Modelo de agrupamiento jerárquico con doble instancia de agrupación

dc.contributor.advisorSosa Martínez, Juan Camilospa
dc.contributor.authorGarcía Montoya, Andrea Catalinaspa
dc.date.accessioned2025-08-25T22:33:37Z
dc.date.available2025-08-25T22:33:37Z
dc.date.issued2025
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEste trabajo presenta una variante del modelo de bloques estocásticos que implementa un enfoque de agrupamiento jerárquico en dos niveles distintos. En primera instancia, el modelo realiza una agrupación de los nodos individuales en bloques, para posteriormente ejecutar un segundo nivel de agrupamiento donde los bloques iniciales son reorganizados en estructuras de segundo orden. La metodología se fundamenta en un marco Bayesiano riguroso, empleando algoritmos de Cadenas de Markov Monte Carlo (MCMC) para la estimación de parámetros e inferencia de la estructura latente. La validación del modelo propuesto se realiza mediante un análisis en dos contextos: redes simuladas con características estructurales diversas y controladas, y redes empíricas de naturaleza heterogénea, incluyendo comunidades de áreas corticales cerebrales y redes de interacciones sociales. Finalmente, se presenta un análisis meticuloso de la convergencia de las cadenas MCMC para los parámetros mas significativos del modelo, así como una evaluación comparativa de la precisión en la recuperación de estructuras latentes, organizaciones multinivel y la bondad de ajuste a los datos observados. (Texto tomado de la fuente).spa
dc.description.abstractThis work presents a variant of the stochastic block model that implements a hierarchical clustering approach at two distinct levels. Initially, the model performs a grouping of individual nodes into blocks, to subsequently execute a second level of clustering where the initial blocks are reorganized into second-order structures. The methodology is based on a rigorous Bayesian framework, employing Markov Chain Monte Carlo (MCMC) algorithms for parameter estimation and inference of the latent structure. The validation of the proposed model is carried out through an analysis in two contexts: simulated networks with diverse and controlled structural characteristics, and empirical networks of heterogeneous nature, including communities of cortical brain areas and social interaction networks. Finally, a meticulous analysis of the convergence of the MCMC chains for the most significant parameters of the model is presented, as well as a comparative evaluation of the precision in the recovery of latent structures, multilevel organizations, and the goodness of fit to the observed data.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaTeoría de grafos y estadística bayesianaspa
dc.format.extentxi, 104 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88459
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.references[Abbe et al., 2015] Abbe, E., Bandeira, A. S., and Hall, G. (2015). Exact recovery in the stochastic block model. IEEE Transactions on information theory, 62(1):471–487.spa
dc.relation.references[Abbe et al., 2021] Abbe, E., Cornacchia, E., Gu, Y., and Polyanskiy, Y. (2021). Stochastic block model entropy and broadcasting on trees with survey. In Conference on Learning Theory, pages 1–25. PMLR.spa
dc.relation.references[Abbe and Sandon, 2015] Abbe, E. and Sandon, C. (2015). Recovering communities in the gene- ral stochastic block model without knowing the parameters. Advances in neural information processing systems, 28.spa
dc.relation.references[Airoldi et al., 2008] Airoldi, E. M., Blei, D., Fienberg, S., and Xing, E. (2008). Mixed membership stochastic blockmodels. Advances in neural information processing systems, 21.spa
dc.relation.references[Amini et al., 2024] Amini, A., Paez, M., and Lin, L. (2024). Hierarchical stochastic block model for community detection in multiplex networks. Bayesian Analysis, 19(1):319–345.spa
dc.relation.references[Caltagirone et al., 2017] Caltagirone, F., Lelarge, M., and Miolane, L. (2017). Recovering asym- metric communities in the stochastic block model. IEEE Transactions on Network Science and Engineering, 5(3):237–246.spa
dc.relation.references[Bhattacharjee et al., 2020] Bhattacharjee, M., Banerjee, M., and Michailidis, G. (2020). Change point estimation in a dynamic stochastic block model. Journal of machine learning research, 21(107):1–59.spa
dc.relation.references[Castaneda et al., 2012] Casta˜neda, L. B., Arunachalam, V., and Dharmaraja, S. (2012). Introduction to probability and stochastic processes with applications. John Wiley & Sons.spa
dc.relation.references[Celisse et al., 2012] Celisse, A., Daudin, J.-J., and Pierre, L. (2012). Consistency of maximum- likelihood and variational estimators in the stochastic block model.spa
dc.relation.references[Chen et al., 2024] Chen, J., Muscoloni, A., Abdelhamid, I., Wu, Y., and Cannistraci, C. V. (2024). Generalizing the auc-roc for unbalanced data, early retrieval and link prediction evaluation.spa
dc.relation.references[CNN, 2007] CNN (2007). Blast damages u.s. embassy in athens. https://web.archive.org/we b/20070112141610/http://www.cnn.com/2007/WORLD/europe/01/12/athens.blast/index .html. Accessed: April 16, 2025.spa
dc.relation.references[Dabbs and Junker, 2016] Dabbs, B. and Junker, B. (2016). Comparison of cross-validation methods for stochastic block models. arXiv preprint arXiv:1605.03000.spa
dc.relation.references[Dominguez and Mourrat, 2024] Dominguez, T. and Mourrat, J.-C. (2024). Mutual information for the sparse stochastic block model. The Annals of Probability, 52(2):434–501.spa
dc.relation.references[Erdos et al., 1960] Erd˝os, P., R´enyi, A., et al. (1960). On the evolution of random graphs. Publ. math. inst. hung. acad. sci, 5(1):17–60.spa
dc.relation.references[Felleman and Van Essen, 1991] Felleman, D. J. and Van Essen, D. C. (1991). Distributed hie- rarchical processing in the primate cerebral cortex. Cerebral cortex (New York, NY: 1991), 1(1):1–47.spa
dc.relation.references[Gelman et al., 1995] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian data analysis. Chapman and Hall/CRC.spa
dc.relation.references[Heimlicher et al., 2012] Heimlicher, S., Lelarge, M., and Massouli´e, L. (2012). Community detec- tion in the labelled stochastic block model. arXiv preprint arXiv:1209.2910.spa
dc.relation.references[Hoff, 2007] Hoff, P. (2007). Modeling homophily and stochastic equivalence in symmetric relational data. Advances in neural information processing systems, 20.spa
dc.relation.references[Hoff, 2009] Hoff, P. D. (2009). A first course in Bayesian statistical methods, volume 580. Springer.spa
dc.relation.references[Holland et al., 1983] Holland, P. W., Laskey, K. B., and Leinhardt, S. (1983). Stochastic block- models: First steps. Social networks, 5(2):109–137.spa
dc.relation.references[Khanam et al., 2020] Khanam, K. Z., Srivastava, G., and Mago, V. (2020). The homophily prin- ciple in social network analysis. arXiv preprint arXiv:2008.10383.spa
dc.relation.references[Kolaczyk and Csardi, 2020] Kolaczyk, E. D. and Cs´ardi, G. (2020). Statistical analysis of network data with R, volume 65. Springer.spa
dc.relation.references[Lelarge et al., 2015] Lelarge, M., Massouli´e, L., and Xu, J. (2015). Reconstruction in the labelled stochastic block model. IEEE Transactions on Network Science and Engineering, 2(4):152–163.spa
dc.relation.references[Luke, 2015] Luke, D. A. (2015). A user’s guide to network analysis in R, volume 72. Springer.spa
dc.relation.references[Matias and Miele, 2017] Matias, C. and Miele, V. (2017). Statistical clustering of temporal net- works through a dynamic stochastic block model. Journal of the Royal Statistical Society Series B: Statistical Methodology, 79(4):1119–1141.spa
dc.relation.references[Matias et al., 2018] Matias, C., Rebafka, T., and Villers, F. (2018). A semiparametric extension of the stochastic block model for longitudinal networks. Biometrika, 105(3):665–680.spa
dc.relation.references[McDaid et al., 2013] McDaid, A. F., Murphy, T. B., Friel, N., and Hurley, N. J. (2013). Im- proved bayesian inference for the stochastic block model with application to large networks. Computational Statistics & Data Analysis, 60:12–31.spa
dc.relation.references[Mehta et al., 2019] Mehta, N., Duke, L. C., and Rai, P. (2019). Stochastic blockmodels meet graph neural networks. In International Conference on Machine Learning, pages 4466–4474. PMLR.spa
dc.relation.references[Newman and Girvan, 2004] Newman, M. E. and Girvan, M. (2004). Finding and evaluating com- munity structure in networks. Physical review E, 69(2):026113.spa
dc.relation.references[Peixoto, 2014] Peixoto, T. P. (2014). Hierarchical block structures and high-resolution model selection in large networks. Physical Review X, 4(1):011047.spa
dc.relation.references[Peixoto, 2017] Peixoto, T. P. (2017). Nonparametric bayesian inference of the microcanonical stochastic block model. Physical Review E, 95(1):012317.spa
dc.relation.references[Peixoto, 2019] Peixoto, T. P. (2019). Bayesian stochastic blockmodeling. Advances in network clustering and blockmodeling, pages 289–332.spa
dc.relation.references[Pensky and Zhang, 2019] Pensky, M. and Zhang, T. (2019). Spectral clustering in the dynamic stochastic block model.spa
dc.relation.references[Regueiro Martinez, 2017] Regueiro Martinez, P. (2017). Scalable, Hierarchical and Dynamic Modeling of Communities in Networks. PhD thesis, UC Santa Cruz.spa
dc.relation.references[Rhodes and Jones, 2009] Rhodes, C. and Jones, P. (2009). Inferring missing links in partially observed social networks. Journal of the operational research society, 60(10):1373–1383.spa
dc.relation.references[Stanley et al., 2016] Stanley, N., Shai, S., Taylor, D., and Mucha, P. J. (2016). Clustering networspa
dc.relation.references[Sweet et al., 2014] Sweet, T. M., Thomas, A. C., and Junker, B. W. (2014). Hierarchical mi- xed membership stochastic blockmodels for multiple networks and experimental interventions. Handbook on mixed membership models and their applications, pages 463–488.spa
dc.relation.references[Todesco, 2021] Todesco, V. (2021). Stochastic block model with k communities: a spectral algo- rithm with optimal recovery. Advances in network clustering and blockmodeling.spa
dc.relation.references[Vaca-Ramirez and Peixoto, 2022] Vaca-Ramırez, F. and Peixoto, T. P. (2022). Systematic assess- ment of the quality of fit of the stochastic block model for empirical networks. Physical Review E, 105(5):054311.spa
dc.relation.references[Wilson et al., 2019] Wilson, J. D., Stevens, N. T., and Woodall, W. H. (2019). Modeling and detecting change in temporal networks via the degree corrected stochastic block model. Quality and Reliability Engineering International, 35(5):1363–1378.spa
dc.relation.references[Young, 1993] Young, M. P. (1993). The organization of neural systems in the primate cerebral cortex. Proceedings of the Royal Society of London. Series B: Biological Sciences, 252(1333):13– 18.spa
dc.relation.references[Yun and Proutiere, 2016] Yun, S.-Y. and Proutiere, A. (2016). Optimal cluster recovery in the labeled stochastic block model. Advances in Neural Information Processing Systems, 29.spa
dc.relation.references[Zachary, 1977] Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of anthropological research, 33(4):452–473.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalModelo jerárquicospa
dc.subject.proposalEnfoque Bayesianospa
dc.subject.proposalMCMCspa
dc.subject.proposalRedes cerebralesspa
dc.subject.proposalRedes socialesspa
dc.subject.proposalEstructura latentespa
dc.subject.proposalOrganizaciones multinivelspa
dc.subject.unescoAnálisis estadísticospa
dc.subject.unescoStatistical analysiseng
dc.subject.unescoSistemas socialesspa
dc.subject.unescoSocial systemseng
dc.subject.unescoInferencia estadísticaspa
dc.subject.unescoStatistical inferenceeng
dc.titleModelo de agrupamiento jerárquico con doble instancia de agrupaciónspa
dc.title.translatedHierarchical clustering model with double clustering instanceeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010191042.2025.pdf
Tamaño:
32.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: