Modelo de agrupamiento jerárquico con doble instancia de agrupación
dc.contributor.advisor | Sosa Martínez, Juan Camilo | spa |
dc.contributor.author | García Montoya, Andrea Catalina | spa |
dc.date.accessioned | 2025-08-25T22:33:37Z | |
dc.date.available | 2025-08-25T22:33:37Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Este trabajo presenta una variante del modelo de bloques estocásticos que implementa un enfoque de agrupamiento jerárquico en dos niveles distintos. En primera instancia, el modelo realiza una agrupación de los nodos individuales en bloques, para posteriormente ejecutar un segundo nivel de agrupamiento donde los bloques iniciales son reorganizados en estructuras de segundo orden. La metodología se fundamenta en un marco Bayesiano riguroso, empleando algoritmos de Cadenas de Markov Monte Carlo (MCMC) para la estimación de parámetros e inferencia de la estructura latente. La validación del modelo propuesto se realiza mediante un análisis en dos contextos: redes simuladas con características estructurales diversas y controladas, y redes empíricas de naturaleza heterogénea, incluyendo comunidades de áreas corticales cerebrales y redes de interacciones sociales. Finalmente, se presenta un análisis meticuloso de la convergencia de las cadenas MCMC para los parámetros mas significativos del modelo, así como una evaluación comparativa de la precisión en la recuperación de estructuras latentes, organizaciones multinivel y la bondad de ajuste a los datos observados. (Texto tomado de la fuente). | spa |
dc.description.abstract | This work presents a variant of the stochastic block model that implements a hierarchical clustering approach at two distinct levels. Initially, the model performs a grouping of individual nodes into blocks, to subsequently execute a second level of clustering where the initial blocks are reorganized into second-order structures. The methodology is based on a rigorous Bayesian framework, employing Markov Chain Monte Carlo (MCMC) algorithms for parameter estimation and inference of the latent structure. The validation of the proposed model is carried out through an analysis in two contexts: simulated networks with diverse and controlled structural characteristics, and empirical networks of heterogeneous nature, including communities of cortical brain areas and social interaction networks. Finally, a meticulous analysis of the convergence of the MCMC chains for the most significant parameters of the model is presented, as well as a comparative evaluation of the precision in the recovery of latent structures, multilevel organizations, and the goodness of fit to the observed data. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Estadística | spa |
dc.description.researcharea | Teoría de grafos y estadística bayesiana | spa |
dc.format.extent | xi, 104 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88459 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Estadística | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Estadística | spa |
dc.relation.references | [Abbe et al., 2015] Abbe, E., Bandeira, A. S., and Hall, G. (2015). Exact recovery in the stochastic block model. IEEE Transactions on information theory, 62(1):471–487. | spa |
dc.relation.references | [Abbe et al., 2021] Abbe, E., Cornacchia, E., Gu, Y., and Polyanskiy, Y. (2021). Stochastic block model entropy and broadcasting on trees with survey. In Conference on Learning Theory, pages 1–25. PMLR. | spa |
dc.relation.references | [Abbe and Sandon, 2015] Abbe, E. and Sandon, C. (2015). Recovering communities in the gene- ral stochastic block model without knowing the parameters. Advances in neural information processing systems, 28. | spa |
dc.relation.references | [Airoldi et al., 2008] Airoldi, E. M., Blei, D., Fienberg, S., and Xing, E. (2008). Mixed membership stochastic blockmodels. Advances in neural information processing systems, 21. | spa |
dc.relation.references | [Amini et al., 2024] Amini, A., Paez, M., and Lin, L. (2024). Hierarchical stochastic block model for community detection in multiplex networks. Bayesian Analysis, 19(1):319–345. | spa |
dc.relation.references | [Caltagirone et al., 2017] Caltagirone, F., Lelarge, M., and Miolane, L. (2017). Recovering asym- metric communities in the stochastic block model. IEEE Transactions on Network Science and Engineering, 5(3):237–246. | spa |
dc.relation.references | [Bhattacharjee et al., 2020] Bhattacharjee, M., Banerjee, M., and Michailidis, G. (2020). Change point estimation in a dynamic stochastic block model. Journal of machine learning research, 21(107):1–59. | spa |
dc.relation.references | [Castaneda et al., 2012] Casta˜neda, L. B., Arunachalam, V., and Dharmaraja, S. (2012). Introduction to probability and stochastic processes with applications. John Wiley & Sons. | spa |
dc.relation.references | [Celisse et al., 2012] Celisse, A., Daudin, J.-J., and Pierre, L. (2012). Consistency of maximum- likelihood and variational estimators in the stochastic block model. | spa |
dc.relation.references | [Chen et al., 2024] Chen, J., Muscoloni, A., Abdelhamid, I., Wu, Y., and Cannistraci, C. V. (2024). Generalizing the auc-roc for unbalanced data, early retrieval and link prediction evaluation. | spa |
dc.relation.references | [CNN, 2007] CNN (2007). Blast damages u.s. embassy in athens. https://web.archive.org/we b/20070112141610/http://www.cnn.com/2007/WORLD/europe/01/12/athens.blast/index .html. Accessed: April 16, 2025. | spa |
dc.relation.references | [Dabbs and Junker, 2016] Dabbs, B. and Junker, B. (2016). Comparison of cross-validation methods for stochastic block models. arXiv preprint arXiv:1605.03000. | spa |
dc.relation.references | [Dominguez and Mourrat, 2024] Dominguez, T. and Mourrat, J.-C. (2024). Mutual information for the sparse stochastic block model. The Annals of Probability, 52(2):434–501. | spa |
dc.relation.references | [Erdos et al., 1960] Erd˝os, P., R´enyi, A., et al. (1960). On the evolution of random graphs. Publ. math. inst. hung. acad. sci, 5(1):17–60. | spa |
dc.relation.references | [Felleman and Van Essen, 1991] Felleman, D. J. and Van Essen, D. C. (1991). Distributed hie- rarchical processing in the primate cerebral cortex. Cerebral cortex (New York, NY: 1991), 1(1):1–47. | spa |
dc.relation.references | [Gelman et al., 1995] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian data analysis. Chapman and Hall/CRC. | spa |
dc.relation.references | [Heimlicher et al., 2012] Heimlicher, S., Lelarge, M., and Massouli´e, L. (2012). Community detec- tion in the labelled stochastic block model. arXiv preprint arXiv:1209.2910. | spa |
dc.relation.references | [Hoff, 2007] Hoff, P. (2007). Modeling homophily and stochastic equivalence in symmetric relational data. Advances in neural information processing systems, 20. | spa |
dc.relation.references | [Hoff, 2009] Hoff, P. D. (2009). A first course in Bayesian statistical methods, volume 580. Springer. | spa |
dc.relation.references | [Holland et al., 1983] Holland, P. W., Laskey, K. B., and Leinhardt, S. (1983). Stochastic block- models: First steps. Social networks, 5(2):109–137. | spa |
dc.relation.references | [Khanam et al., 2020] Khanam, K. Z., Srivastava, G., and Mago, V. (2020). The homophily prin- ciple in social network analysis. arXiv preprint arXiv:2008.10383. | spa |
dc.relation.references | [Kolaczyk and Csardi, 2020] Kolaczyk, E. D. and Cs´ardi, G. (2020). Statistical analysis of network data with R, volume 65. Springer. | spa |
dc.relation.references | [Lelarge et al., 2015] Lelarge, M., Massouli´e, L., and Xu, J. (2015). Reconstruction in the labelled stochastic block model. IEEE Transactions on Network Science and Engineering, 2(4):152–163. | spa |
dc.relation.references | [Luke, 2015] Luke, D. A. (2015). A user’s guide to network analysis in R, volume 72. Springer. | spa |
dc.relation.references | [Matias and Miele, 2017] Matias, C. and Miele, V. (2017). Statistical clustering of temporal net- works through a dynamic stochastic block model. Journal of the Royal Statistical Society Series B: Statistical Methodology, 79(4):1119–1141. | spa |
dc.relation.references | [Matias et al., 2018] Matias, C., Rebafka, T., and Villers, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika, 105(3):665–680. | spa |
dc.relation.references | [McDaid et al., 2013] McDaid, A. F., Murphy, T. B., Friel, N., and Hurley, N. J. (2013). Im- proved bayesian inference for the stochastic block model with application to large networks. Computational Statistics & Data Analysis, 60:12–31. | spa |
dc.relation.references | [Mehta et al., 2019] Mehta, N., Duke, L. C., and Rai, P. (2019). Stochastic blockmodels meet graph neural networks. In International Conference on Machine Learning, pages 4466–4474. PMLR. | spa |
dc.relation.references | [Newman and Girvan, 2004] Newman, M. E. and Girvan, M. (2004). Finding and evaluating com- munity structure in networks. Physical review E, 69(2):026113. | spa |
dc.relation.references | [Peixoto, 2014] Peixoto, T. P. (2014). Hierarchical block structures and high-resolution model selection in large networks. Physical Review X, 4(1):011047. | spa |
dc.relation.references | [Peixoto, 2017] Peixoto, T. P. (2017). Nonparametric bayesian inference of the microcanonical stochastic block model. Physical Review E, 95(1):012317. | spa |
dc.relation.references | [Peixoto, 2019] Peixoto, T. P. (2019). Bayesian stochastic blockmodeling. Advances in network clustering and blockmodeling, pages 289–332. | spa |
dc.relation.references | [Pensky and Zhang, 2019] Pensky, M. and Zhang, T. (2019). Spectral clustering in the dynamic stochastic block model. | spa |
dc.relation.references | [Regueiro Martinez, 2017] Regueiro Martinez, P. (2017). Scalable, Hierarchical and Dynamic Modeling of Communities in Networks. PhD thesis, UC Santa Cruz. | spa |
dc.relation.references | [Rhodes and Jones, 2009] Rhodes, C. and Jones, P. (2009). Inferring missing links in partially observed social networks. Journal of the operational research society, 60(10):1373–1383. | spa |
dc.relation.references | [Stanley et al., 2016] Stanley, N., Shai, S., Taylor, D., and Mucha, P. J. (2016). Clustering networ | spa |
dc.relation.references | [Sweet et al., 2014] Sweet, T. M., Thomas, A. C., and Junker, B. W. (2014). Hierarchical mi- xed membership stochastic blockmodels for multiple networks and experimental interventions. Handbook on mixed membership models and their applications, pages 463–488. | spa |
dc.relation.references | [Todesco, 2021] Todesco, V. (2021). Stochastic block model with k communities: a spectral algo- rithm with optimal recovery. Advances in network clustering and blockmodeling. | spa |
dc.relation.references | [Vaca-Ramirez and Peixoto, 2022] Vaca-Ramırez, F. and Peixoto, T. P. (2022). Systematic assess- ment of the quality of fit of the stochastic block model for empirical networks. Physical Review E, 105(5):054311. | spa |
dc.relation.references | [Wilson et al., 2019] Wilson, J. D., Stevens, N. T., and Woodall, W. H. (2019). Modeling and detecting change in temporal networks via the degree corrected stochastic block model. Quality and Reliability Engineering International, 35(5):1363–1378. | spa |
dc.relation.references | [Young, 1993] Young, M. P. (1993). The organization of neural systems in the primate cerebral cortex. Proceedings of the Royal Society of London. Series B: Biological Sciences, 252(1333):13– 18. | spa |
dc.relation.references | [Yun and Proutiere, 2016] Yun, S.-Y. and Proutiere, A. (2016). Optimal cluster recovery in the labeled stochastic block model. Advances in Neural Information Processing Systems, 29. | spa |
dc.relation.references | [Zachary, 1977] Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of anthropological research, 33(4):452–473. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas | spa |
dc.subject.proposal | Modelo jerárquico | spa |
dc.subject.proposal | Enfoque Bayesiano | spa |
dc.subject.proposal | MCMC | spa |
dc.subject.proposal | Redes cerebrales | spa |
dc.subject.proposal | Redes sociales | spa |
dc.subject.proposal | Estructura latente | spa |
dc.subject.proposal | Organizaciones multinivel | spa |
dc.subject.unesco | Análisis estadístico | spa |
dc.subject.unesco | Statistical analysis | eng |
dc.subject.unesco | Sistemas sociales | spa |
dc.subject.unesco | Social systems | eng |
dc.subject.unesco | Inferencia estadística | spa |
dc.subject.unesco | Statistical inference | eng |
dc.title | Modelo de agrupamiento jerárquico con doble instancia de agrupación | spa |
dc.title.translated | Hierarchical clustering model with double clustering instance | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1010191042.2025.pdf
- Tamaño:
- 32.3 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Estadística
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: