Análisis espectral de operadores de Schrödinger ergódicos
dc.contributor.advisor | Álvarez Bilbao, Rafael José | |
dc.contributor.advisor | Bautista Díaz, Serafín | |
dc.contributor.author | Silva Barbosa, Pablo Blas Tupac | |
dc.contributor.researchgroup | Sisdimunal | spa |
dc.date.accessioned | 2022-10-11T06:05:40Z | |
dc.date.available | 2022-10-11T06:05:40Z | |
dc.date.issued | 2022-10-07 | |
dc.description | ilustraciones, fotografías | spa |
dc.description.abstract | En este trabajo final de maestría estudiamos los tipos espectrales de las familias de operadores de Schrödinger unidimensionales discretos {Hω}ω∈Ω en las que el potencial de Hω está dado por Vω(n) = f(T nω), para n ∈ Z, donde f : Ω → R es una función continua y T es un homeomorfismo ergódico en un espacio compacto Ω. Con base en la investigación de Boshernitzan y Damanik (2008), definimos las propiedades de repetición topológica y métrica en el sistema dinámico {Ω, T} y demostramos detalladamente que cada una de estas propiedades es condición suficiente para que el espectro puramente continuo sea una propiedad genérica de {Hω}ω∈Ω. La principal herramienta del trabajo es el lema de Gordon, del cual propone mos una demostración paso a paso y analizamos sus implicaciones. También exponemos y demostramos dos resultados propios que generalizan el teorema central de la investigación. citada y discutimos ejemplos de aplicación. (Texto tomado de la fuente) | spa |
dc.description.abstract | In this thesis we study the spectral types of the families of discrete one-dimensional Schrödinger operators {Hω}ω∈Ω in which the potential of Hω is given by Vω(n) = f(T nω), for n ∈ Z, where f : Ω → R is a continuous function and T is an ergodic homeomorphism on a compact space Ω. Based on the research of Boshernitzan and Damanik (2008), we define the topological and metric repetition properties on the dynamical system {Ω, T} and show that each of these properties is a sufficient condition for the purely continuous spectrum to be a generic property of {Hω}ω∈Ω. The main tool of the work is Gordon’s lemma, of which we propose a step-by-step demonstration and analyze its implications. We propose two ge neralizations of the main theorem of the above research and discuss examples of application. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.researcharea | Sistemas dinámicos | spa |
dc.format.extent | x, 72 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/82361 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Matemáticas | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Avila, A. and Damanik, D. (2005). Generic singular spectrum for ergodic schrödinger ope rators. Duke Mathematical Journal, 130:393–400. | spa |
dc.relation.references | Axler, S. (2015). Linear Algebra Done Right. Springer-Verlag, New York | spa |
dc.relation.references | Axler, S. (2020). Measure, Integration Real Analysis. Springer-Verlag, New York. | spa |
dc.relation.references | Boshernitzan, M. and Damanik, D. (2008). Generic continuous spectrum for ergodic schrö dinger operators. Communications in Mathematical Physics, 283:647–662. | spa |
dc.relation.references | Brom, J. (1977). The theory of almost periodic functions in constructive mathematics. Pacific Journal of Mathematics, 70:67–81 | spa |
dc.relation.references | Catsigeras, E. (2013). Teoría Ergódica. De los Atractores Topológicos y Estadísticos. Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela. | spa |
dc.relation.references | Cornfeld, I., Fomin, S., and Sinái, Y. (1982). Ergodic Theory. Springer-Verlag, New York. | spa |
dc.relation.references | Cycon, H., Froese, R., Kirsch, W., and Simon, B. (1987). Schrödinger Operators with Appli cations to Quantum Mechanics and Global Geometry. Springer-Verlag, Germany. | spa |
dc.relation.references | Damanik, D. (2017). Schrödinger operators with dynamically defined potentials. Electronic Journal of Differential Equations, 37:1681–1764. | spa |
dc.relation.references | Damanik, D. and Stolz, G. (2000). A generalization of gordon’s theorem and applications to quasiperiodic schrödinger operators. Electronic Journal of Differential Equations, 55:1–8. | spa |
dc.relation.references | Fan, Y. and Han, R. (2018). Generic continuous spectrum for multi-dimensional quasiperio dic schrödinger operators with rough potentials. Journal of Spectral Theory, 8:1635–1645. | spa |
dc.relation.references | Huang, W., Xu, L., and Yi, Y. (2010). Entropy of dynamical systems with repetition property. Journal of Dynamics and Differential Equations, 23:683–693. | spa |
dc.relation.references | Jitomirskaya, S. (2007). Ergodic schrödinger operators (on one foot). Proceeings of Symposia in Pure Mathematical, 76:613–647. | spa |
dc.relation.references | Khinchin, A. Y. (1964). Continued Fractions. The University of Chicago Press, Chicago | spa |
dc.relation.references | Kirsch, W. (2007). An Invitation to Random Schrödinger Operators. Institut für Mathematik Ruhr-Universität Bochum, Bochum. | spa |
dc.relation.references | Kohlman, M. (2018). Schrödinger Operators and their Spectra. Georg-August-Universität, Göttingen. | spa |
dc.relation.references | Kreyszig, E. (1978). Introductory Functional Analysis with Applications. John Wiley and Sons, Canada | spa |
dc.relation.references | Lenz, D. (2002). Singular spectrum of lebesgue measure zero for one-dimensional quasicrys tals. Communications in Mathematical Physics, 227:119–120. | spa |
dc.relation.references | Moreira, J. (2020). Ergodic Theory. University of Warwick, United Kingdom | spa |
dc.relation.references | Oxtoby, J. (1980). Measure and Category. A Survey of the Analogies Between Topological and Measure Spaces. Springer-Verlag, New York. | spa |
dc.relation.references | Reed, M. and Simon, B. (1980). Methods of modern mathematical physics. Academic Press, Inc., San Diego. | spa |
dc.relation.references | Renn, J. (2013). Schrödinger and the Genesis of Wave Mechanics. Max Planck Institute for the History of Science, Berlin. | spa |
dc.relation.references | Simon, B. (1982). Almost periodic schrödinger operators: A review. Advances in Applied Mathematics, 3:463–490. | spa |
dc.relation.references | Simon, B. (2000). Schrödinger operators in the twentieth century. Journal of Mathematical Physics, 41:3523–3555 | spa |
dc.relation.references | Spitzer, F. (1976). Principles of Random Walk. Springer-Verlag, New York | spa |
dc.relation.references | Viana, M. and Oliveira, K. (2016). Foundations of Ergodic Theory. Cambridge University Press, Cambridge. | spa |
dc.relation.references | Walters, P. (1982). An Introduction to Ergodic Theory. Springer-Verlag, New York | spa |
dc.relation.references | Zhecheva, I. (2008). Ergodic Properties of Random Schrödinger Operators. Williams College, Massachusetts | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas | spa |
dc.subject.proposal | Operadores de Schrödinger | spa |
dc.subject.proposal | Espectro continuo | spa |
dc.subject.proposal | Ergodicidad | spa |
dc.subject.proposal | Propiedad de repetición | spa |
dc.subject.proposal | Propiedad de repetición topológica | spa |
dc.subject.proposal | Propiedad de repetición métrica | spa |
dc.subject.proposal | Schrödinger operators | eng |
dc.subject.proposal | Continuous spectrum | eng |
dc.subject.proposal | Ergodicity | eng |
dc.subject.proposal | Repetition property | eng |
dc.subject.proposal | Topological repetition property | eng |
dc.subject.proposal | Metric repetition property | eng |
dc.title | Análisis espectral de operadores de Schrödinger ergódicos | spa |
dc.title.translated | Spectral analysis of ergodic Schrödinger operators | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TesisPabloSilva.pdf
- Tamaño:
- 1.43 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: