Inducción a floración en yuca (Manihot esculenta Crantz)

dc.contributor.advisorCeballos, Hernánspa
dc.contributor.advisorMejía de Tafur, Maria Saraspa
dc.contributor.authorPineda Vargas, Lizzeth Marcelaspa
dc.date.accessioned2021-02-01T01:49:39Zspa
dc.date.available2021-02-01T01:49:39Zspa
dc.date.issued2020-07-07spa
dc.description.abstractLa floración en yuca (Manihot esculenta Crantz) está estrechamente relacionada con la ramificación. Aunque los agricultores prefieren los genotipos de tipo erecto, su utilidad como progenitores está limitada por su baja o nula producción de semillas. El objetivo de este estudio fue evaluar el efecto de la extensión del fotoperíodo de luz roja, la poda y la aplicación de benciladenina para inducir la floración en los genotipos de yuca GM 971-2 (ramificado, floración intermedia), CM 4919-2 (erecto, floración tardía), y SM 3348-29 y GM 3893-65 (erecto, tardío o sin floración). Los genotipos fueron cultivados en un experimento factorial en condiciones de fotoperiodo normal (FN) y de fotoperíodo extendido (FE). Además, las ramas jóvenes del primer y segundo eventos de ramificación (ER1 y ER2) se podaron y rociaron con benciladenina (BA). Las plantas sin poda y sin aplicación BA sirvieron como controles. En FE, el tiempo para generar un ER disminuyó para GM 971-2. Además, CM 4919-1, SM 3348-29 y GM 3893-65 produjeron de uno a varios ER en FE pero no en FN. La poda de las ramas jóvenes en ER1 y ER2 fortaleció la dominancia apical de la inflorescencia, aunque la baja frecuencia de flores femeninas por inflorescencia limitó la producción de semillas. El tratamiento con benciladenina aumentó el número de flores femeninas, por lo tanto, aumentó la producción de frutas y semillas. En comparación con los controles, el uso combinado de FE, poda y BA aumentó significativamente la producción promedio de semillas de 10 a 27, de 0 a 22 y de 0 a 60 semillas para GM 971-2, CM 4919-1 y SM 3348-29, respectivamente.spa
dc.description.abstractFlowering in cassava (Manihot esculenta Crantz) is closely linked to branching. Although farmers prefer erect-type genotypes, their usefulness as parents in breeding is limited by their low or no seed production. The objective of this study was to evaluate the effect of red light photoperiod extension, pruning and the application of benzyladenine to induce flowering in cassava genotypes GM 971-2 (branched, intermediate flowering), CM 4919-2 (erect, late flowering), and SM 3348-29 and GM 3893-65 (erect, late or non-flowering). The genotypes were cultivated in a factorial experiment under normal (FN) or extended photoperiod (FE) conditions. In addition, young branches from the first and second branching events (ER1 and ER2) were pruned and sprayed with benzyladenine (BA). Plants without pruning or BA application served as controls. In FE, the time to generate an ER decreased for genotype GM 971-2. Moreover, genotypes CM 4919-1, SM 3348-29 and GM 3893-65 produced from one to several ERs in FE but not in FN. The pruning of young branches in ER1 and ER2 strengthened the apical dominance of the inflorescence, although the low frequency of female flowers per inflorescence limited the production of seeds. Benzyladenin treatment increased the number of female flowers, therefore, increasing the production of fruits and seeds. In comparison to controls, the combined use of FE, pruning and BA significantly increased the averaged seed production from 10 to 27, 0 to 22 and 0 to 60 seeds for GM 971-2, CM 4919-1 and SM 3348-29, respectively.spa
dc.description.degreelevelMaestríaspa
dc.description.projectNext Gen: Flowering Induction on cassavaspa
dc.description.sponsorshipCentro Internacional de Agricultura Tropical (CIAT)spa
dc.format.extent84spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citation(Pineda Vargas, 2020)spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79001
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.departmentMaestría Ciencias Agrariasspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAbdelgadir, H.A., Jager, A.K., Johnson, S.D., y J. Van Staden. (2010). Influence of plant growth regulators on flowering, fruiting, seed oil content, and oil quality of Jatropha curcas. South African Journal of Botany. 76(3): 440-446. https://doi.org/10.1016/j.sajb.2010.02.088spa
dc.relation.referencesAlves, A. 2002. Cassava Botany and Physiology. Cassava: Biology, production, and utilization. CAB international, pp. 67-89. ISBN: 085199 5241spa
dc.relation.referencesArdila, G., Fisher, G. y García, J.C. (2015). La poda de tallos y racimos florales afecta la producción de frutos de lulo (Solanum quitoense var. Septentrionale). Revista Colombiana de Ciencias Hortícolas. 9:24-37. https://doi.org/10.17584/rcch.2015v9i1.3743spa
dc.relation.referencesAshikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E., Qian, Q., Kitano, H., y Matsuoka, M. (2005). Cytokinin Oxidase Regulates Rice Grain Production. Science 309: 741. https://doi.org/10.1126/science.1113373.spa
dc.relation.referencesCeballos, H., Morante, N., Calle, F., Lenis, J. I., Jaramillo, G., y Pérez, J. C. (2012). Cassava in the Third Millennium: Cassava Genetic Improvement. CIAT, Colombia. ISBN (CIAT): 978-958-694-112-9spa
dc.relation.referencesCeballos, H. y Ospina, B. (2012). Cassava in the Third Millennium: Modern Production, Processing, Use, and Marketing Systems. CIAT, Colombia. ISBN (CIAT): 978-958-694-112-9spa
dc.relation.referencesCeballos, H., Pérez, J.C., Barandica, O. J., Lenis, J.I., Morante, N., Calle, F., Pino, L., y Hershey, C.H. (2016). Cassava Breeding I: The Value of Breeding Value. Frontiers in Plant Science. 7:1227. doi: 10.3389/fpls.2016.01227spa
dc.relation.referencesCeballos, H., J. Jaramillo, S. Salazar, L. Pineda, F. Calle y T. Setter. (2017). Induction of flowering in cassava through grafting. Journal of Plant Breeding and Crop Science. Vol 9:19-29. https://doi.org/10.5897/JPBCS2016.0617spa
dc.relation.referencesChen, M., y Chory, J. (2011). Phytochrome signaling mechanisms and the control of plant development. Trends in Cell Biology. 11:21. https://doi.org/10.1016/j.tcb.2011.07.002spa
dc.relation.referencesChen, X., Yang, Q., Song, W., Wang, L., Guo, W., y Xue, X. (2017). Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Scientia Horticulturae, 223, 44–52. https://doi.org/10.1016/j.scienta.2017.04.037spa
dc.relation.referencesChoi, H.G., Moon, B.Y., y Kang, N.J. (2015). Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Scientia Horticulturae. 189:22-31. http://dx.doi.org/10.1016/j.scienta.2015.03.022spa
dc.relation.referencesClaypool, N.B., y Lieth, J.H. (2020). Physiological responses of pepper seedlings to various ratios of blue, green, and red light using LED lamps. Scientia Horticulturae. 268:109371. https://doi.org/10.1016/j.scienta.2020.109371spa
dc.relation.referencesCraig, D., y Runkle, E. (2016). An intermediate phytochrome photoequilibria from night-interruption lighting optimally promotes flowering of several long-days plants. Environmental and Experimental Botany. 121, 132-138. https://doi.org/10.1016/j.envexpbot.2015.04.004spa
dc.relation.referencesCroce, R., y van Amerongen, H. (2014). Natural strategies for photosynthetic light harvesting. Nature Chemical Biology. 10: 492-501. https://doi.org/10.1038/nchembio.1555.spa
dc.relation.referencesCuellar-Ortiz, S., Arrieta-Montiel, M., Acosta-Gallegos, J., y Covarrubias, A. (2008). Relationship between carbohydrate partitioning and drought resistance in common bean. Plant, Cell and Environment. 31:1399-1409. https://doi.org/10.1111/j.13653040.2008.01853.xspa
dc.relation.referencesDarko, E., Heydarizadeh, P., Schoef, B., y Sabzalian, M. (2018). Photosyntesis under artificial light: the shift in primary and secondary metabolism. Philosophical Transactions of The Royal Society. 369:20130243. http://dx.doi.org/10.1098/rstb.2013.0243spa
dc.relation.referencesDasumiati, Miftahudin, Triadiati, Hartana, A. y Pronowo, D. (2014). Increasing hermaphrodite flowers using plant growth regulators in andromonoecious Jatropha curcas. Hayati Journal of Biosciences. 21(3):111-120. https://doi.org/10.4308/hjb.21.3.111spa
dc.relation.referencesDavis, A. y Burns, C. (2016). Photobiology in protected horticulture. Food and Energy Security. 5(4):223-238. https://doi.org/10.1002/fes3.97spa
dc.relation.referencesDavies, P.J. (1995). Plant Hormones, Physiology, Biochemistry and Molecular Biology. (2da ed., p. 1). Ithaca, New York, U.S.A. Kluwer Academic Publishers. ISBN 0792329848spa
dc.relation.referencesDelalieux, S., Somers, B., Verstraeten, W.W., van Aardt, J.A.N., Keulemans, W. y Coppin, P. (2009). Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. International Journal of Remote Sensing. 30(8): 1887-1912. https://doi.org/10.1080/01431160802541556spa
dc.relation.referencesDemotes-Mainard, S., Perón, T., Corot, A., Bertheloot, J., Le Gourrierec, J., Pelleschi-Travier, S., Crespel, L., Morel, P., Huché-Thélier, L., Boumaza, R., Vian, A., Guérin, V., Leduc, N., y Sakr, S. (2016). Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany. 121:4-21. http://dx.doi.org/10.1016/j.envexpbot.2015.05.010spa
dc.relation.referencesEvers, J., van der Krol, A.R., Vos, J., y Struik, P.C. (2011). Understanding shoot branching by modelling form and function. Trends in Plant Science. 16:9. https://doi.org/10.1016/j.tplants.2011.05.004spa
dc.relation.referencesFalcioni, R., Moriwaki, T., Pattaro, M., Furlanetto, R. H., Nanni, M. R. y Camargos Antunes, W. (2020). High resolution leaf spectral signature as a tool for foliar pigment estimation displaying potential for species differentiation. Journal of Plant Physiology. 249: 153161. https://doi.org/10.1016/j.jplph.2020.153161spa
dc.relation.referencesFAO. (2013). Save and Grow: Cassava. A guide to sustainable production intensification. Food and Agriculture Organization of the United Nations. Rome.spa
dc.relation.referencesFisher, G., Almanza-Merchán, P.J., y Ramírez, F. (2012). Source-sink relationships in fruit species: A review. Revista Colombiana de Ciencias Hortícolas. 6(2), 238-253. https://doi.org/10.17584/rcch.2012v6i2.1980spa
dc.relation.referencesFu, Q., Niu, L., Zhang, Q., Pan, B.Z., He, H., y Xu, Z.F. (2014). Benzyladenine treatment promotes floral feminization and fruiting in a promising oilseed crop Plukenetia volubilis. Industrial Crops and Products. 59: 295-298. https://doi.org/10.1016/j.indcrop.2014.05.028spa
dc.relation.referencesGao, Y., Zhang, X., Guo, X., Sun, Y., y Zu, Y. (2006) Effects of tip-pruning treatment on source-sink regulation of Catharanthus roseus seedlings. Journal of Forestry Research. 17(4): 326-328. https://doi.org/10.1007/s11676-006-0075-4spa
dc.relation.referencesGautam, P., Terfa, M. T., Olsen, J.E., y Torre, S. (2015). Red and blue light effects on morphology and flowering of Petunia x hybrida. Scientia Hoticulturae, 184, 171-178. https://doi.org/10.1016/j.scienta.2015.01.004.spa
dc.relation.referencesGonçalves, W.M., de Oliveira and Silva, S., e Iglesias, C. (2002). Cassava Breeding. Crop Breeding and Applied Biotechnology. 2(4): 617-638. DOI:10.12702/19847033.v02n04a18spa
dc.relation.referencesGriffiths, C., Paul, M. J., y Foyer, C. H. (2016). Metabolite transport and associated sugar signaling systems underpinning source/sink interactions. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1857(10): 1715-1725. https://doi.org/10.1016/j.bbabio.2016.07.007 Ghosh, S., Watson, A., Gonzalez-Navarro, O. E., Ramirez-Gonzales, R. H., Yanes, L., Mendoza-Suárez, M., Simmonds, J., Wells, R., Rayner, T., Green, P. Hafeez, A., Hayta, S., Melton, R. E., Steed, A., Sarkar, A., Carter, J., Perkins, L., Lord, J., Tester, M., Osbourn, A., J. Moscou, M., Nicholson, P., Harwood, W., Martin, C., Domoney, C., Uauy, C., Hazard, B., Wulff, B. H. y Hickey, L. T. (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols. https://doi.org/10.1038/s41596-018-0072-zspa
dc.relation.referencesGitelson, A., y Solovchenko, A. (2018). Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance–and absorbance–based approaches. Journal of Photochemistry and Photobiology B: Biology. 178: 537-544. https://doi.org/10.1016/j.jphotobiol.2017.11.023spa
dc.relation.referencesGonzález, H., y Fuentes, N. (2017). Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de ciencias agrícolas. 34(1):17-31. http://dx.doi.org/10.22267/rcia.173401.60spa
dc.relation.referencesHaddad, Y., Clair-Maczulajtys, D., y Bory, G. (1995). Effects of curtain-like pruning on distribution and seasonal patterns of carbohydrate reserves in plane (Platanus acerifolia Wild) trees. Tree Physiology 15, 135-140- https://doi.org/10.1093/treephys/15.2.135spa
dc.relation.referencesHalsey, M., Olsen, K., Taylor, N. y Chavarriaga-Aguirre, P. (2008). Reproductive biology of cassava (Manihot esculenta Crantz) and isolation of experimental field trials. Crop Science. 48:49-58. https://doi.org/10.2135/cropsci2007.05.0279spa
dc.relation.referencesHershey, C. (1991). Mejoramiento genético de la yuca en América Latina. Centro Internacional de Agricultura Tropical CIAT. Vol 82. 181 p. Cali, Colombia. ISBN 958-9183-16-6spa
dc.relation.referencesHillocks, R.J., J.M. Thresh y A.C. Belloti. (2001). Cassava. Biology, production and utilization. ISBN 0 85199 524 1. 70-71 p.spa
dc.relation.referencesHwang, K., Susila, H., Nasim, Z., Jung, J.Y., y Ahn, J.H. (2019). Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Molecular Plant. https://doi.org/10.1016/j.molp.2019.01.002spa
dc.relation.referencesHyde, P.T., Guan, X., Abreu, V., y Setter, T.L. (2019). The anti-ethylene growth regulator silver thiosulfate (STS) increases flower production and longevity in cassava (Manihot esculenta Crantz). Plant Growth Regulation. 90: 441-453. https://doi.org/10.1007/s10725-019-00542-xspa
dc.relation.referencesIglesias, C., Clair, H., Calle, F., Bolaños, A. (1994). Propagating cassava (Manihot esculenta) by sexual seed. Experimental agriculture. 30:283-290. https://doi.org/10.1017/S0014479700024388spa
dc.relation.referencesJiménez, J. C., Leiva, L. Cardoso, J. A., French, A. N., y Thorp, K. R. (2020). Proximal sensing of Urochloa grasses increases selection accuracy. Crop & Pasture Science. https://doi.org/10.1071/CP19324spa
dc.relation.referencesJohnson, D.L. (2007). Pruning. Kuser, J. E. En Urban and Community Forestry in the Northeast. (2da ed., p. 237). New Brunswick, NJ, USA. Springer. ISBN 10-14020-4288-4spa
dc.relation.referencesKawano, K. (1980). Cassava, in: Fehr, W.R., Hadley, H.H. (eds.) Hybridization of Crop Plants. ASA, CSSA. Madison, Wisconsin, ISBN:9780891185666. pp. 225-233.spa
dc.relation.referencesKeating, B.A., Evenson, J.P., y Fukai, S. (1982). Environmental effects on growth and development of cassava (Manihot esculenta Crantz.). I. Crop Development. Field Crops Research, (5): 271-2981. https://doi.org/10.1016/0378-4290(82)90030-2spa
dc.relation.referencesLi, X.G., Su, Y.H., Zhao, X. Y., Li, W., Gao, X.Q., y Zhang, X.S. (2010). Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene. 450: 109-120. https://doi.org/10.1016/j.gene.2009.11.003spa
dc.relation.referencesLiang, S. (2004). Quantitative remote sensing of land surfaces. Capítulo 3. Canopy reflectance modeling. Wiley Interscience. ISBN 0-471-2816-2. P. 93. Lin, K., Huang, M., Huang, W., Huang, W., Hsu, M., Yang, Z., y Yang, C, (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitate). Scientia Horticulturae. 150, 86-91. https://doi.org/10.1016/j.scienta.2012.10.002spa
dc.relation.referencesLuo, Y., Pan, B.Z., Li, L., Yang, C.X., y Xu, Z.F. (2020). Developmental basis for flower sex determination and effects of cytokinin on sex determination in Plukenetia volubilis (Euphorbiaceae). Plant Reproduction 33:21-34. https://doi.org/10.1007/s00497-019-00382-9spa
dc.relation.referencesMahlein, A.K., Steiner, U., Dehne, H.W., y Oerke, E.C. (2010). Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agriculture. 11:413-431. https://doi.org/10.1007/s11119-010-9180-7spa
dc.relation.referencesMahlein, A. K., Rumpf, T., Welke, P., Dehne, H.W., Plümer, I., Steiner, U., y Oerke, E.C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment. 128: 21-30. https://doi.org/10.1016/j.rse.2012.09.019spa
dc.relation.referencesMaimaitiyiming, M., Miller, A.J. y Ghulam, A. (2016). Discriminating spectral signatures among and within two closely related grapevine species. Photogrammetric Engineering & Remote Sensing. 82(2): 51-62. https://doi.org/10.14358/PERS.82.2.51spa
dc.relation.referencesManzano, S., Martínez, C., Megías, Z., Gómez, P., Garrido, D., y Jamilena, M. (2011). The role of ethylene and brassinosteroids in the control of sex expression and flower development in Cucurbita pepo. Plant Growth Regulation. 65:213-221. https://doi.org/10.1007/s10725-011-9589-7spa
dc.relation.referencesManzano, S., Martínez, C., García, J.M., Megías, Z., y Jamilena, M. (2014). Involvement of ethylene in sex expression and female flower development in watermelon (Citrullus lanatus). Plant Physiology and Biochemistry. 85:96-104. http://dx.doi.org/10.1016/j.plaphy.2014.11.004spa
dc.relation.referencesMarcelis L.F.M., Heuvelink, E., Baan, L.R., Den Bakker, J., y Xue, L.B. (2004). Flower and fruit abortion in sweet pepper in relation to source and sink strength. Journal of Experimental Botany. Vol. 55, No. 406, pp 2261-2268. https://doi.org/10.1093/jxb/erh245spa
dc.relation.referencesMaurin V., y DesRochers, A. (2013). Physiological and growth responses to pruning season and intensity of hybrid poplar. Forest Ecology and Management. 304, 399-406. https://doi.org/10.1016/j.foreco.2013.05.039spa
dc.relation.referencesMeng, Q. y Runkle, E. (2016). Control of flowering using night-interruption and day extension LED lighting. Led Lighting for Urban Agriculture. pp 191-201. https://doi.org/10.1007/978-981-10-1848-0_14spa
dc.relation.referencesMuleo, R., Morini, S., y Casano, S. (2001). Photoregulation of growth and branching of plum shoots: physiological action of two photosystems. In Vitro Cellular and Developmental Biology – Plant. 37:609-617. https://doi.org/10.1007/s11627-001-0107-xspa
dc.relation.referencesNagatani, A. (2010). Phytochrome: structural basis for its functions. Current Opinion in Plant Biology. 13:565-570. https://doi.org/10.1016/j.pbi.2010.07.002spa
dc.relation.referencesNguyen, H. D. D., Pan, V., Pham, C., Valdez, R., Doan, K., y Nansen, C. (2020). Night-based hyperspectral imaging to study association of horticultural crop leaf reflectance and nutrient status. Computers and Electronics in Agriculture. 173: 105458. https://doi.org/10.1016/j.compag.2020.105458spa
dc.relation.referencesNi, J., Shah, F.A., Liu, W., Wang, Q., Wang, D., Zhao, W., Lu, W., Huang, S., Fu, S., y Wu, L. (2018). Comparative transcriptome analysis reveals the regulatory networks of cytokinin in promoting the floral feminization in the oil plant Sapium sebiferum. BMC Plant Biology. 18:96. https://doi.org/10.1186/s12870-018-1314-5spa
dc.relation.referencesNnedue, G. D. y Hamadina, E. I. (2018). Role of In situ seed desiccation in the control of seed viability of Cassava (Manihot esculenta crantz) hybrids TMS 95/0379 y TMS 98/0505. International Journal of Agriculture and Forestry. 8(2): 92-97. DOI: 10.5923/j.ijaf.20180802.07spa
dc.relation.referencesO’Brien, J. A. y Benková, E. (2013). Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science. 4:451. doi:10.3389/fpls.2013.00451spa
dc.relation.referencesOlsen, K.M. y Schaal, B. A. (2001). Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. American Journal Botany. 88(1):131-142.spa
dc.relation.referencesOmongo, C. A., Kawuki, R. Bellotti, A., Alicai, T., Baguma, Y., Maruthi, M.N., Bua, A. y Colvin, J. (2012). African cassava whitefly, Bemisia tabaci, resistance in african and south American cassava genotypes. Journal of Integrative Agriculture. 11(2): 327-336. DOI: 10.1016/S2095-3119(12)60017- 3spa
dc.relation.referencesOuzounis T., Rosenqvist, E., y Ottosen, C. (2015). Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience, 50(8), 1128415–1135.spa
dc.relation.referencesPan B.Z. y, Xu, Z.F. (2011). Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. Plant Growth Regul 30:166-174. DOI 10.1007/s00344-010-9179-3spa
dc.relation.referencesPark, Y. y Runkle, E. S. (2018). Spectral effects of light-emiting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: white versus blue plus red radiation. PLoS ONE. 13(8): e0202396. https://doi.org/10.1371/journal. pone.0202386spa
dc.relation.referencesPerera, P.I.P., Quintero, M. Dedicova, B. Kularatne, J.D.J.S., Ordoñez, C.A., y Ceballos, H. (2012). Comparative morphology, biology, and histology of reproductive development in three lines of Manihot esculenta Crantz (Euphorbiaceae: Crotonoideae). Annals of Botany Plants. 5(1): pls046. doi: 10.1093/aobpla/pls046.spa
dc.relation.referencesPineda, L.M., Morante, N. Salazar, S., Hyde, P. Setter, T., y Ceballos, H. (2018). Induction of flowering I: photoperiod extension through a red lights district. IVth GCP21 International Cassava Conference, Cotonou, Benin. June 2018.spa
dc.relation.referencesPrado, L., Marques, A. P., Saito, E. A., de Souza, M., Marcato, J., Takashi, E., Nobuhiro, N. y Creste, J. (2019). Improvement of leaf nitrogen content inference in Valencia-orange trees applying spectral analysis algorithms in UAV mounted-sensor images. International Journal of Applied Earth Observation and Geoinformation. 83:101907. https://doi.org/10 .1016/j.jag.2019.101907spa
dc.relation.referencesRamirez, J.A., Handa, I.T., Posada, J.M., Delagrange, S., y Messier, C. (2018). Carbohydrate dynamics in roots, stems, and branches after maintenance pruning in two common urban tree species of North America. Urban forestry and Urban Greening. 30, 24-31. https://doi.org/10.1016/j.ufug.2018.01.013spa
dc.relation.referencesRamos, L.N., Pineda, L.M., Wasek, I., Wedzony, M., y Ceballos, H. (2019). Reproductive biology in cassava: stigma receptivity and pollen tube growth. Communicative and Integrative Biology. 12:96-111. https://doi.org/10.1080/19420889.2019.1631110spa
dc.relation.referencesRockwell, N. C., y Lagarias, J. C. (2017). Phytochrome diversification in cianobacteria and eukaryotic algae. Current Opinion in Plant Biology. 37:87-93. http://dx.doi.org/10.1016/j.pbi.2017.04.003spa
dc.relation.referencesRuzin, S. E. (1999). Plant microtechnique and microscopy. Oxford University Press. ISBN: 978-0-19-508956-1spa
dc.relation.referencesSablinskas, V. (2003). Instrumentation. En G. Gauglitz y T. Vo-Dinh (Ed.). Handbook of Spectroscopy. p. 63. Wiley-Vch Verlag GmbH & Co. KGaA. ISBN 3-527-29782-0spa
dc.relation.referencesSamach, A. y Smith, H. M. (2013). Constraints to obtaining consistent annual yields in perennials. II: Environment and fruit load affect induction of flowering. Plant Science. 207:168-176. https://doi.org/10.1016/j.plantsci.2013.02.006.spa
dc.relation.referencesShakya, R., y Lal, M.A. (2018). Photoassimilate Translocation. Plant Physiology, Development and Metabolism. Pp 227-251. DOI: 10.1007/978-981-13-2023-1_6spa
dc.relation.referencesSilva, L., Parreira, R., Neves, J. R., Cunha Alves, A.A., y de Oliveira, E.J. (2018). Grafting as a estrategy to increase flowering of cassava. Scientia Horticulturae. 240: 544-551. https://doi.org/10.1016/j.scienta.2018.06.070spa
dc.relation.referencesSingh, R., Tiwari, S., Sanjay, M.G. y Dwivedi, S.K. (2018). Evaluation of plant bio-regulators (PBRs) application on the fruit and seed yield of Jatropha curcas: A bio-fuel plant. International Journal of Complementary and Alternative Medicine. 11(5):288-292. DOI: 10.15406/ijcam.2018.11.00414.spa
dc.relation.referencesSterling, A., y Melgarejo, L.M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology. 156:1063-1076. https://doi.org/10.1007/s10658-020-01961-7spa
dc.relation.referencesTaiz, Z., y Zeiger, E. (2006). Fisiología Vegetal. El fitocromo y el control por la luz del desarrollo vegetal. Volumen 2. 713 p.spa
dc.relation.referencesTakeda, F., Glenn, D. M., y Stutte, G. W. (2008). Red light affects flowering under long days in a short-day strawberry cultivar. HortScience, 43(7), 2245–2247.spa
dc.relation.referencesThwe, A.A., Kasemsap, P. Vercambre, G., Gay, F., Phattaralerphong, J., y Gautier, H. (2020). Impact of red and blue nets on physiological and morphological traits, fruit yield and quality of tomato (Solanum lycopersicum Mill). Scientia Horticulturae. 264: 109185. https://doi.org/10.1016/j.scienta.2020.109185spa
dc.relation.referencesUSDA. (2003). United States Department of Agriculture. Cassava (Manihot esculenta Crantz): Plant Guide.spa
dc.relation.referencesValentini, G., y Arroyo, L. (2003). La poda en frutales y ornamentales. Instituto Nacional de Tecnología Agropecuaria (INTA). Buenos Aires, Argentina. ISSN 0327-3737.spa
dc.relation.referencesViršilė, A., Brazaitytėa, A., Vaštakaitė-Kairienėa, V., Miliauskienėa, J., Jankauskienėa, J., Novičkovasb, A., Laužikėa, K. y Samuolienėa, G. (2020). The distinct impact of multi-color LED light on nitrate, amino acid, soluble sugar, and organic acid contents in red and green leaf lettuce cultivated in controlled environment. Food Chemistry. 310:125799. https://doi.org/10.1016/j.foodchem.2019.125799spa
dc.relation.referencesWerner, T. y Schmülling, T. (2009). Cytokinin action in plant development. Current Opinion in Plant Biology. 12:527-538. DOI 10.1016/j.pbi.2009.07.002spa
dc.relation.referencesWhite, A., Rogers, A., Rees, M., y Osborne, C.P. (2016) How can we make plants grow faster? A source-sink perspective on growth rate. Journal of Experimental Botany. 67(1): 31-45. https://doi.org/10.1093/jxb/erv447spa
dc.relation.referencesXiong, G.S., Li, J.Y., y Wang, Y.H. (2009). Advances in the regulation and crosstalks of phytohormones. Chinese Sci Bull. 54: 4069-4082. doi: 10.1007/s11434- 009-0629-xspa
dc.relation.referencesYamada, K. y Osakabe, Y. (2018). Sugar compartmentation as an environmental stress adaptation strategy in plants. Seminars in Cell and Developmental Biology. 83:106-114. https://doi.org/10.1016/j.semcdb.2017.12.015spa
dc.relation.referencesYang, C., Lee, W. S. y Williamson, J. G. (2012). Classification of blueberry fruit and leaves based on spectral signatures. Biosystems engineering. 113(4): 351-362. https://doi.org/ 10.1016/j.biosystemseng.2012.09.009spa
dc.relation.referencesYe, T., Li, Y., Zhang, J., Hou, W., Zhou, W., Lu, J., Xing, Y. y Li, X. (2019). Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice. Global Ecology and Conservation. 20: e0753. https://doi.org/10.1016/j.gecco.2019.e00753spa
dc.relation.referencesZhang, Y., Zheng, L., Li, M., Deng, X. y Ji, R. (2015). Predicting apple sugar content based on spectral characteristics of apple tree leaf in different phenological phases. Computers and Electronics in Agriculture. 112: 20-27. https://doi.org/10.1016/j.compag.2015.01.006spa
dc.relation.referencesZhang, Y., Wang, X. R., y Chen, J. (2019). Effects of light quality and photoperiod of light emitting LED on growth and biomass accumulation of shallot. Journal of Horticulture and Foresty. 11(5): 78-83. DOI: 10.5897/JHF2019.0586spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalExtensión del fotoperiodospa
dc.subject.proposalbenzyladenineeng
dc.subject.proposalbenciladeninaspa
dc.subject.proposalpruningeng
dc.subject.proposalbranchingeng
dc.subject.proposalcassava breedingeng
dc.titleInducción a floración en yuca (Manihot esculenta Crantz)spa
dc.title.alternativeInduction of flowering in Cassava (Manihot esculenta Crantz)spa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_93fcspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033715441.2020.pdf
Tamaño:
2.75 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: