Estudio de la actividad de un extracto de cálices de Physalis peruviana sobre estrés oxidativo en roedores con diabetes mellitus tipo II

dc.contributor.advisorOspina Giraldo, Luis Fernandospa
dc.contributor.advisorModesti Costa, Geisonspa
dc.contributor.authorValderrama Parra, Ivonne Helenaspa
dc.contributor.researchgroupPrincipios Bioactivos en Plantas Medicinalesspa
dc.date.accessioned2024-01-16T00:39:47Z
dc.date.available2024-01-16T00:39:47Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEstudio de la actividad de un extracto de cálices de Physalis peruviana sobre estrés oxidativo en roedores con diabetes mellitus tipo II Se ha demostrado que el estrés oxidativo juega un papel importante en el desarrollo de complicaciones diabéticas, siendo esta enfermedad un trastorno metabólico caracterizado principalmente por obesidad, hiperglucemia, perfil lipídico alterado, estrés oxidativo y compromiso vascular. Physalis peruviana es una planta utilizada en la medicina tradicional colombiana por sus conocidas actividades como regulador de la glucosa. Este estudio tuvo como objetivo evaluar la actividad antidiabética de un extracto estandarizado de P. peruviana y sus fracciones (en Acetato de Etilo, Butanol y Acuosa). Después de diferentes ensayos de detección, se seleccionó la FBuOH (fracción butanólica) por sus efectos promisorios la para pasar a la siguiente etapa del estudio en ensayos crónicos in vivo en dos biomodelos; uno fue un modelo de diabetes inducida por una dieta High Fat Diet/Streptozotocin (HFD/STZ) en ratones CD-1 y el segundo fue el modelo de síndrome metabólico inducido por la administración de fructosa en agua de bebida, en ratones CD- 1. La FBuOH resultó útil para regular la glucosa en sangre, así como el índice de resistencia a la insulina. Además, el perfil lipídico mostró una mejora en comparación con el grupo no tratado y la dosis de 100 mg/kg demostrando mayor protección contra el estrés oxidativo (niveles de catalasa, superóxido dismutasa y malondialdehído). El análisis histopatológico en varios tejidos evidenció preservación de la estructura pancreática, hepática y renal en la mayoría de los animales tratados. La fracción butanólica de Physalis peruviana a 100 mg/kg mostró resultados beneficiosos en cuanto disminuir la hiperglucemia, hiperlipidemia, el estado de estrés oxidativo y el inflamatorio. En experimentos in vivo la fracción butanólica moduló la expresión de citoquinas proinflamatorias IL-6 e TNF- α en hígado de animales con síndrome metabólico, así como en el modelo de células RAW 264.7, demostrando además en este modelo celular protección frente a la formación de nitritos. La fracción butanólica mejoró el estatus diabético por disminución del estrés oxidativo y las complicaciones adyacentes, por lo que podría considerarse beneficioso como coadyuvante en la terapia de la diabetes mellitus. (Texto tomado de la fuente).spa
dc.description.abstractStudy of the activity of an extract of Physalis peruviana calyxes on oxidative stress in rodents with type II diabetes mellitus It has been shown that oxidative stress plays an important role in the development of diabetic complications, being this disease, a metabolic disorder characterized mainly by obesity, hyperglycemia, altered lipid profile, oxidative stress, and vascular compromise. Physalis peruviana is a plant used in traditional Colombian medicine for its known activities as glucose regulation. This study aimed to evaluate the antidiabetic activity of a standardized extract from P. peruviana and its fraction (FAcEt, FBuOH, and H2O). After different detection tests, and checking the promising effects from the fractions, FBuOH (the butanolic fraction) was selected for its promising effects, to continue to the next stage of the study in chronic in vivo in two biomodels; one is a model of diabetes induced by a High Fat Diet/Streptozotocin (HFD/STZ) diet in CD-1 mice and the second was the model of metabolic syndrome induced by the administration of fructose in drinking water, in CD-1 mice. The FBuOH is exhibited to regulate the blood glucose and insulin resistance index. Also, the lipid profile exhibited improvement compared to the non-treated group, and the dose of 100 mg/kg demonstrated major protection against oxidative stress (catalase, superoxide dismutase, and malondialdehyde levels). Histopathological in several tissues evidenced structure preservation of most of the animals treated. The butanol fraction from Physalis peruviana at 100 mg/kg improved hyperglycemia, hyperlipidemia, oxidative stress, and inflammatory outcome. In in vivo experiments, the butanolic fraction modulated the expression of proinflammatory cytokines IL-6 and TNF-α in the liver of animals with metabolic syndrome, as well as in the RAW 264.7 cell model, also demonstrating in this cell model protection against the formation of nitrites. The butanolic fraction improved diabetic status by reducing oxidative stress and related complications, so it could be considered beneficial as an adjuvant in diabetes mellitus therapy. Keywords: Flavonoid, rutin, polyphenols, antioxidant, lipid profile, hyperglycemia, metabolic syndrome, Physalis peruviana.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Farmacéuticasspa
dc.format.extentxviii, 126 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85315
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticasspa
dc.relation.indexedBiremespa
dc.relation.referencesAbdelhameed, R.F.A., Ibrahim, A.K., Elfaky, M.A., Habib, E.S., Mahamed, M.I., Mehanna, E.T., Darwish, K.M., Khodeer, D.M., Ahmed, S.A., Elhady, S.S., 2021. Antioxidant and anti-inflammatory activity of cynanchum acutum l. Isolated flavonoids using experimentally induced type 2 diabetes mellitus: Biological and in silico investigation for nf-κb pathway/mir-146a expression modulation. Antioxidants. https://doi.org/10.3390/antiox10111713spa
dc.relation.referencesAbu-Amsha, R., Croft, K.D., Puddey, I.B., Proudfoot, J.M., Beilin, L.J., 1996. Phenolic content of various beverAGEs determines the extent of inhibition of human serum and low density lipoprotein oxidation in vitro: Identification and mechanism of action of some cinnamic acid derivatives from red wine. Clinical Science. 91, 449–458. https://doi.org/10.1042/cs0910449spa
dc.relation.referencesAdjimani, J.P., Asare, P., 2015. Antioxidant and free radical scavenging activity of iron chelators. Toxicology Reports. 2, 721–728. https://doi.org/10.1016/j.toxrep.2015.04.005spa
dc.relation.referencesAl-Romaiyan, A., Liu, B., Asare-Anane, H., Maity, C.R., Chatterjee, S.K., Koley, N., Biswas, T., Chatterji, A.K., Huang, G.C., Amiel, S.A., Persaud, S.J., Jones, P.M., 2010. A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro. Phytotherapy Research. 24, 1370–1376. https://doi.org/10.1002/ptr.3125spa
dc.relation.referencesAlam, S., Sarker, M., Sultana, T., Chowdhury, M., Rashid, M., Chaity, N., Zhao, C., Xiao, J., Hafez, E., Khan, S., Mohamed, I., 2022. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Frontiers in Endocrinology. 13. https://doi.org/10.3389/fendo.2022.800714spa
dc.relation.referencesAlbu, E., Lupaşcu, D., Filip, C., Jaba, I.M., Zamosteanu, N., 2013. The influence of a new rutin derivative on homocysteine, cholesterol and total antioxidative status in experimental diabetes in rat. Farmacia. 61, 1167–1177.spa
dc.relation.referencesAmerican Diabetes Association, 2019. ¿Tiene riesgo de padecer de diabetes tipo 2? ¿Qué sigue? 2019.spa
dc.relation.referencesAng, S., Eckling, K., Arcone, M., Akuda, Y., Sao, R. 2011. Synergistic , additive , and antagonistic effects of food mixtures on total antioxidant capacities. Journal of Agriculture Food Chemistry. 59, 960–968. https://doi.org/10.1021/jf1040977spa
dc.relation.referencesAntia, B.S., Okokon, J.E., Okon, P.A., 2005. Hypoglycemic activity of aqueous leaf extract of Persea americana Mill. Indian Journal of Pharmacology. 37, 325–326. https://doi.org/10.4103/0253-7613.16858spa
dc.relation.referencesAragón, D.M., Echeverry, S.M., Valderrama, I.H., Costa, G.M., Ospina, L.F., 2018. Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. Journal of Applied Pharmaceutical Science. 8, 10–18. https://doi.org/10.7324/JAPS.2018.8502spa
dc.relation.referencesAragón Novoa, D.M., Ospina Giraldo, L.F., Ramos Rodríguez, F.A., Castellanos Hernández, L., Costa Modesti, G., Barreto Silva, F.R.M., 2021. Passiflora ligularis Juss. (granadilla): estudios quimicos y farmacológicos de una es planta con potencial terapéutico. Universidad Nacional de Colombia, Bogotá,Colombia. https://doi.org/https://doi.org/10.36385/FCBOG-12-0spa
dc.relation.referencesArias Díaz, J., Balibrea, J., 2007. Modelos animales de intolerancia a la glucosa y diabetes tipo 2. Revista Nutrición Hospitalaria. 22, 160–168.spa
dc.relation.referencesAristizábal, A.M. (Corporación U.L., 2013. Uchuva (Physalis peruviana L): estudio de su potencial aplicación en el desarrollo de alimentos con características funcionales. Tesis Maest. 1–43.spa
dc.relation.referencesArumugam, G., Manjula, P., Paari, N., 2013. A review: Anti diabetic medicinal plants used for diabetes mellitus. Journal of Acute Disease. 2, 196–200. https://doi.org/10.1016/S2221- 6189(13)60126-2spa
dc.relation.referencesAsano, N., Kato, A., Matsui, K., Watson, A.A., Nash, R.J., Molyneux, R.J., Hackett, L., Topping, J., Winchester, B., 1997. The effects of calystegines isolated from edible fruits and vegetables on mammalian liver glycosidases. Glycobiology 7. 1085–1088. https://doi.org/10.1093/glycob/7.8.1085spa
dc.relation.referencesAssadi, S., Shafiee, S.M., Erfani, M., Akmali, M., 2021. Antioxidative and antidiabetic effects of Capparis spinosa fruit extract on high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats. Biomedicine & Pharmacotheraphy. 138, 111391. https://doi.org/10.1016/j.biopha.2021.111391spa
dc.relation.referencesBernal, C.A., Castellanos, L., Aragón, D.M., Martínez-Matamoros, D., Jiménez, C., Baena, Y., Ramos, F.A., 2018. Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as α-amylase inhibitors. Carbohydrate research. 461, 4–10. https://doi.org/10.1016/j.carres.2018.03.003spa
dc.relation.referencesBernal, M., Correa, Q., 1998. Especies vegetales promisorias de los países del convenio Andrés Bello. Editora Guadalupe Ltda, Bogotá,Colombia.spa
dc.relation.referencesBlack, P.H., 2003. The inflammatory response is an integral part of the stress response: Implications for atherosclerosis, insulin resistance, type II diabetes and metabolic syndrome X. Brain Behavior, and Immunity. 17, 350–364. https://doi.org/10.1016/S0889- 1591(03)00048-5spa
dc.relation.referencesBoden, G., Homko, C., Barrero, C.A., Stein, T.P., 2017. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Science Translational medicine. 7, 304. https://doi.org/10.1126/scitranslmed.aac4765.spa
dc.relation.referencesBoudreau, A., Poulev, A., Ribnicky, D.M., Raskin, I., Rathinasabapathy, T., Richard, A.J., Stephens, J.M., 2019. Distinct fractions of an Artemisia scoparia extract contain compounds with novel adipogenic bioactivity. Frontiers in Nutrition. 6, 1–13. https://doi.org/10.3389/fnut.2019.00018spa
dc.relation.referencesBradmus, J.A. Adedosu, T.O., Fatoki, J.O., Adegbite V.A., Adaramoye O.A., Odunola, O., 2011. Lipid Peroxidation Inhibition and Antiradical Activities of Some Leaf Fractions of Mangifera Indica. Acta Pol Pharm. 68, 23–29.spa
dc.relation.referencesBrand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5spa
dc.relation.referencesCameron, A.R., Morrison, V.L., Levin, D., Mohan, M., Forteath, C., Beall, C., McNeilly, A.D., Balfour, D.J.K., Savinko, T., Wong, A.K.F., Viollet, B., Sakamoto, K., Fagerholm, S.C., Foretz, M., Lang, C.C., Rena, G., 2016. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circulation Research. 119, 652–665. https://doi.org/10.1161/CIRCRESAHA.116.308445spa
dc.relation.referencesCardona, M.I., 2014. Aporte a la estandarización de un extracto de cálices de Physalis peruviana. Tesis de maestría. Universidad Nacional de Colombia.spa
dc.relation.referencesCardona, M.I., Toro, R.M., Costa, G.M., Ospina, L.F., Castellanos, L., Ramos, F.A., Aragón, D.M., 2017. Influence of extraction process on antioxidant activity and rutin content in Physalis peruviana calyces extract. Journal Applied Pharmaceutical Science. 7, 164–168. https://doi.org/10.7324/JAPS.2017.70623spa
dc.relation.referencesCarvalho, E.N. de, Carvalho, N.A. de, Ferreira, L.M., 2003. Experimental model of induction of diabetes mellitus in rats. Acta Cirurgica Brasilera. 18, 60–64. https://doi.org/10.1590/s0102-86502003001100009spa
dc.relation.referencesCazarolli, L., Zanatta, L., Alberton, E., Bonorino Figueiredo, M.S., Folador, P., Damazio, R., Pizzolatti, M., Barreto Silva, F.R., 2008. Flavonoids: Prospective Drug Candidates. Mini Reviews in Medicinal Chemistry. 8, 1429–1440. https://doi.org/10.2174/138955708786369564spa
dc.relation.referencesChasquibol, N., Yacono, J., 2015. Composicion fitoquimica del aceite de las semillas del fruto del “Aguaymanto”, Physalis peruviana L. Revista de la Sociedad Química del Perú. 81, 311–318.spa
dc.relation.referencesCooper, M.A., Ryals, J.M., Wu, P.Y., Wright, K.D., Walter, K.R., Wright, D.E., 2017. Modulation of diet-induced mechanical allodynia by metabolic parameters and inflammation. Journal of the Peripheral Nervous System. 22, 39–46. https://doi.org/10.1111/jns.12199.spa
dc.relation.referencesCosta, G.M., 2013. Estudo Químico de Espécies Brasileiras e Colombianas de Passiflora. Tesis de Doctorado. Universidad Federal de Santa Catarina.spa
dc.relation.referencesCryer, P.E., 2016. Hypoglycemia in Type 2 Diabetes. Type 2 Diabetes melluitus: An evidence based Approach to Practical Management. Second Ed. 28, 227–236. https://doi.org/10.3109/9780849379581-19spa
dc.relation.referencesDarwish, A.G., Mahmoud, H.I., Refaat, I., 2020. Antioxidative and Antidiabetic Effect of Goldenberries juice and pomace on Experimental Rats Induced with streptozotocin In vitro. Journal of Food Dairy Science. 11, 277–283. https://doi.org/10.21608/jfds.2020.118371spa
dc.relation.referencesDe La O-Quezada, G.A., Damaris, ;, Ojeda-Barrios, L., Ofelia, ¶ ;, Hernández-Rodríguez, A., Sánchez-Chávez, E., Jaime Martínez-Tellez, ;, 2011. Biomasa, Prolina Y Parámetros Nitrogenados En Plántulas De Nogal Bajo Estrés Hídrico Y Fertilización Nitrogenada. Revista Chapingo. Serie Horticultura. 17, 13–18.spa
dc.relation.referencesDe Paiva, L.B., Goldbeck, R., dos Santos, W.D., Squina, F.M., 2013. Ferulic acid and derivatives: Molecules with potential application in the pharmaceutical field. Brazilian Journal of Pharmeutical Science. 49, 395–411. https://doi.org/10.1590/S1984- 82502013000300002spa
dc.relation.referencesDerbré, S., Gatto, J., Pelleray, A., 2010. Automating a 96-well microtiter plate assay for identification of AGEs inhibitors or inducers : Application to the screening of a small natural. Analytical & Bioanalytical Chemistry. 398, 1747–1758. https://doi.org/10.1007/s00216-010-4065-1spa
dc.relation.referencesDevkar, S.T., Muthal, A.P., Patil, P. V., Mukherjee-Kandhare, A.A., Kandhare, A.D., Jagtap, S.D., Bodhankar, S.L., Hegde, M. V., 2021. Evaluation of the physicochemical stability and biological activity of withanolide rich fraction from Withania somnifera root by hplc and cyclic voltammetry: A simple, reliable, and cost-effective approach. Latin American Journal of Pharmacy. 40, 946–956.spa
dc.relation.referencesDinan, L.N., Sarker, S.D., Šik, V., 1997. 28-Hydroxywithanolide E. from Physalis peruviana. Phytochemistry 44, 509–512. https://doi.org/10.1016/S0031-9422(96)00553-5spa
dc.relation.referencesDiagnosis and Classification of Diabetes Mellitus, 2014. Diabetes Care. 37.spa
dc.relation.referencesDomínguez Moré, G.P., Cardona, M.I., Sepúlveda, P.M., Echeverry, S.M., Oliveira Simões, C.M., Aragón, D.M., 2021. Matrix effects of the hydroethanolic extract of calyces of Physalis peruviana l. On rutin pharmacokinetics in wistar rats using population modeling. Pharmaceutics. 13,(4), 535. https://doi.org/10.3390/pharmaceutics13040535spa
dc.relation.referencesDos Santos, M., Prestes, A.S., de Macedo, G.T., Ecker, A., Barcelos, RP., Boligon, A.A & Barbosa, N.V. 2018. Syzygium cumini leaf extract inhibits LDL oxidation, but does not protect the liproprotein from glycation. Journal of Ethnopharmacology. 210, 69–79. https://doi.org/10.1016/j.jep.2017.08.033spa
dc.relation.referencesDos Santos, J.M., Alves Junior, V.V., Boleti, A.P. de A., Lima, E.S., Carollo, C.A., dos Santos, E.L., Rabelo, L.A., Alfredo, T.M., Melo da Cunha, J. da S., de Picoli Souza, K., 2018. Antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea. PLoS One. 13 (6). https://doi.org/10.1371/journal.pone.0197071spa
dc.relation.referencesEndale, M & Endalo M. 2015. Recent trends in rapid dereplication of natural product extracts: an update. Journal of Coastal Life Medicine. 3 (3), 178-182 https://doi.org/10.12980/jclm.3.201514j66spa
dc.relation.referencesEzzat, S.M., Abdallah, H.M.I., Yassen, N.N., Radwan, R.A., Mostafa, E.S., Salama, M.M., Salem, M.A., 2021. Phenolics from Physalis peruviana fruits ameliorate streptozotocin induced diabetes and diabetic nephropathy in rats via induction of autophagy and apoptosis regression. Biomedicine & Pharmacotherapy. 142. https://doi.org/10.1016/j.biopha.2021.111948spa
dc.relation.referencesFischer, G., Almanza-Merchán, P.J., Miranda, D., 2014. Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura. 36, 01–15. https://doi.org/10.1590/0100-2945-441/13spa
dc.relation.referencesFlórez, V., Fischer, G., 2000. Producción, poscosecha y exportación de la uchuva (Physalis peruviana l.). Editorial Universidad Nacional de Colombia. https://doi.org/: 958-8051-74-6spa
dc.relation.referencesFolch, J., Lees, M., Sloane, G.H., 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry. 226, 497–509. https://doi.org/10.1016/s0021-9258(18)64849-5spa
dc.relation.referencesFontana, D., Cazarolli, L.H., Lavado, C., Mengatto, V., Figueiredo,., Guedes, A., Pizzolatti, M., Silva, F., 2011. Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition . 27, 1161–1167. https://doi.org/10.1016/j.nut.2011.01.008spa
dc.relation.referencesFranco, L.A., Ocampo, Y.C., Gómez, H.A., De La Puerta, R., Espartero, J.L., Ospina, L.F., 2014. Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity. Planta Médica. 80, 1605–1614. https://doi.org/10.1055/s-0034-1383192spa
dc.relation.referencesFranco LA, Matiz GE, Calle J, Pinzón R, O.L., 2007. Actividad antinflamatoria de extractos y fracciones obtenidas de cálices de Physalis peruviana L. Biomédica. 27, 110–5.spa
dc.relation.referencesFuangchan, A., Sonthisombat, P., Seubnukarn, T., Chanouan, R., Chotchaisuwat, P., Sirigulsatien, V., Ingkaninan, K., Plianbangchang, P., Haines, S.T., 2011. Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. Journal of Ethnopharmacoly. 134, 422–428. https://doi.org/10.1016/j.jep.2010.12.045spa
dc.relation.referencesFurman, B.L., 2015. Streptozotocin-Induced Diabetic Models in Mice and Rats. Current Protocols in Pharmacology. 70, 5.47.1-5.47.20. https://doi.org/10.1002/0471141755.ph0547s70spa
dc.relation.referencesGastell, P., De Alejo, J. 2000. Métodos para medir el daño oxidativo. Revista Cubana de Medicina Militar. 29, 192–198.spa
dc.relation.referencesGiacco, F., Brownlee, M., 2010. Oxidative stress and diabetic complications. Circulation Research. 107, 1058–1070. https://doi.org/10.1161/circresaha.110.223545spa
dc.relation.referencesGironés-Vilaplana, A., Baenas, N., Villaño, D., Speisky, H., García-Viguera, C., Moreno, D.A., 2014. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. Journal of Functional Foods. 7, 599–608. https://doi.org/10.1016/j.jff.2013.12.025spa
dc.relation.referencesGoss, M J, Nunes, M.L., Machado, I.D., Merlin, L., Macedo, N.B., Silva, A.M., Bresolin, TM., Santin, J.R., 2018. Peel flour of Passiflora edulis Var. Flavicarpa supplementation prevents the insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats. Biomedicine & Pharmacotherapy. 102, 848–854. https://doi.org/10.1016/j.biopha.2018.03.137spa
dc.relation.referencesGuo, M., Perez, C., Wei, Y., Rapoza, E., Su, G., Bou-abdallah, F., Chasteen, N.D., 2007. Iron-binding properties of plant phenolics and cranberry ’ s bio-effects. Dalton Transactions. 43, 4951–4961. https://doi.org/10.1039/b705136kspa
dc.relation.referencesHuang, X.L., He, Y., Ji, L.L., Wang, K.Y., Wang, Y.L., Chen, D.F., Geng, Y., OuYang, P., Lai, W.M., 2017. Hepatoprotective potential of isoquercitrin against type 2 diabetes-induced hepatic injury in rats. Oncotarget. 8, 101545–101559. https://doi.org/10.18632/oncotarget.21074spa
dc.relation.referencesHussain, S.A.R., 2007. Silymarin as an adjunct to glibenclamide therapy improves long-term and postprandial glycemic control and body mass index in type 2 diabetes. Journal of Medicinal Food. 10, 543–547. https://doi.org/10.1089/jmf.2006.089spa
dc.relation.referencesIbrahim, M.A., Habila, J.D., Koorbanally, N.A., Islam, M.S., 2016. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. Journal of Ethnopharmacoly. 183, 103-111. https://doi.org/10.1016/j.jep.2016.02.018spa
dc.relation.referencesImran, A., Butt, M.S., Arshad, M.S., Arshad, M.U., Saeed, F., Sohaib, M., Munir, R., 2018. Exploring the potential of black tea based flavonoids against hyperlipidemia related disorders. Lipids in Health and Disease. 17, 1–16. https://doi.org/10.1186/s12944-018-0688-6spa
dc.relation.referencesIshibashi, Y., Matsui, T., Nakamura, N., Sotokawauchi, A., Higashimoto, Y., Yamagishi, S.I., 2017. Methylglyoxal-derived hydroimidazolone-1 evokes inflammatory reactions in endothelial cells via an interaction with receptor for advanced glycation end products. Diabetes and Vascular Disease Research. 14, 450–453. https://doi.org/10.1177/1479164117715855spa
dc.relation.referencesJanssen, B., De Celle, T., Debets, J., Brouns, A., Callahan, M., Smith, T., 2004. Effects of anesthetics on systemic hemodynamics in mice. American Journal of Physiology-Heart and Circulatory Physiology. 287, 1618–1625. https://doi.org/10.1152/ajpheart.01192.2003spa
dc.relation.referencesJe, H.D., Shin, C.Y., Park, S.Y., Yim, S.H., Kum, C., Huh, I.H., Kim, J.H., Sohn, U.D., 2002. Combination of vitamin C and rutin on neuropathy and lung damage of diabetes mellitus rats. Archives of Pharmacal Research. 25, 184–190. https://doi.org/10.1007/BF02976561spa
dc.relation.referencesJi, S., Zhu, C., Gao, S., Shao, X., Chen, X., Zhang, H., Tang, D., 2021. Morus alba leaves ethanol extract protects pancreatic islet cells against dysfunction and death by inducing autophagy in type 2 diabetes. Phytomedicine. 83, 153478. https://doi.org/10.1016/j.phymed.2021.153478spa
dc.relation.referencesJiang, P., Burczynski, F., Campbell, C., Pierce, G., Austria, J.A., Briggs, C.J., 2007. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Research International. 40, 356–364. https://doi.org/10.1016/j.foodres.2006.10.009spa
dc.relation.referencesJoo, T., Sowndhararajan, K., Hong, S., Lee, J., Park, S.Y., Kim, S., Jhoo, J.W., 2014. Inhibition of nitric oxide production in LPS-stimulated RAW 264.7 cells by stem bark of Ulmus pumila L. Saudi Journal of Biological Science. 21, 427–435. https://doi.org/10.1016/j.sjbs.2014.04.003spa
dc.relation.referencesJurado, B., Aparcana, I.M., Villarreal, L.S., Ramos, E., Hurtado, P.E., Acosta, K.M. Calixto, M.R. 2016. Evaluación del contenido de polifenoles totales y la capacidad antioxidante de los extractos etanólicos de los frutos de Aguaymanto (Physalis peruviana L.) de diferentes lugares del Perú. Revista de la Sociedad Química del Perú. 82, 272–279. https://doi.org/10.37761/rsqp.v82i3.58spa
dc.relation.referencesKamalakkannan, N., Prince, P.S.M., 2006. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic & Clinical Pharmacology & Toxicology. 98, 97–103. https://doi.org/10.1111/j.1742-7843.2006.pto_241.spa
dc.relation.referencesKappel, V.D., Cazarolli, L.H., Pereira, D.F., Postal, B.G., Madoglio, F.A., Buss, Z. da S., Reginatto, F.H., Silva, F.R.M.B., 2013. Beneficial effects of banana leaves (Musa x paradisiaca) on glucose homeostasis: Multiple sites of action. Brazilian Journal of Pharmacognosy. 23, 706–715. https://doi.org/10.1590/S0102-695X2013005000062spa
dc.relation.referencesKappel, V.D., Frederico, M.J.S., Postal, B.G., Mendes, C.P., Cazarolli, L.H., Silva, F.R.M.B., 2013. The role of calcium in intracellular pathways of rutin in rat pancreatic islets: Potential insulin secretagogue effect. European Journal of Pharmacology. 702, 264–268. https://doi.org/10.1016/j.ejphar.2013.01.055spa
dc.relation.referencesKasali, F.M., Kadima, J.N., Mpiana, P.T., Ngbolua-Koto-te-Nyiwa, Tshibangu, D.S.-T., 2013. Assessment of antidiabetic activity and acute toxicity of leaf extracts from Physalis peruviana L. in guinea-pig. Asian Pacific Journal of Tropical Biomedicine. 3, 841–846. https://doi.org/doi.org/10.1016/S2221-1691(13)60166-5spa
dc.relation.referencesKasali, F.M., Tusiimire, J., Kadima, J.N., Tolo, C.U., Weisheit, A., Agaba, A.G., 2021. Ethnotherapeutic Uses and Phytochemical Composition of Physalis peruviana L.: An Overview. The Scientific World Journal. https://doi.org/10.1155/2021/5212348spa
dc.relation.referencesKasali, F.M., Tuyiringire, N., Peter, E.L., Ahovegbe, L.Y., Ali, M.S., Tusiimire, J., Ogwang, P.E., Kadima, N.J., Agaba, A.G., 2022. Chemical constituents and evidence-based pharmacological properties of Physalis peruviana L .: An overview. Jounal of Herbmed Pharmacology. 1, 35–47. https://doi.org/10.34172/jhp.2022.04spa
dc.relation.referencesKennedy, M.L., María, E., Diarte, G., Monserrat, C., Escurra, C., Campuzano, M.Á., Farmacología, D. De, Ciencias, F. De, Campus, Q., 2010. Evaluación preliminar de la toxicidad, el efecto sobre el comportamiento y la actividad analgésica de Aloysia virgata var. platiphylla en ratones.spa
dc.relation.referencesKurien, B.T., Hensley, K., Bachmann, M., Scofield, R.H., 2006. Oxidatively modified autoantigens in autoimmune diseases. Free Radical Biology and Medicine. 41, 549–556. https://doi.org/10.1016/j.freeradbiomed.2006.05.020spa
dc.relation.referencesLaguerre, M., Lecomte, J., Villeneuve, P., 2007. Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Progress in Lipid Research. 46 (5), 224-282. https://doi.org/10.1016/j.plipres.2007.05.002spa
dc.relation.referencesLan, Y.H., Chang, F.R., Pan, M.J., Wu, C.C., Wu, S.J., Chen, S.L., Wang, S.S., Wu, M.J., Wu, Y.C., 2009. New cytotoxic withanolides from Physalis peruviana. Food Chemistry. 116, 462–469. https://doi.org/10.1016/j.foodchem.2009.02.061spa
dc.relation.referencesLee, K.H., Cha, M., Lee, B.H., 2020. Neuroprotective effect of antioxidants in the brain. International Journal of Molecular Science. 21 (19), 7152. https://doi.org/10.3390/ijms21197152spa
dc.relation.referencesLenzen, S., 2008. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 51, 216–226. https://doi.org/10.1007/s00125-007-0886-7spa
dc.relation.referencesLenzen, S., Drinkgern, J., Tiedge, M., 1996. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radical Biology and Medicine. 20 (3), 463–466. https://doi.org/10.1016/0891-5849(96)02051-5spa
dc.relation.referencesLevin-Arama, M., Abraham, L., Waner, T., Harmelin, A., Steinberg, D.M., Lahav, T., Harlev, M., 2016. Subcutaneous compared with intraperitoneal ketamine-xylazine for anesthesia of mice. Journal of the American Association for Laboratory Animal Science. 55, 794–800.spa
dc.relation.referencesLevitan, I., Volkov, S., Subbaiah, P. V., 2010. Oxidized LDL: Diversity, patterns of recognition, and pathophysiology. Antioxidants & Redox Signaling. 13 (1), 39-75. https://doi.org/10.1089/ars.2009.2733spa
dc.relation.referencesLi, J.M., Wang, C., Hu, Q.H., Kong, L.D., 2008. Fructose induced leptin dysfunction and improvement by quercetin and rutin in rats. Chinese Journal of Natural Medicines. 6 (6), 466–473. https://doi.org/10.3724/SP.J.1009.2008.00466spa
dc.relation.referencesLi, T., Chen, S., Feng, T., Dong, J., Li, Y., Li, H., 2016. Rutin protects against aging-related metabolic dysfunction. Food &Nutrition. 7, (2). 1147–1154. https://doi.org/10.1039/c5fo01036espa
dc.relation.referencesLim, J.S., Mietus-Snyder, M., Valente, A., Schwarz, J.M., Lustig, R.H., 2010. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nature Reviews Gastroenterology & Hepatology. 7, 251–264. https://doi.org/10.1038/nrgastro.2010.41spa
dc.relation.referencesLisset, M., Regal, L., Hermes, L., Otero, G., Alina, Z., Otero, G., Omar, J., 2013. Etiopatogenia de la microangiopatía diabética . Consideraciones bioquímicas y moleculares. Revista Finlay. 3, 2–12.spa
dc.relation.referencesLiu, Z., Hu, M., 2007. Natural polyphenol disposition via coupled metabolic pathways. Expert Opinion on Drug Metabolism & Toxicology. 3 (3), 389–406. https://doi.org/10.1517/17425255.3.3.389spa
dc.relation.referencesLock O, Perez E, Villar M, Flores D, Rojas R, 2016. Bioactive Compounds from Plants Used in Peruvian Traditional Medicine. Natural Product Communications. 11, 1–29.spa
dc.relation.referencesLockwood, G.B., 2005. Fundamentals of pharmacognosy and phytotherapy, Phytochemistry. https://doi.org/10.1016/j.phytochem.2005.04.008spa
dc.relation.referencesLowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275. https://doi.org/10.1016/s0021-9258(19)52451-6spa
dc.relation.referencesLu, Q., Zhou, Y., Hao, M., Li, C., Wang, J., Shu, F., Du, L., Zhu, X., Zhang, Q., Yin, X., 2018. The mTOR promotes oxidative stress-induced apoptosis of mesangial cells in diabetic nephropathy. Molecular and Cellular Endocrinology. 473, 31–43. https://doi.org/10.1016/j.mce.2017.12.012spa
dc.relation.referencesLue, B.M., Nielsen, N.S., Jacobsen, C., Hellgren, L., Guo, Z., Xu, X., 2010. Antioxidant properties of modified rutin esters by DPPH, reducing power, iron chelation and human low density lipoprotein assays. Food Chemistry. 123 (2), 221–230. https://doi.org/10.1016/j.foodchem.2010.04.009spa
dc.relation.referencesLv, Y., Zhao, P., Pang, K., Ma, Y., Huang, H., Zhou, T., Yang, X., 2021. Antidiabetic effect of a flavonoid-rich extract from Sophora alopecuroides L. in HFD- and STZ- induced diabetic mice through PKC/GLUT4 pathway and regulating PPARα and PPARγ expression. Journal of Ethnopharmacology. 268, 113654. https://doi.org/10.1016/j.jep.2020.113654spa
dc.relation.referencesMahecha, J.N., 2017. Aporte a la caracterización fitoquímica de un extracto hidroalcohólico de cálices de Physalis peruviana recolectados en el municipio de Granada-Cundinamarca Contribution to the phytochemical characterization of an hydroalcoholic extract. Tesis. Universidad Nacional de Colombia.spa
dc.relation.referencesMahrous, R.S., Fathy, H.M., El-Khair, R.M.A., Omar, A.A., 2019. Chemical constituents of egyptian Withania somnifera leaves and fruits and their anticholinesterase activity. Journal of the Mexican Chemical Society. 63, 208–217. https://doi.org/10.29356/jmcs.v63i4.944spa
dc.relation.referencesMansour, H.B., Yatouji, S., Mbarek, S., Houas, I., Delai, A., Dridi, D., 2011. Correlation between antibutyrylcholinesterasic and antioxidant activities of three aqueous extracts from Tunisian Rhus pentaphyllum. Annals of Clinical Microbiology and Antimicrobials. 10 (1), 1-9. https://doi.org/10.1186/1476-0711-10-32spa
dc.relation.referencesMansuroǧlu, B., Derman, S., Yaba, A., Kizilbey, K., 2015. Protective effect of chemically modified SOD on lipid peroxidation and antioxidant status in diabetic rats. International Journal of Biological Macromolecules. 72, 79–87. https://doi.org/10.1016/j.ijbiomac.2014.07.039spa
dc.relation.referencesMatthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F., Turner, R.C., 1985. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 28, 412–419. https://doi.org/10.1007/BF00280883spa
dc.relation.referencesMattson, M.P., 2008. Hormesis defined. Ageing Research Reviewes. 7 (1), 1–7. https://doi.org/10.1016/j.arr.2007.08.007spa
dc.relation.referencesMcColl, A.J., Kong, C., Nimmo, L., Collins, J., Elkeles, R.S., Richmond, W., 1997. 132 Total antioxidant status, protein glycation, lipid hydroperoiides in non insulin dependent diabetes mellitus. Biochemical Society Transactions. 25. https://doi.org/10.1042/bst025s660spa
dc.relation.referencesMedina, S., Collado-González, J., Ferreres, F., Londoño-Londoño, J., Jiménez-Cartagena, C., Guy, A., Durand, T., Galano, J.M., Gil-Izquierdo, Á., 2019. Potential of Physalis peruviana calyces as a low-cost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture. 99 (5), 2194–2204. https://doi.org/10.1002/jsfa.9413spa
dc.relation.referencesMinisterio de Salud y Proteccion social, 2022. En el Día Mundial de la Diabetes: MinSalud promueve prácticas de vida saludable. Boletín prensa No. 543 2022. https://www.minsalud.gov.cospa
dc.relation.referencesMiranda, C.A., Schönholzer, T.E., Klöppel, E., Sinzato, Y.K., Volpato, G.T., Damasceno, D.C., Campos, K.E., 2019. Repercussions of low fructose-drinking water in male rats. Anais da Academia Brasileira de Ciencias. 91, 1–10. https://doi.org/10.1590/0001-3765201920170705spa
dc.relation.referencesMonzón, G., Meneses, C., Forero, A.M., Rodríguez, J., Aragón, M., Jiménez, C., Ramos, F.A., Castellanos, L., 2021. Identification of α-Amylase and α-Glucosidase Inhibitors and Ligularoside A, a New Triterpenoid Saponin from Passiflora ligularis Juss (Sweet Granadilla) Leaves, by a Nuclear Magnetic Resonance-Based Metabolomic Study. Journal of Agricultural and Food Chemistry. 69 (9), 2919–2931. https://doi.org/10.1021/acs.jafc.0c07850spa
dc.relation.referencesMora, Á.C., Aragón, D.M., Ospina, L.F., 2010. Effects of Physalis peruviana fruit extract on stress oxidative parameters in streptozotocin-diabetic rats. Latin American Journal of Pharmacy. 29, 1132–1136.spa
dc.relation.referencesMuñoz, Ó.A., Torres, G.A., Núñez, J.A., De la Rosa, L.A., Rodrigo, J., Aya, J.F., Álvarez, E. 2017. Nuevo Acercamiento a La Interacción Del Reactivo De Folin-Ciocalteu Con Azúcares Durante La Cuantificación De Polifenoles Totales. Tip. 20 (2), 23–28. https://doi.org/10.1016/j.recqb.2017.04.003spa
dc.relation.referencesMurillo, E., Tique, M., Ospina, F., Lombo, O., 2006. Evaluación preliminar de la actividad hipoglicemiante en ratones diabéticos por aloxano y capacidad antioxidante in vitro de extractos de Bauhinia kalbreyeri Harms. Revista Colombiana de Ciencias Químico Farmacéuticas. 35, 64–80.spa
dc.relation.referencesNayak, B.N., Kaur, G., Buttar, H.S., 2016. TNF-α modulation by natural bioactive molecules in mouse RAW 264.7 macrophage cells. Journal of Complementary and Integrative Medicine. 13 (1), 1–7. https://doi.org/10.1515/jcim-2015-0024spa
dc.relation.referencesNowotny, K., Jung, T., Höhn, A., Weber, D., Grune, T., 2015. Advanced Glycation End Products and Oxidative Stress in Type 2 Diabetes Mellitus. Biomolecules. 194–222. https://doi.org/10.3390/biom5010194spa
dc.relation.referencesOboh, G., Ademosun, A.O., Ayeni, P.O., Omojokun, O.S., Bello, F., 2015. Comparative effect of quercetin and rutin on α-amylase, α-glucosidase, and some pro-oxidant-induced lipid peroxidation in rat pancreas. Comparative Clinical Pathology. 24, 1103–1110. https://doi.org/10.1007/s00580-014-2040-5spa
dc.relation.referencesOhkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 95 (2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3spa
dc.relation.referencesOhkawa, H., Ohishi, N., Yagi, K., Ajith, T.A., 2010. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe. Indian Journal of Clinical Biochemistry. 25, 351–358. https://doi.org/10.1016/0003-2697(79)90738-3spa
dc.relation.referencesOlabiyi, A.A., Alli Smith, Y.R., Babatola, L.J., Akinyemi, A.J., Oboh, G., 2016. Inhibitory effect of aqueous extract of different parts of Gossypium herbaceum on key enzymes linked with type 2 diabetes and oxidative stress in rat pancreas in vitro. Beni-Suef University Journal of Basic and Applied Science. 5 (2), 180–186. https://doi.org/10.1016/j.bjbas.2016.05.003spa
dc.relation.referencesOPS, 2022. Diabetes. Citado el 14 febrero de 2022. Disponible en: https://www.paho.org/es/temas/diabetesspa
dc.relation.referencesPai Kotebagilu, N., Reddy Palvai, V., Urooj, A., 2014. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates. International Journal of Medicinal Chemistry. 2014, 1–7. https://doi.org/10.1155/2014/861084spa
dc.relation.referencesPanunti, B., Jawa, A.A., Fonseca, V.A., 2004. Mechanisms and therapeutic targets in type 2 diabetes mellitus. Drug Discovery Today: Disease Mechanisms. 1 (2), 151–157. https://doi.org/10.1016/j.ddmec.2004.09.011spa
dc.relation.referencesParthasarathy, S., Carew, T.E., Khoo, J.C., Witztum, J.L., Barnett, J., Fong, L.G., Stocker, R., Rapp, J.H., Kim, K.Y., Feingold, K.R., Kohlschiitter, A., Beisiegel, U., Stanley, K.K., Stocker, R., Nordestgaard, B.G., Nielsen, L.B., Wootton, R., Lewis, B., Gaziano, J.M., Hiibner, C., Finckh, B., Kohlschtitter, A., Beisiegel, U., 1999. Measurement of oxidizability of blood plasma. Methods in Enzymology. 299, 35–49.spa
dc.relation.referencesPatel, S., Santani, D., 2009. Role of NF-κB in the pathogenesis of diabetes and its associated complications. Pharmacological Reports. 61 (4), 595–603. https://doi.org/10.1016/S1734-1140(09)70111-2spa
dc.relation.referencesPerera, H., 2016. Antidiabetic Effects of Pterocarpus marsupium (Gammalu). European Journal of Medicinal Plants. 13 (4), 1–14. https://doi.org/10.9734/ejmp/2016/23930spa
dc.relation.referencesPoovitha, S., Siva Sai, M., Parani, M., 2017. Protein extract from the fruit pulp of Momordica dioica shows anti-diabetic, anti-lipidemic and antioxidant activity in diabetic rats. Journal of Functional Foods. 33, 181–187. https://doi.org/10.1016/j.jff.2017.03.042spa
dc.relation.referencesPuente, L., Pinto, M.C., Castro, E., Cortés, M., 2011. Physalis peruviana L, the multiple properties of a highly functional fruit: A review. Food Research International. 44 (7), 1733-1740.spa
dc.relation.referencesQu, H.Q., Li, Q., Rentfro, A.R., Fisher-Hoch, S.P., McCormick, J.B., 2011. The definition of insulin resistance using HOMA-IR for americans of mexican descent using machine learning. PLoS One 6. 6 (6), e21041. https://doi.org/10.1371/journal.pone.0021041spa
dc.relation.referencesRamadan, M.F., 2012. Physalis peruviana pomace suppresses high-cholesterol diet-induced hypercholesterolemia in rats. Grasas y aceites. 63 (4), 411–422.spa
dc.relation.referencesRamadan, M.F., 2011. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Research International. 44 (7), 1830–1836. https://doi.org/10.1016/j.foodres.2010.12.042spa
dc.relation.referencesRamadan, M.F., Moersel, J.T., 2007. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of Science, Food & Agriculture. 87 (3), 452–460. https://doi.org/10.1002/jsfa.2728spa
dc.relation.referencesRamadan, M.F., Morsel, J.T., 2003. Oil goldenberry (Physalis peruviana L.). Journal of Agriculture and Food Chemistry. 51 (4), 969–974. https://doi.org/10.1021/jf020778zspa
dc.relation.referencesRamchoun, M., Sellam, K., Harnafi, H., Alem, C., Benlyas, M., El Rhaffari, L., Amrani, S., 2015. Biological investigations of antioxydant and antimicrobial properties of Thymus satureioides collected in Tafilalet region, south-east of Morocco. International Journal of Pharmacy. 5 (2), 339–346.spa
dc.relation.referencesRamos, V.W., Batista, L.O., Albuquerque, K.T., 2017. Effects of fructose consumption on food intake and biochemical and body parameters in Wistar rats. Revista Portuguesa de Cardiología. 36 (12), 937–941.spa
dc.relation.referencesReddy, S., Akhila, M., Subrahmanyam, C.V.S., Trimurtulu, G., Raghavendra, N.M., 2015. Isolation, in vitro antidiabetic, antioxidant activity and molecular docking studies of pentacyclic triterpenoids from Syzygium alternifolium (wt.) Walp bark. Journal of Pharmacy and Biologycal Sciences. 10 (6), 2319–7676. https://doi.org/10.9790/3008-1062148154spa
dc.relation.referencesRey, D.P., Ospina, L.F., Aragón, D.M., 2015. Inhibitory effects of an extract of fruits of Physalis peruviana on some intestinal carbohydrases. Revista Colombiana de Ciencias Químico Farmacéuticas. 44, 72–89. https://doi.org/10.15446/rcciquifa.v44n1.54281spa
dc.relation.referencesRey Padilla, D.P., 2015. Evaluación del efecto de un extracto de frutos de Physalis peruviana sobre algunas carbohidrasas intestinales. Tesis de maestría. Universidad Nacional de Colombia.spa
dc.relation.referencesRodrigo, R., Libuy, M., 2014. Modulation of Plant Endogenous Antioxidant Systems by Polyphenols. Polyphenols in Plants. 65-85. https://doi.org/10.1016/B978-0-12-397934-6.00005-Xspa
dc.relation.referencesRodríguez, L., 2012. Pathophysiological role and therapeutic implications of inflammation in diabetic nephropathy. World Journal of Diabetes. 3 (1), 7. https://doi.org/10.4239/wjd.v3.i1.7spa
dc.relation.referencesRodríguez, C.P., Torres, M.C.., Aguilar, C.A., Medina, O.N., 2017. Mecanismos inmunológicos involucrados en la obesidad. Investigación Clinica. 58 (2), 175–196.spa
dc.relation.referencesSahin, G., Telli, M., Ünlü, E.S., Pehlivan Karakaş, F., 2020. Effects of moderate high temperature and uv-b on accumulation of withanolides and relative expression of the squalene synthase gene in Physalis peruviana. Turkish Journal of Biology. 44, 295–303. https://doi.org/10.3906/biy-2002-69spa
dc.relation.referencesSánchez N., J.C., López Z., D.F., Pinzón D., Ó.A., Sepúlveda A., J.C., 2010. Adipocinas y síndrome metabólico: múltiples facetas de un proceso fisiopatológico complejo. Revista Colombiana de Cardiología. 17, 167–176. https://doi.org/10.1016/s0120-5633(10)70236-9spa
dc.relation.referencesSang-Ngern, M., Youn, U.J., Park, E.J., Kondratyuk, T.P., Simmons, C.J., Wall, M.M., Ruf, M., Lorch, S.E., Leong, E., Pezzuto, J.M., Chang, L.C., 2016. Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorganic & Medicinal Chemistry Letters. 26 (12), 2755–2759. https://doi.org/10.1016/j.bmcl.2016.04.077spa
dc.relation.referencesSéro, L., Sanguinet, L., Blanchard, P., Dang, B.T., Morel, S., Richomme, P., Séraphin, D., Derbré, S., 2013. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules .18, 14320–14339. https://doi.org/10.3390/molecules181114320spa
dc.relation.referencesShanmugasundaram, E.R., Rajeswari, G., Baskaran, K., Kumar, B.R., Shanmugasundaram, K.R., Ahmath, B.K., 1990. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. Journal of Ethnopharmacology. 30, 281–294. https://doi.org/10.1016/0378-8741(90)90107-5spa
dc.relation.referencesSharma, R., Dave, V., Sharma, S., Jain, P., Yadav, S., 2013. Experimental Models on Diabetes : A Comprehensive Review. International Journal of Advances in Pharmaceutical Sciences. 4, (1) 1–8.spa
dc.relation.referencesShen, Y., Zhang, H., Cheng, L., Wang, L., Qian, H., Qi, X., 2016. In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chemistry. 194, 1003–1012. https://doi.org/10.1016/j.foodchem.2015.08.083spa
dc.relation.referencesShi, W., Liu, L., Li, J., Qu, L., Pang, X., Yu, H., Zhang, Y., Wang, T., 2017. Bioactive flavonoids from Flos Sophorae. Journal of Natural Medicine. 71, 513–522. https://doi.org/10.1007/s11418-017-1084-7spa
dc.relation.referencesSingleton, V. L., Orthofer, R., & Lamuela-Raventós, R.M., 1999. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods in Enzymology. 299, 152–178. https://doi.org/10.1016/s0076-6879(99)99017-1spa
dc.relation.referencesSmith, C., Mitchinson, M.J., Aruoma, O.I., Halliwell, B., 1992. Stimulation of lipid peroxidation and hydroxyl-radical generation by the contents of human atherosclerotic lesions. Biochemical Journal. 286, 901–905. https://doi.org/10.1042/bj2860901spa
dc.relation.referencesSoczyńska-Kordala, M., Bakowska, A., Oszmiański, J., Gabrielska, J., 2001. Metal ion-flavonoid associations in bilayer phospholipid membranes. Cellular and Molecular Biology Letters. 6, 277–281.spa
dc.relation.referencesSoler, A., 2009. Estudio de la capacidad antioxidante y la biodisponibilidad de los compuestos fenólicos del aceite de oliva. Primeras etapas en el desarrollo de un aceite de oliva funcional. Tesis de doctorado. Universitat de Lleida.spa
dc.relation.referencesSpruss, A., Kanuri, G., Wagnerberger, S., Haub, S., Bischoff, S.C., Bergheim, I., 2009. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology. 50 (4), 1094–1104. https://doi.org/10.1002/hep.23122spa
dc.relation.referencesStanley, J., 1995. Síndrome: un concepto en evolución. Acimed. 3, 30–38.spa
dc.relation.referencesStumvoll, M., Goldstein, B.J., Haeften, T.W. Van, 2005. Pathogenesis of type 2 diabetes.pdf. Lancet 365, 1333–1346.spa
dc.relation.referencesTanaka, S., Aida, K., Nishida, Y., Kobayashi, T., 2013. Pathophysiological mechanisms involving aggressive islet cell destruction in fulminant type 1 diabetes. Endocrine Journal. 60 (7), 837–845. https://doi.org/10.1507/endocrj.EJ13-0222spa
dc.relation.referencesTang, Y., Gao, C., Xing, M., Li, Y., Zhu, L., Wang, D., Yang, X., Liu, L., Yao, P., 2012. Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food and Chemical Toxicology. 50, 1194–1200. https://doi.org/10.1016/j.fct.2012.02.008spa
dc.relation.referencesTankova, T., Chakarova, N., Atanassova, I., Dakovska, L., 2011. Evaluation of the Finnish Diabetes Risk Score as a screening tool for impaired fasting glucose, impaired glucose tolerance and undetected diabetes. Diabetes Research and Clinical Practice. 92 (1), 46–52. https://doi.org/10.1016/j.diabres.2010.12.020spa
dc.relation.referencesTariq, S., Imran, M., Mushtaq, Z., Asghar, N., 2016. Phytopreventive antihypercholesterolmic and antilipidemic perspectives of zedoary (Curcuma Zedoaria Roscoe.) herbal tea. Lipids in Health Disease. https://doi.org/10.1186/s12944-016-0210-yspa
dc.relation.referencesToro, R., Aragón, M Ospina, LF. 2013. Hepatoprotective effect of calyces extract of Physalis peruviana on hepatotoxicity induced by CCl4 in Wistar rats. Vitae 20, 125–132. https://doi.org/10.17533/udea.vitae.12560spa
dc.relation.referencesToro, R., Arangon, M., 2014. Propuesta de un marcador analítico como herramienta en la microencapsulación de un extracto con actividad antioxidante de cálices de Physalis peruviana. Tesis de maestria. Universidad Nacional de Colombia.spa
dc.relation.referencesToro, R.M., Aragón, D.M., Ospina, L.F., Ramos, F.A., Castellanos, L., 2014. Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana. Natural Products Communications. 9, 1573–1575. https://doi.org/10.1177/1934578x1400901111spa
dc.relation.referencesUnnikrishnan, M.K., Veerapur, V., Nayak, Y., Mudgal, P.P., Mathew, G., 2013. Antidiabetic, Antihyperlipidemic and Antioxidant Effects of the Flavonoids. Polyphenols in Human Health and Disease. 143-161. https://doi.org/10.1016/B978-0-12-398456-2.00013-Xspa
dc.relation.referencesVessal, M., Hemmati, M., Vasei, M., 2003. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative Biochemistry and Physiology part C: Toxicology and Pharmacology. 135, 357–364. https://doi.org/10.1016/S1532-0456(03)00140-6spa
dc.relation.referencesWang, J., Mazza, G., 2002. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-γ-activated RAW 264.7 macrophAGEs. Journal of Agricultural and Food Chemistry. 50 (4), 850–857. https://doi.org/10.1021/jf010976aspa
dc.relation.referencesWang, Y., Alkhalidy, H., Liu, D., 2021. The emerging role of polyphenols in the management of type 2 diabetes. Molecules 26, 1–25. https://doi.org/10.3390/molecules26030703spa
dc.relation.referencesWiernsperger, N.F., 2003. Oxidative stress as a therapeutic target in diabetes: Revisiting the controversy. Diabetes & Metabolism. 29, 579–585. https://doi.org/10.1016/S1262-3636(07)70072-1spa
dc.relation.referencesWu, C.H., Yen, G.C., 2005. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. Journal of Agriculture and Food Chemistry. 53, 3167–3173. https://doi.org/10.1021/jf048550uspa
dc.relation.referencesWu, S.-J., NG, L.-T., Huang, Y.-M., Lin, D.-L., Wang, S.-S., Huang, S.-N., Lin, C.-C., 2005. Antioxidant activities of Physalis peruviana. Biological and Pharmaceutical Bulletin. 28 (6), 963–966. https://doi.org/10.1248/bpb.28.963spa
dc.relation.referencesWu, S.J., Ng, L.T., Lin, D.L., Huang, S.N., Wang, S.S., Lin, C.C., 2004. Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and the mitochondrial signaling transduction pathway. Cancer Letters. 215, 199–208. https://doi.org/10.1016/j.canlet.2004.05.001spa
dc.relation.referencesYaribeygi, H., Sathyapalan, T., Atkin, S.L., Sahebkar, A., 2020. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxididative Medicine and Cellular. Longevity. 2020. https://doi.org/10.1155/2020/8609213spa
dc.relation.referencesZhang, M., Lv, X.Y., Li, J., Xu, Z.G., Chen, L., 2008. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Journal of Diabetes Research. https://doi.org/10.1155/2008/704045spa
dc.relation.referencesZhang, X., Zhou, Y., Cheong, M.S., Khan, H., Ruan, C.C., Fu, M., Xiao, J., Cheang, W.S., 2022. Citri Reticulatae Pericarpium extract and flavonoids reduce inflammation in RAW 264.7 macrophages by inactivation of MAPK and NF-κB pathways. Food Frontiers. 3 (4), 785–795. https://doi.org/10.1002/fft2.169spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsdiabetes mellitus/veterinariaspa
dc.subject.decsDiabetes Mellitus/veterinaryeng
dc.subject.decsdiabetes mellitus/farmacoterapiaspa
dc.subject.decsDiabetes Mellitus/drug therapyeng
dc.subject.decsantioxidantes/síntesis químicaspa
dc.subject.decsAntioxidants/chemical synthesiseng
dc.subject.proposalPhysalis peruvianaspa
dc.subject.proposalPhysalis peruvianaeng
dc.subject.proposalFlavonoidespa
dc.subject.proposalFlavonoideng
dc.subject.proposalLipid profileeng
dc.subject.proposalRutinaspa
dc.subject.proposalRutineng
dc.subject.proposalSíndrome metabólicospa
dc.subject.proposalMetabolic syndromeeng
dc.subject.proposalAntioxidantespa
dc.subject.proposalAnioxidanteng
dc.subject.proposalPerfil lipídicospa
dc.subject.proposalPolifenolesspa
dc.subject.proposalPolyphenolseng
dc.subject.proposalHiperglicemiaspa
dc.subject.proposalHyperglycemiaeng
dc.titleEstudio de la actividad de un extracto de cálices de Physalis peruviana sobre estrés oxidativo en roedores con diabetes mellitus tipo IIspa
dc.title.translatedStudy of the activity of an extract of Physalis peruviana calyxes on oxidative stress in rodents with type II diabetes mellituseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52931406.2023.pdf
Tamaño:
2.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: