Michelangeli, F. (2008). Inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase by flavonoids: A quantitative structure-activity relationship study. IUBMB Life, 60(12), 853–858. https://doi.org/10.1002/iub.132spa
dc.relation.referencesOjuka, E. O., Goyaram, V., & Smith, J. A. H. (2012). The role of CaMKII in regulating GLUT4 expression in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 303(3), E322–E331. https://doi.org/10.1152/ajpendo.00091.2012spa
dc.relation.referencesOldoni, T. L. C., Merlin, N., Bicas, T. C., Prasniewski, A., Carpes, S. T., Ascari, J., de Alencar, S. M., Massarioli, A. P., Bagatini, M. D., Morales, R., & Thomé, G. (2021). Antihyperglycemic activity of crude extract and isolation of phenolic compounds with antioxidant activity from Moringa oleifera Lam. leaves grown in Southern Brazil. Food Research International, 141, 110082. https://doi.org/10.1016/j.foodres.2020.110082spa
dc.relation.referencesOrmazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C., & Zuñiga, F. A. (2018). Association between insulin resistance and the development of cardiovascular disease. Cardiovascular Diabetology, 17(1), 122. https://doi.org/10.1186/s12933-018-0762-4spa
dc.relation.referencesOteiza, P. I., Fraga, C. G., Mills, D. A., & Taft, D. H. (2018). Flavonoids and the gastrointestinal tract: Local and systemic effects. Molecular Aspects of Medicine, 61, 41–49. https://doi.org/10.1016/j.mam.2018.01.001spa
dc.relation.referencesPacheco, G., Simão, M. J., Vianna, M. G., Garcia, R. O., Vieira, M. L. C., & Mansur, E. (2016). In vitro conservation of Passiflora —A review. Scientia Horticulturae, 211, 305–311. https://doi.org/10.1016/j.scienta.2016.09.004spa
dc.relation.referencesPanchanathan, S., & Rajendran, J. (2015). Evidence of anti-hyperglycemic and anti-oxidant effect of Passiflora edulis flavicarpa (sims.) in streptozotocin induced diabetic rats. Notulae Scientia Biologicae, 7(4), 383–389. 10.15835/nsb.7.4.9655spa
dc.relation.referencesPandeya, P. R., Lee, K.-H., Lamichhane, R., Lamichhane, G., Poudel, A., & Jung, H.-J. (2021). Evaluation of anti-obesity activity of an herbal formulation (F2) in DIO mice model and validation of UPLC-DAD method for quality control. Applied Sciences, 11(16), 7404. https://doi.org/10.3390/app11167404spa
dc.relation.referencesPandol, S. J. (2011). The exocrine pancreas. Colloquium Series on Integrated Systems Physiology: From Molecule to Function, 3(1), 1–64. https://doi.org/10.4199/C00026ED1V01Y201102ISP014spa
dc.relation.referencesPark, J. E., Park, J. Y., Seo, Y., & Han, J. S. (2019). A new chromanone isolated from Portulaca oleracea L. increases glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes. International Journal of Biological Macromolecules, 123, 26–34. https://doi.org/10.1016/j.ijbiomac.2018.10.206spa
dc.relation.referencesPark, S. N., Kim, S. Y., Lim, G. N., Jo, N. R., & Lee, M. H. (2012). In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts. Journal of Industrial and Engineering Chemistry, 18(2), 680–683. https://doi.org/10.1016/j.jiec.2011.11.126spa
dc.relation.referencesParpal, S., Karlsson, M., Thorn, H., & Strålfors, P. (2001). Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. Journal of Biological Chemistry, 276(13), 9670–9678. https://doi.org/10.1074/jbc.M007454200spa
dc.relation.referencesParra, M., Aguilera, A., Escobar, W., Rubiano, V., & Rodríguez, A. (2010). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de granadilla en el Departamento del Huila. Asofrucol. http://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_165_AGENDA_GRANADILLA.pdfspa
dc.relation.referencesPatel, D., Prasad, S., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2(4), 320–330. https://doi.org/10.1016/S2221-1691(12)60032-Xspa
dc.relation.referencesPatel, S., & Dutta, S. (2018). Insulin. RCSB Protein Data Bank. https://doi.org/10.2210/rcsb_pdb/GH/DM/drugs/Insulin/Insulinspa
dc.relation.referencesPereira Fontana, D., Cazarolli, L. H., Lavado, C., Mengatto, V., Figueiredo, M. S. R. B., Guedes, A., Pizzolatti, M. G., & Silva, F. R. M. B. (2011). Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition, 27(11–12), 1161–1167. https://doi.org/10.1016/j.nut.2011.01.008spa
dc.relation.referencesPinent, M., Castell, A., Baiges, I., Montagut, G., Arola, L., & Ardévol, A. (2008). Bioactivity of flavonoids on insulin-secreting cells. Comprehensive Reviews in Food Science and Food Safety, 7(4), 299–308. https://doi.org/10.1111/j.1541-4337.2008.00048.xspa
dc.relation.referencesPloug, T., & Ralston, E. (2002). Exploring the whereabouts of GLUT4 in skeletal muscle (Review). Molecular Membrane Biology, 19(1), 39–49. https://doi.org/10.1080/09687680110119229spa
dc.relation.referencesPrabhakar, P., & Doble, M. (2008). A target based therapeutic approach towards diabetes mellitus using medicinal plants. Current Diabetes Reviews, 4(4), 291–308. https://doi.org/10.2174/157339908786241124spa
dc.relation.referencesPrem, P. N., & Kurian, G. A. (2021). High-fat diet increased oxidative stress and mitochondrial dysfunction induced by renal ischemia-reperfusion injury in rat. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.715693spa
dc.relation.referencesQin, G., Ma, J., Huang, Q., Yin, H., Han, J., Li, M., Deng, Y., Wang, B., Hassan, W., & Shang, J. (2018). Isoquercetin improves hepatic lipid accumulation by activating ampk pathway and suppressing TGF-β signaling on an HFD-induced nonalcoholic fatty liver disease rat model. International Journal of Molecular Sciences, 19(12), 4126. https://doi.org/10.3390/ijms19124126spa
dc.relation.referencesQueiroz, E. A. M., Paim, R. T. T., Lira, S. M., da Silva, J. Y. G., Lima, C. L. S., Holanda, M. O., Benjamin, S. R., Vieira, Í. G. P., & Guedes, M. I. F. (2018). Antihyperglycemic effect of Passiflora glandulosa cav. fruit rinds flour in streptozotocin-induced diabetic mice. Asian Pacific Journal of Tropical Medicine, 11(9), 510–517. https://doi.org/10.4103/1995-7645.242308spa
dc.relation.referencesRamaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2014). Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species. The Scientific World Journal, 2014, 1–10. https://doi.org/10.1155/2014/167309spa
dc.relation.referencesRanilla, L. G., Kwon, Y.-I., Apostolidis, E., & Shetty, K. (2010). Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresource Technology, 101(12), 4676–4689. https://doi.org/10.1016/j.biortech.2010.01.093spa
dc.relation.referencesRavussin, E., & Smith, S. R. (2006). Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Annals of the New York Academy of Sciences, 967(1), 363–378. https://doi.org/10.1111/j.1749-6632.2002.tb04292.xspa
dc.relation.referencesRehani, P. R., Iftikhar, H., Nakajima, M., Tanaka, T., Jabbar, Z., & Rehani, R. N. (2019). Safety and mode of action of diabetes medications in comparison with 5-aminolevulinic acid (5-ALA). Journal of Diabetes Research, 2019, 4267357. https://doi.org/10.1155/2019/4267357spa
dc.relation.referencesRehwald, A., Meier, B., & Sticher, O. (1994). Qualitative and quantitative reversed-phase high-performance liquid chromatography of flavonoids in Passiflora incarnata L. Pharmaceutica Acta Helvetiae, 69(3), 153–158. https://doi.org/10.1016/0031-6865(94)90017-5spa
dc.relation.referencesRiaz, A., Rasul, A., Hussain, G., Zahoor, M. K., Jabeen, F., Subhani, Z., Younis, T., Ali, M., Sarfraz, I., & Selamoglu, Z. (2018). Astragalin : A bioactive phytochemical with potential therapeutic activities. Advances in Pharmacological and Pharmaceutical Science, 2018, 1–15. https://doi.org/10.1155/2018/9794625spa
dc.relation.referencesRickels, M. R., Norris, A. W., & Hull, R. L. (2020). A tale of two pancreases: exocrine pathology and endocrine dysfunction. Diabetologia, 63(10), 2030–2039. https://doi.org/10.1007/s00125-020-05210-8spa
dc.relation.referencesRoberts, C. K., Hevener, A. L., & Barnard, R. J. (2013). Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Comprehensive Physiology, 3(1), 1–58. https://doi.org/10.1002/cphy.c110062spa
dc.relation.referencesRodriguez, L., Stirling, C. J., & Woodman, P. G. (1994). Multiple N-ethylmaleimide-sensitive components are required for endosomal vesicle fusion. Molecular Biology of the Cell, 5(7), 773–783. https://doi.org/10.1091/mbc.5.7.773spa
dc.relation.referencesRorsman, P., Braun, M., & Zhang, Q. (2012). Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium, 51(3–4), 300–308. https://doi.org/10.1016/j.ceca.2011.11.006spa
dc.relation.referencesRorsman, P., Eliasson, L., Renström, E., Gromada, J., Barg, S., & Göpel, S. (2000). The cell physiology of biphasic insulin secretion. News in Physiological Sciences, 15(2), 72–77. https://doi.org/10.1152/physiologyonline.2000.15.2.72spa
dc.relation.referencesRosler, K.-H., & Goodwin, R. S. (1984). A general use of amberlite XAD-2 resin for the purification of flavonoids from aqueous fractions. Journal of Natural Products, 47(1), 188–188. https://doi.org/10.1021/np50031a036spa
dc.relation.referencesSaeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843spa
dc.relation.referencesSafayhi, H., Haase, H., Kramer, U., Bihlmayer, A., Roenfeldt, M., Ammon, H. P., Froschmayr, M., Cassidy, T. N., Morano, I., Ahlijanian, M. K., & Striessnig, J. (1997). L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Molecular Endocrinology, 11(5), 619–629. https://doi.org/10.1210/mend.11.5.9922spa
dc.relation.referencesSakaguchi, K., Takeda, K., Maeda, M., Ogawa, W., Sato, T., Okada, S., Ohnishi, Y., Nakajima, H., & Kashiwagi, A. (2016). Glucose area under the curve during oral glucose tolerance test as an index of glucose intolerance. Diabetology International, 7(1), 53–58. https://doi.org/10.1007/s13340-015-0212-4spa
dc.relation.referencesSalaj, N., Kladar, N., Srđenović Čonić, B., Jeremić, K., Hitl, M., Gavarić, N., & Božin, B. (2021). Traditional multi-herbal formula in diabetes therapy – Antihyperglycemic and antioxidant potential. Arabian Journal of Chemistry, 14(10), 103347. https://doi.org/10.1016/j.arabjc.2021.103347spa
dc.relation.referencesSalehi, Ata, v. Anil Kumar, Sharopov, Ramírez-Alarcón, Ruiz-Ortega, Abdulmajid Ayatollahi, Tsouh Fokou, Kobarfard, Amiruddin Zakaria, Iriti, Taheri, Martorell, Sureda, Setzer, Durazzo, Lucarini, Santini, Capasso & Sharifi-Rad. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551spa
dc.relation.referencesSalgado, J. M., Bombarde, T. A. D., Mansi, D. N., Piedade, S. M. de S., & Meletti, L. M. M. (2010). Effects of different concentrations of passion fruit peel (Passiflora edulis) on the glicemic control in diabetic rat. Ciência e Tecnologia de Alimentos, 30(3), 784–789. https://doi.org/10.1590/S0101-20612010000300034spa
dc.relation.referencesSalih, N. D., Muslih, R. K., & Hamoodi, S. R. (2009). Histological liver changes in streptozotocin induced diabetic mice. International Medical Journal Malaysia, 8(1), 1-4.spa
dc.relation.referencesSamarghandian, S., Azimi-Nezhad, M., Samini, F., & Farkhondeh, T. (2016). Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 94(4), 388–393. https://doi.org/10.1139/cjpp-2014-0412spa
dc.relation.referencesSantilli, F., Simeone, P., Liani, R., & Davì, G. (2015). Platelets and diabetes mellitus. Prostaglandins & Other Lipid Mediators, 120, 28–39. https://doi.org/10.1016/j.prostaglandins.2015.05.002spa
dc.relation.referencesSantulli, G., Nakashima, R., Yuan, Q., & Marks, A. R. (2017). Intracellular calcium release channels: an update. The Journal of Physiology, 595(10), 3041–3051. https://doi.org/10.1113/JP272781spa
dc.relation.referencesSantulli, G., Pagano, G., Sardu, C., Xie, W., Reiken, S., Ascia, S. L. D., Cannone, M., Marziliano, N., Trimarco, B., Guise, T. a, Lacampagne, A., Marks, A. R., D’Ascia, S. L., Cannone, M., Marziliano, N., Trimarco, B., Guise, T. a, Lacampagne, A., & Marks, A. R. (2015). Calcium release channel RyR2 regulates insulin release and glucose homeostasis. The Journal of Clinical Investigation, 125(5), 1968–1978. https://doi.org/10.1172/JCI79273spa
dc.relation.referencesSarto, D. A. Q. S., Siqueira, A. H. D. de, Magalhaes, F. M. de A., Caproni, K. de P., Martins, Â. M., Santos, G. B., Silva, D. B. da, Boas, B. M. V., & Garcia, J. A. D. (2018). Dry extract of Passiflora incarnata L. leaves as a cardiac and hepatic oxidative stress protector in LDLr-/- mice fed high-fat diet. Brazilian Archives of Biology and Technology, 61. https://doi.org/10.1590/1678-4324-2018180147spa
dc.relation.referencesSatyanarayana, K., Sravanthi, K., Shaker, I., Ponnulakshmi, R., & Selvaraj, J. (2015). Role of chrysin on expression of insulin signaling molecules. Journal of Ayurveda and Integrative Medicine, 6(4), 248. https://doi.org/10.4103/0975-9476.157951spa
dc.relation.referencesScheepers, A., Joost, H., & Schurmann, A. (2004). The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. Journal of Parenteral and Enteral Nutrition, 28(5), 364–371. https://doi.org/10.1177/0148607104028005364spa
dc.relation.referencesSchneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B., & Liu, J. O. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nature Chemical Biology, 6(3), 209–217. https://doi.org/10.1038/nchembio.304spa
dc.relation.referencesSepúlveda, P. M., Echeverrry, S., Costa, G., & Aragón, M. (2020). Passiflora ligularis leaf ultrasound-assisted extraction in the optimization of flavonoid content and enhancement of hypoglycemic activity. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2020.10810spa
dc.relation.referencesSepúlveda Ramos, P. M. (2021). Contribución a la caracterización biofarmacéutica de un extracto de hojas de Passiflora ligularis (granadilla) optimizado en flavonoides. Universidad Nacional de Colombia.spa
dc.relation.referencesSeyer-Hansen, K. (1976). Renal Hypertrophy in streptozotocin-diabetic rats. Clinical Science, 51(6), 551–555. https://doi.org/10.1042/cs0510551spa
dc.relation.referencesShaker, S. M., Magdy, Y. M., Abd-Elaziz, L. F., El-Said, S. A., Alkharashy, O. A., & Nabeeh, E. S. (2014). Histological study on the effect of metformin on high-fat-diet-induced liver injury in adult male albino rats. The Egyptian Journal of Histology, 37(3), 592–602. https://doi.org/10.1097/01.EHX.0000452726.54766.93spa
dc.relation.referencesShanmugam, S., Rajan, M., de Souza Araújo, A. A., & Narain, N. (2018). Potential of Passion (Passiflora spp.) fruit in control of type II diabetes. Current Research in Diabetes & Obesity Journal, 7(3). https://doi.org/10.19080/CRDOJ.2018.07.555712spa
dc.relation.referencesSheng, L., Chen, Q., Di, L., & Li, N. (2021). Evaluation of anti-diabetic potential of corn silk in high-fat diet/ streptozotocin-induced type 2 diabetes mice model. Endocrine, Metabolic & Immune Disorders - Drug Targets, 21(1), 131–138. https://doi.org/10.2174/1871530320666200606224708spa
dc.relation.referencesSilva Frederico, M. J., Mascarello, A., Castro, A. J. G., Da Luz, G., Altenhofen, D., Mendes, C. P., Leal, P. C., Yunes, R. A., Nunes, R. J., & Silva, F. R. M. B. (2016). Incretinomimetic and insulinomimetic effect of (2E)-N′-(1′-Naphthyl)-3,4,5-trimethoxybenzohydrazide for glycemic homeostasis. Journal of Cellular Biochemistry, 117(5), 1199–1209. https://doi.org/10.1002/jcb.25403spa
dc.relation.referencesSimons, K., & Gerl, M. J. (2010). Revitalizing membrane rafts: new tools and insights. Nature Reviews Molecular Cell Biology, 11(10), 688–699. https://doi.org/10.1038/nrm2977spa
dc.relation.referencesSkelin Klemen, M., Dolenšek, J., Slak Rupnik, M., & Stožer, A. (2017). The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets, 9(6), 109–139. https://doi.org/10.1080/19382014.2017.1342022spa
dc.relation.referencesSkovsø, S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of Diabetes Investigation, 5(4), 349–358. https://doi.org/10.1111/jdi.12235spa
dc.relation.referencesSmart, E. J., & Anderson, R. G. W. (2002). Alterations in membrane cholesterol that affect structure and function of caveolae. Methods in enzymology, 353, 131-139 https://doi.org/10.1016/S0076-6879(02)53043-3spa
dc.relation.referencesSmirnov, A. V., Snigur, G. L., & Voronkov, M. P. (2012). Pancreatic islet beta-cell apoptosis in experimental diabetes mellitus. Apoptosis and Medicine. InTech. https://doi.org/10.5772/51411spa
dc.relation.referencesSoares D, J., Leal P, A. B., Silva, J., Almeida, JacksonR. G. S., & de Oliveira, H. (2017). Influence of flavonoids on mechanism of modulation of insulin secretion. Pharmacognosy Magazine, 13(52), 639-646. https://doi.org/10.4103/pm.pm_87_17spa
dc.relation.referencesSomwar, R., Kim, D. Y., Sweeney, G., Huang, C., Niu, W., Lador, C., Ramlal, T., & Klip, A. (2001). GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochemical Journal, 359(3), 639–649. https://doi.org/10.1042/bj3590639spa
dc.relation.referencesSrinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., & Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52(4), 313–320. https://doi.org/10.1016/j.phrs.2005.05.004spa
dc.relation.referencesSudasinghe, H. P., & Peiris, D. C. (2018). Hypoglycemic and hypolipidemic activity of aqueous leaf extract of Passiflora suberosa L. PeerJ, 6, E4389. https://doi.org/10.7717/peerj.4389spa
dc.relation.referencesSuen, J., Thomas, J., Kranz, A., Vun, S., & Miller, M. (2016). Effect of flavonoids on oxidative stress and inflammation in adults at risk of cardiovascular disease: A systematic review. Healthcare, 4(3), 69. https://doi.org/10.3390/healthcare4030069spa
dc.relation.referencesSugano, M., Yamato, H., Hayashi, T., Ochiai, H., Kakuchi, J., Goto, S., Nishijima, F., Iino, N., Kazama, J. J., Takeuchi, T., Mokuda, O., Ishikawa, T., & Okazaki, R. (2006). High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: A new rat model of diabetic nephropathy. Nutrition, Metabolism and Cardiovascular Diseases, 16(7), 477–484. https://doi.org/10.1016/j.numecd.2005.08.007spa
dc.relation.referencesSweeney, G., Somwar, R., Ramlal, T., Volchuk, A., Ueyama, A., & Klip, A. (1999). An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 Myotubes. Journal of Biological Chemistry, 274(15), 10071–10078. https://doi.org/10.1074/jbc.274.15.10071spa
dc.relation.referencesTajima, K., Shirakawa, J., Okuyama, T., Kyohara, M., Yamazaki, S., Togashi, Y., & Terauchi, Y. (2017). Effects of metformin on compensatory pancreatic β-cell hyperplasia in mice fed a high-fat diet. American Journal of Physiology-Endocrinology and Metabolism, 313(3), E367–E380. https://doi.org/10.1152/ajpendo.00447.2016spa
dc.relation.referencesTal, M., Liang, Y., Najafi, H., Lodish, H. F., & Matschinsky, F. M. (1992). Expression and function of GLUT-1 and GLUT-2 glucose transporter isoforms in cells of cultured rat pancreatic islets. Journal of Biological Chemistry, 267(24), 17241–17247. https://doi.org/10.1016/S0021-9258(18)41918-7spa
dc.relation.referencesTamayo, D. C., Camacho, S. M., & López, P. A. (2015). Caracterización de pacientes con diabetes mellitus tipo 2 atendidos por médicos residentes de medicina familiar en Bogotá, Colombia. Revista Desafíos, 9(2), 17–24.spa
dc.relation.referencesTeixeira, L. S., Lima, A. S., Boleti, A. P. A., Lima, A. A. N., Libório, S. T., de Paula, L., Oliveira, M. I. B., Lima, E. F., Costa, G. M., Reginatto, F. H., & Lima, E. S. (2014). Effects of Passiflora nitida Kunth leaf extract on digestive enzymes and high caloric diet in rats. Journal of Natural Medicines, 68(2), 316–325. https://doi.org/10.1007/s11418-013-0800-1spa
dc.relation.referencesTesh, G. H., & Allen, T. J. (2007). Rodent models of streptozotocin-induced diabetic nephropathy (Methods in Renal Research). Nephrology, 12(3), 261–266. https://doi.org/10.1111/j.1440-1797.2007.00796.xspa
dc.relation.referencesThiyagarajah, P., Kuttan, S. C., Lim, S. C., Teo, T. S., & Das, N. P. (1991). Effect of myricetin and other flavonoids on the liver plasma membrane Ca2+ pump kinetics and structure-function relationships. Biochemical Pharmacology, 41(5), 669–675. https://doi.org/10.1016/0006-2952(91)90065-Dspa
dc.relation.referencesThompson, B., & Satin, L. S. (2021). Beta‐cell ion channels and their role in regulating insulin secretion. Comprehensive Physiology, 11(4), 1-21. https://doi.org/10.1002/cphy.c210004spa
dc.relation.referencesThorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221–232. https://doi.org/10.1007/s00125-014-3451-1spa
dc.relation.referencesTiwari, B. K., Pandey, K. B., Abidi, A. B., & Rizvi, S. I. (2013). Markers of oxidative stress during diabetes mellitus. Journal of Biomarkers, 2013, 1–8. https://doi.org/10.1155/2013/378790spa
dc.relation.referencesTremblay, F., Dubois, M.-J., & Marette, A. (2003). Regulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle. Frontiers in Bioscience, 8(12), d1072–d1084.spa
dc.relation.referencesTrube, G., Rorsman, P., & Ohno-Shosaku, T. (1986). Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells. Pflügers Archiv, 407(5), 493–499.spa
dc.relation.referencesTundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini-Reviews in Medicinal Chemistry, 10(4), 315–331. https://doi.org/10.2174/138955710791331007spa
dc.relation.referencesTunduguru, R., & Thurmond, D. C. (2017). Promoting glucose transporter-4 vesicle trafficking along cytoskeletal tracks: PAK-Ing them out. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00329spa
dc.relation.referencesUnuofin, J. O., & Lebelo, S. L. (2020). Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of Type 2 Diabetes: An Updated Review. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/1356893spa
dc.relation.referencesValentová, K., Vrba, J., Bancířová, M., Ulrichová, J., & Křen, V. (2014). Isoquercitrin: pharmacology, toxicology, and metabolism. Food and Chemical Toxicology, 68, 267–282.spa
dc.relation.referencesVasiljević, J., Torkko, J. M., Knoch, K. P., & Solimena, M. (2020). The making of insulin in health and disease. Diabetologia, 63(10), 1981-1989. https://doi.org/10.1007/s00125-020-05192-7spa
dc.relation.referencesViera, W., Shinohara, T., Samaniego, I., Sanada, A., Terada, N., Ron, L., Suárez-Tapia, A., & Koshio, K. (2022). Phytochemical composition and antioxidant activity of Passiflora spp. germplasm grown in Ecuador. Plants, 11(3), 328. https://doi.org/10.3390/plants11030328spa
dc.relation.referencesVinayagam, R., & Xu, B. (2015). Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutrition & Metabolism, 12(1), 60. https://doi.org/10.1186/s12986-015-0057-7spa
dc.relation.referencesWang, H., Xia, W., Long, G., Pei, Z., Li, Y., Wu, M., Wang, Q., Zhang, Y., Jia, Z., & Chen, H. (2020). Isoquercitrin ameliorates cisplatin-induced nephrotoxicity via the inhibition of apoptosis, inflammation, and oxidative stress. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.599416spa
dc.relation.referencesWang, Y., Sun, G., Sun, J., Liu, S., Wang, J., Xu, X., & Miao, L. (2013). Spontaneous type 2 diabetic rodent models. Journal of Diabetes Research, 2013, 1–8. https://doi.org/10.1155/2013/401723spa
dc.relation.referencesWilkinson, S. E., Parker, P. J., & Nixon, J. S. (1993). Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochemical Journal, 294(2), 335–337. https://doi.org/10.1042/bj2940335spa
dc.relation.referencesWood, I. S., & Trayhurn, P. (2003). Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. British Journal of Nutrition, 89(1), 3–9. https://doi.org/10.1079/BJN2002763spa
dc.relation.referencesWorld Health Organization (WHO). (2021). Diabetes. https://www.who.int/health-topics/diabetes#tab=tab_1spa
dc.relation.referencesXiao, J., Capanoglu, E., Jassbi, A. R., & Miron, A. (2016). Advance on the Flavonoid C -glycosides and health benefits. Critical Reviews in Food Science and Nutrition, 56(sup1), S29–S45. https://doi.org/10.1080/10408398.2015.1067595spa
dc.relation.referencesXie, L., Deng, Z., Zhang, J., Dong, H., Wang, W., Xing, B., & Liu, X. (2022). Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods, 11(6), 882. https://doi.org/10.3390/foods11060882spa
dc.relation.referencesXu, Y. C., Leung, S. W. S., Leung, G. P. H., & Man, R. Y. K. (2015). Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca2+-activated K+ channels. British Journal of Pharmacology, 172(12), 3003–3014. https://doi.org/10.1111/bph.13108spa
dc.relation.referencesYanardag, R., Ozsoy-Sacan, O., Bolkent, S., Orak, H., & Karabulut-Bulan, O. (2005). Protective effects of metformin treatment on the liver injury of streptozotocin-diabetic rats. Human & Experimental Toxicology, 24(3), 129–135. https://doi.org/10.1191/0960327104ht507oaspa
dc.relation.referencesYang, H., & Yang, L. (2016). Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. Journal of Molecular Endocrinology, 57(2), R93–R108. https://doi.org/10.1530/JME-15-0316spa
dc.relation.referencesYang, S.-N., & Berggren, P.-O. (2006). The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocrine Reviews, 27(6), 621–676. https://doi.org/10.1210/er.2005-0888spa
dc.relation.referencesYang, Y., Smith, D. L., Keating, K. D., Allison, D. B., & Nagy, T. R. (2014). Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity, 22(10), 2147–2155. https://doi.org/10.1002/oby.20811spa
dc.relation.referencesYaras, N., Ugur, M., Ozdemir, S., Gurdal, H., Purali, N., Lacampagne, A., Vassort, G., & Turan, B. (2005). Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes, 54(11). https://doi.org/10.2337/diabetes.54.11.3082spa
dc.relation.referencesYoul, E., Bardy, G., Magous, R., Cros, G., Sejalon, F., Virsolvy, A., Richard, S., Quignard, J. F., Gross, R., Petit, P., Bataille, D., & Oiry, C. (2010). Quercetin potentiates insulin secretion and protects INS-1 pancreatic -cells against oxidative damage via the ERK1/2 pathway. British Journal of Pharmacology, 161(4), 799–814. https://doi.org/10.1111/j.1476-5381.2010.00910.xspa
dc.relation.referencesYoungren, J. F. (2007). Regulation of insulin receptor function. Cell. Mol. Life Sci, 64, 873–891. https://doi.org/10.1007/s00018-007-6359-9spa
dc.relation.referencesZhang, L., Zhang, S.-T., Yin, Y.-C., Xing, S., Li, W.-N., & Fu, X.-Q. (2018). Hypoglycemic effect and mechanism of isoquercitrin as an inhibitor of dipeptidyl peptidase-4 in type 2 diabetic mice. RSC Advances, 8(27), 14967–14974.spa
dc.relation.referencesZhang, M., Lv, X.-Y., Li, J., Xu, Z.-G., & Chen, L. (2008). The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental Diabetes Research, 2008, 1–9. https://doi.org/10.1155/2008/704045spa
dc.relation.referencesZhang, Q., Ramracheya, R., Lahmann, C., Tarasov, A., Bengtsson, M., Braha, O., Braun, M., Brereton, M., Collins, S., Galvanovskis, J., Gonzalez, A., Groschner, L. N., Rorsman, N. J. G., Salehi, A., Travers, M. E., Walker, J. N., Gloyn, A. L., Gribble, F., Johnson, P. R. V., & Rorsman, P. (2013). Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metabolism, 18(6), 871–882. https://doi.org/10.1016/j.cmet.2013.10.014spa
dc.relation.referencesZhang, S., Xu, H., Yu, X., Wu, Y., & Sui, D. (2017). Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Experimental and Therapeutic Medicine, 14(1), 383–390. https://doi.org/10.3892/etm.2017.4475spa
dc.relation.referencesZhang, Y., & Liu, D. (2011). Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. European Journal of Pharmacology, 670(1), 325–332. https://doi.org/10.1016/j.ejphar.2011.08.011spa
dc.relation.referencesZhao, F., Li, P., Chen, S. R. W., Louis, C. F., & Fruen, B. R. (2001). Dantrolene inhibition of ryanodine receptor Ca2+ release channels: molecular mechanism and isoform selectivity. Journal of Biological Chemistry, 276(17), 13810–13816. https://doi.org/10.1074/jbc.M006104200spa
dc.relation.referencesZhou, Y.-J., Xu, N., Zhang, X.-C., Zhu, Y.-Y., Liu, S.-W., & Chang, Y.-N. (2021). Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. Journal of Agricultural and Food Chemistry, 69(20), 5618–5627. https://doi.org/10.1021/acs.jafc.1c01109spa
dc.relation.referencesZhu, M., Li, J., Wang, K., Hao, X., Ge, R., & Li, Q. (2016). Isoquercitrin inhibits hydrogen peroxide-induced apoptosis of EA.hy926 cells via the PI3K/Akt/GSK3β signaling pathway. Molecules, 21(3), 356. https://doi.org/10.3390/molecules21030356spa
dc.relation.referencesZucolotto, S. M., Fagundes, C., Reginatto, F. H., Ramos, F. A., Castellanos, L., Duque, C., & Schenkel, E. P. (2012). Analysis of C -glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochemical Analysis, 23(3), 232–239. https://doi.org/10.1002/pca.1348spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddcCiencias Farmacéuticasspa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsPassiflora
dc.subject.decsDiabetes Mellitus Tipo 2spa
dc.subject.decsDiabetes Mellitus, Type 2eng
dc.subject.decsExtractos Vegetalesspa
dc.subject.decsPlant Extractseng
dc.subject.proposalDiabetes mellitus tipo 2spa
dc.subject.proposalDieta rica en grasa/estreptozotocinaspa
dc.subject.proposalAstragalinaspa
dc.subject.proposalIsoquercetinaspa
dc.subject.proposalSeñalización de calciospa
dc.subject.proposalGLUT4
dc.subject.proposalPassiflora ligularis Juss
dc.subject.proposalType 2 diabetes mellituseng
dc.subject.proposalHigh-fat diet/streptozotocineng
dc.subject.proposalAstragalineng
dc.subject.proposalIsoquercetineng
dc.subject.proposalCalcium signalingeng
dc.titleEstudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularisspa
dc.title.translatedIn vivo and in vitro study of the antidiabetic effect of an extract of passiflora ligularis leaveseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleContract .836–2017spa
oaire.awardtitle#305799/2019–3spa
oaire.fundernameFondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Francisco José de Caldas.spa
oaire.fundernameCNPq-Brazil & CAPES-Brazilspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014182296.2023.pdf
Tamaño:
2.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: