Relación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.

dc.contributor.advisorReynaldi, Sebastián
dc.contributor.authorTabares Cardona, Sara
dc.date.accessioned2021-10-02T16:43:59Z
dc.date.available2021-10-02T16:43:59Z
dc.date.issued2020-05-14
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl método “Biological Monitoring Working Party” (BMWP) identifica taxones de macroinvertebrados acuáticos con un puntaje del uno al diez, excluyendo el nueve. El puntaje diez corresponde a los taxones más sensibles a la materia orgánica (MO). Sin embargo, la MO disminuye las concentraciones medianas letales (LC50) para el cobre (Cu), puesto que la MO forma complejos con los iones, impidiendo de esta manera la entrada de Cu a los organismos acuáticos. Lo anterior, sugiere tolerancia al Cu en taxones con alta puntuación del BMWP. Mediante curvas de distribución de sensibilidad (SSD) se compararon las LC50 para CuSO4 descargadas de ECOTOX (https://cfpub.epa.gov/ecotox/). Rutinas en lenguaje R combinaron los paquetes “dplyr”, “ssdtools” y “ggplot2” para seleccionar las LC50 determinadas en especies de taxones incluidos en el BMWP bajo condiciones comparables y finalmente, construir mediante ellas, curvas SSD. El taxón más tolerante fue Perlidae con puntaje diez. Pero, Ephemerellidae, igualmente con puntaje diez, resultó afectado a una concentración poco mayor a la que afectó el 50% de los taxones (HC50). El taxón más sensible fue Unionidae con puntaje seis. Sin embargo, Gammaridae, igualmente con puntaje seis, resultó afectado a una concentración mayor que HC50. La especie más tolerante fue Asellus aquaticus con puntaje tres. Pero, Biomphalaria glabrata, igualmente con puntaje tres, resultó afectada a una concentración menor a la que afectó al 25% de las especies. La especie más sensible fue Lampsilis siliquoidea con puntaje seis. Pero, Gammarus lacustris, también con puntaje seis, resultó afectada a una concentración mayor de la que afectó el 75% de las especies. Además, la sensibilidad de las especies fue diferente dentro de un mismo taxón. Estos resultados sugieren que no existe relación entre el puntaje BMWP y la tolerancia al Cu, la cual varia de especie a especie. (Texto tomado de la fuente)spa
dc.description.abstractThe Biological Monitoring Working Group (BMWP) method ranks aquatic macroinvertebrate taxa with a score of one to ten, excluding nine. Score ten corresponds to the taxa most sensitive to organic matter (OM). However, OM forms complexes with metal ions, preventing their entry into aquatic organisms. OM decreased lethal median concentrations (LC50) for copper. This effect suggests tolerance to copper in taxa with high BMWP scores. Sensitivity distribution curves (SSD) compared LC50s para CuSO4 of downloaded from ECOTOX (https://cfpub.epa.gov/ecotox/). Routines in R language combined the packages "dplyr", "ssdtools" and "ggplot2" to select LC50s determined in species of BMWP taxa under comparable conditions, and build the SSD curves with them. The most tolerant taxon was Perlidae, scored with ten. However, Ephemerellidae, also scored with ten, resulted affected for a concentration slightly higher than that which affected 50% of the taxa (HC50). The most sensitive taxon was Unionidae scored with six. However, Gammaridae, also scored with six, was affected at a concentration higher than HC50. The most tolerant species was Asellus aquaticus, scored with three. However, Biomphalaria glabrata, also scored with three, resulted affected for a concentration lower than which affected 25% of the species. The most sensitive species was Lampsilis siliquoidea, scored with six. However, Gammarus lacustris, also scored with six, was affected for a concentration higher than which affected 75% of the species. Furthermore, the sensitivity of the species was different within the same taxon. These results suggest that there is no relationship between the BMWP score and copper tolerance, and the copper sensitivity varies from specie to specie.spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Medio Ambiente y Desarrollospa
dc.format.extentxii, 27 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80356
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Medio Ambiente y Desarrollospa
dc.relation.referencesAdams, W., Blust, R., Dwyer, R., Mount, D., Nordheim, E., Rodriguez, P. H., & Spry, D. (2020). Bioavailability Assessment of Metals in Freshwater Environments: A Historical Review. Environmental Toxicology and Chemistry, 39(1), 48–59. https://doi.org/10.1002/etc.4558spa
dc.relation.referencesAgencia Europea de Sustancias y Mezclas Químicas (ECHA). (2008). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.10: Characterisation of dose [concentration]-response for environment. Retrieved from https://echa.europa.eu/documents/10162/13632/information_requirements_r10_en.p df/bb902be7-a503-4ab7-9036-d866b8ddce69spa
dc.relation.referencesAgencia Europea de Sustancias y Mezclas Químicas (ECHA). (2017). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.7a: Endpoint specific guidance (ECHA-17-G-18-EN). https://doi.org/http://dx.doi.org/10.2823/337352spa
dc.relation.referencesBazzanti, Marcello, Mastrantuono, L., & Pilotto, F. (2017). Depth-related response of macroinvertebrates to the reversal of eutrophication in a Mediterranean lake: Implications for ecological assessment. Science of the Total Environment, 579, 456– 465. https://doi.org/10.1016/j.scitotenv.2016.11.073spa
dc.relation.referencesBazzanti, Marcelo, Mastrantuono, L., & Solimini, A. G. (2012). Selecting macroinvertebrate taxa and metrics to assess eutrophication in different depth zones of Mediterranean lakes. Fundam. Appl. Limnol, 180/2, 133–143. https://doi.org/10.1127/1863- 9135/2012/0200spa
dc.relation.referencesBossuyt, B. T. A., & Janssen, C. R. (2005). Copper toxicity to different field-collected cladoceran species: intra- and inter-species sensitivity. Environmental Pollution, 136(1), 145–154. https://doi.org/10.1016/j.envpol.2004.11.023spa
dc.relation.referencesBossuyt, B. T. A., Muyssen, B. T. A., & Janssen, C. R. (2005). Relevance of generic and site‐specific species sensitivity distributions in the current risk assessment procedures for copper and zinc. Environmental Toxicology and Chemistry: An International Journal, 24(2), 470. https://doi.org/10.1897/03-067r.1spa
dc.relation.referencesCarew, M. E., Miller, A. D., & Hoffmann, A. A. (2011). Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring. Ecotoxicology, 20(3), 595–606. https://doi.org/10.1007/s10646-011-0615-3spa
dc.relation.referencesChamberlain, S. A., & Szöcs, E. (2013). taxize: taxonomic search and retrieval in R.F1000Research, 2, 2. https://doi.org/10.12688/f1000research.2-191.v2spa
dc.relation.referencesChapman, P. M., Farrell, M. A., & Brinkhurst, R. O. (1982). Relative tolerances of selected aquatic oligochaetes to individual pollutants and environmental factors. Aquatic Toxicology, 2, 47–67. https://doi.org/http://dx.doi.org/10.1016/0166-445X(82)90005-4spa
dc.relation.referencesComber, S. D. W., Merrington, G., Sturdy, L., Delbeke, K., & van Assche, F. (2008). Copper and zinc water quality standards under the EU Water Framework Directive: The use of a tiered approach to estimate the levels of failure. Science of The Total Environment, 403(1-3), 12–22.spa
dc.relation.referencesEnvironmental Protection Agency (EPA). (2005). Washington, DC, EPA/600/X-05/027. Ewell, W. S., Gorsuch, J. W., Kringle, R. O., Robillard, K. A., & Spiegel, R. C. (1986). Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environmental Toxicology and Chemistry, 5(9), 831–840. https://doi.org/10.1002/etc.5620050908spa
dc.relation.referencesGillis, P. L., McGeer, J. C., Mackie, G. L., Wilkie, M. P., & Ackerman, J. D. (2010). The effect of natural dissolved organic carbon on the acute toxicity of copper to larval freshwater mussels (glochidia). Environmental Toxicology and Chemistry, 29(11), 2519–2528. https://doi.org/10.1002/etc.299spa
dc.relation.referencesKooijman, S. A. L. M. (1987). A safety factor for LC50 values allowing for differences in sensitivity among species. Water Research, 21(3), 269–276. https://doi.org/10.1016/0043-1354(87)90205-3spa
dc.relation.referencesMetcalfe-Smith, J (1994). Biological water‐quality assessment of rivers: use of macroinvertebrate communities. The Rivers Handbook: Hydrological and Ecological Principles, 144–170. https://doi.org/https://doi.org/10.1002/9781444313871.ch8spa
dc.relation.referencesPaisley, M. ., Trigg, D. ., & Walley, W (2014). ). Revision of the biological monitoring working party (BMWP) score system: derivation of present‐only and abundance‐ related scores from field data. River Res. Applic, 30(7), 887–904. https://doi.org/http://dx.doi.org/10.1002/rra.2686spa
dc.relation.referencesPosthuma, L., Suter, G. W., & Traas, T. P. (2001). Species Sensitivity Distributions in Ecotoxicology. Boca Raton: CRC press. https://doi.org/https://doi.org/10.1201/9781420032314spa
dc.relation.referencesRitz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015). Dose-Response Analysis Using R.PLOS ONE, 10(12), e0146021. https://doi.org/10.1371/journal.pone.0146021spa
dc.relation.referencesRodriguez, P., & Reynoldson, T. B. (2011). Appendices. In The Pollution Biology of Aquatic Oligochaetes (pp. 225–261). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-1718-3_7spa
dc.relation.referencesRogevich, E. C., Hoang, T. C., & Rand, G. M. (2008). The Effects of Water Quality and Age on the Acute Toxicity of Copper to the Florida Apple Snail, Pomacea paludosa. Archives of Environmental Contamination and Toxicology, 54(4), 690–696. https://doi.org/10.1007/s00244-007-9106-1spa
dc.relation.referencesRyan, A. C., Tomasso, J. R., & Klaine, S. J. (2009). Influence of pH, hardness, dissolved organic carbon concentration, and dissolved organic matter source on the acute toxicity of copper to Daphnia magna in soft waters: implications for the biotic ligand model. Environmental Toxicology and Chemistry, 28(8), 1663. https://doi.org/10.1897/08-361.1spa
dc.relation.referencesSchutten, G., Hong, C. C., & Leeper, T. (2016). ReadODS: read and write ODS files.Retrieved from https://cran.r-project.org/package=readODSspa
dc.relation.referencesTechnical Guidance for Deriving Environmental Quality Standards (TGD). (2011). Common Implementation Strategy for the Water Framework Directive (2000/60/EC). https://doi.org/10.2779/43816spa
dc.relation.referencesThorley, J., & Schwarz, C. (2018). ssdtools: An R package to fit Species Sensitivity Distributions. Journal of Open Source Software, 3(31), 1082. https://doi.org/10.21105/joss.01082spa
dc.relation.referencesUnited States Environmental Protection Agency (USEPA). (2020). ecotox knowledgebase.Retrieved from https://cfpub.epa.gov/ecotox/spa
dc.relation.referencesWickham, H., Chang, W., Henry, L., Pedersen, T., Takahashi, K., Wilke, C., & Woo, K. (2018). Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. Retrieved from https://cran.r-project.org/web/packages/ggplot2/spa
dc.relation.referencesWickham, H., François, R., Henry, L., & Müller, K. (2018). dplyr: A Grammar of Data Manipulation. R package versión 0.7.6. Retrieved from https://cran.r- project.org/package=dplyrspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.lembAquatic invertebrateseng
dc.subject.lembAnimales invertebradosspa
dc.subject.lembAquatic ecologyeng
dc.subject.lembEcología acuáticaspa
dc.subject.otherBiological Monitoring Working Party (BMWP)eng
dc.subject.proposalSSDeng
dc.subject.proposalLC50eng
dc.subject.proposalBMWPeng
dc.subject.proposalCobrespa
dc.subject.proposalMateria Orgánicaspa
dc.subject.proposalCoppereng
dc.subject.proposalOrganic mattereng
dc.titleRelación entre el método BMWP y la sensibilidad al cobre en macroinvertebrados acuáticos de aguas continentales.spa
dc.title.translatedRelationship between the BMWP method and copper sensitivity in aquatic macroinvertebrates of continental water.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053823272.2021.pdf
Tamaño:
1.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Medio Ambiente y Desarrollo

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: