Evaluación del efecto de algunos elicitores sobre la producción de metabolitos secundarios en suspensiones celulares de Piper sp.

dc.contributor.advisorPatiño-Ladino, Oscar Javierspa
dc.contributor.advisorMarquínez-Casas, Xavierspa
dc.contributor.authorRodríguez-Sánchez, Laura Katherinespa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupEstudio Quimico y de Actividad Biologica de Rutaceae y Myristicaceae colombianasspa
dc.date.accessioned2020-05-21T20:54:36Zspa
dc.date.available2020-05-21T20:54:36Zspa
dc.date.issued2020-05-20spa
dc.description.abstractUna de las principales limitantes en la investigación de los metabolitos secundarios aislados de plantas es la baja concentración producida en los organismos lo que dificulta la realización de investigaciones que generen aplicaciones a nivel industrial. El cultivo de células en suspensión proporciona una alternativa renovable, sostenible y respetuosa con el ambiente para incrementar la producción de estos compuestos bajo condiciones controladas. Una especie de interés de la que se han aislado en baja concentración sustancias con promisoria actividad antifúngica y antiparasitaria es Piper cumanense (Piperaceae), haciéndose importante emplear estrategias para obtener mayores cantidades de sus sustancias bioactivas. Dado el interés del grupo en los constituyentes químicos provenientes de P. cumanense, en la presente investigación se exploraron estrategias biotecnológicas para su producción en condiciones controladas mediante el establecimiento de algunas condiciones favorables de cultivos in vitro (inducción de callos y suspensiones celulares) y la evaluación del efecto de elicitores sobre la producción de algunos metabolitos secundarios. Este trabajo comprendió el establecimiento de condiciones para la formación de callos a través del uso de reguladores de crecimiento vegetal en diferentes explantes (lámina y pecíolo) de plántulas germinadas in vitro. Posteriormente, se determinaron condiciones para el crecimiento de células en suspensión al utilizar callos friables, evaluando su acondicionamiento al medio líquido y el crecimiento de diferentes inóculos iniciales. Finalmente, se estableció el efecto de jasmonato de metilo (MeJA) y ácido salicílico (SA) como elicitores sobre la producción de metabolitos secundarios en suspensiones celulares de P. cumanense. En el establecimiento de condiciones para callogénesis se encontró que para la germinación in vitro de las semillas y posterior obtención de plántulas, es favorable para la esterilización hacer lavados previos con detergente y mayores tiempos de exposición con hipoclorito (10 min). El porcentaje de germinación se vio incrementado al usar AG3 (0.02 mg/L) en medios MS y al reducir el tiempo de siembra después de su recolección en campo. Los ensayos realizados con diferentes explantes (pecíolos y láminas) y diferentes combinaciones de auxina y citoquinina, permitieron determinar que el uso de pecíolo y una combinación de 2,4-D (1 mg/ L) y BAP (0,5 mg/L) produjeron los mejores callos friables. Los resultados de los estudios de actividad metabólica, cambios de acidez, producción de biomasa y cambio de color de las suspensiones celulares demostraron que hacer un recambio de medio 15 días después de establecidas las suspensiones permite mantener las células en un mejor estado fisiológico. Se estableció la curva de crecimiento de suspensiones con un inóculo de 90 g/L, obteniendo una tasa de crecimiento de 0,1097 ± 0,001477 día -1, un tiempo de duplicación de 6,319 días y una producción de biomasa favorable para los análisis cromatográficos. Finalmente, se determinó el efecto los elicitores MeJA y SA (10 y 100 µM) en la producción de metabolitos en extractos de células y medios de suspensiones celulares elicitadas encontrando una producción diferencial debida al efecto de estos inductores, apreciándose mayores cambios en el perfil al emplear SA. La expresión diferencial de los metabolitos secundarios fue más evidente en los medios de cultivo, destacándose los tratamientos con SA 100 µM, donde se logró una producción alta de los compuestos 5-hidroximetilfurfural (6,3%), fenol (6,5%) y (Z)-9-octadecenamida (8,8%), identificados tentativamente por GC-MS, y que fueron determinados como las variables de mayor peso en el análisis ACP. Con los elicitores empleados no se logró la producción de los metabolitos secundarios aislados previamente de P. cumanense. Las condiciones de cultivo in vitro establecidas pueden servir de base para la aplicación de diferentes estrategias para el aumento de la producción de metabolitos en P. cumanense y para el desarrollo de estudios biosintéticos.spa
dc.description.abstractOne of the main limitations in research of secondary metabolites from plants is the low concentration produced in organisms, which makes difficult to carry out applications at industrial level. The suspension cell culture provides a renewable, sustainable and environmentally friendly alternative to increase the production of these compounds under controlled conditions. Piper cumanense (Piperaceae) is a species of interest from which have been isolated substances with promising antifungal and antiparasitic activity. However, these compounds have been obtained in low concentration, being important to search strategies to obtain greater amounts of bioactive substances. Given the interest of the research group in the chemical constituents from P. cumanense, this research explores biotechnological strategies for their production under controlled conditions by establishing some favorable culture conditions in vitro (induction of callus and cell suspensions) and the evaluation of the effect of elicitors on the production of some secondary metabolites. This work includes the establishment of conditions for callus formation using plant growth regulators in different explants (lamina and petiole) of germinated seedlings in vitro. Subsequently, the conditions for the growth of cells in suspension are determined by using friable callus, evaluating their conditioning to the liquid medium and the growth of different initial inoculums. Finally, it was evaluated the effect of methyl jasmonate (MeJA) and salicylic acid (SA) as elicitors on the production of secondary metabolites in cell suspensions of P. cumanense. In the establishment of conditions for callogenesis it was found that for in vitro germination of the seeds and subsequent obtaining of seedlings, it is favorable for sterilization to do previous washings with detergent and longer exposure times with hypochlorite (10 min). The germination percentage was increased by using AG3 (0.02 mg / L) in MS media and reducing planting time after harvesting in the field. The tests carried out with different explants (petioles and sheets) and different combinations of auxin and cytokinin, allowed to determine that the use of petiole and a combination of 2,4-D (1 mg/L) and BAP (0.5 mg/L) produced the best friable corns. The results of the studies of metabolic activity, acidity changes, biomass production and color change of the cell suspensions showed that making a change of media 15 days after the establishment of the suspensions allowed to keep the cells in a better physiological state. The suspension growth curve was established with an inoculum of 90 g/L, obtaining a growth rate of 0.1097 ± 0.001477 day -1, a doubling time of 6.319 days and a favorable biomass production for the analyzes chromatographic Finally, the effect of elicitors MeJA and SA (10 and 100 µM) on the production of metabolites in extracts of cell and media from elicited cell suspension was determined, finding a differential production due to the effect of these inducers, appreciating greater changes in the profile at employ SA. The differential expression of secondary metabolites was more evident in the culture media, highlighting the treatments with 100 µM SA, where a high production was achieved of 5-hydroxymethylfurfural (6.3%), phenol (6.5%) and (Z) -9-octadecenamide (8.8%)., tentatively identified by GC-MS, and which were determined as the variables of greatest weight in the PCA analysis. With the elicitors used, the production of the secondary metabolites previously isolated from P. cumanense was not achieved. The established in vitro culture conditions can serve as a basis for the application of different strategies for increasing the production of metabolites in P. cumanense and for the development of biosynthetic studiesspa
dc.description.degreelevelMaestríaspa
dc.description.projectAproximación metabolómica y proteómica de expresión diferencial en la producción de metabolitos secundarios en cultivos in vitro de Piper cumanense sometidos a diferentes factores abióticosspa
dc.description.sponsorshipUniversidad Nacional de Colombia - Sede Bogotá, Pontificia Universidad Javeriana, MinCienciasspa
dc.format.extent130spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationRodríguez-Sánchez, L. (2020). Evaluación del efecto de algunos elicitores sobre la producción de metabolitos secundarios en suspensiones celulares de Piper sp. Tesis de maestría. Universidad Nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77545
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAbbas, M., El-Shabrawi, H., Soliman, A., & Selim, M. (2018). Optimization of germination , callus induction , and cell suspension culture of African locust beans Parkia biglobosa ( Jacq .) Benth. Journal of Genetic Engineering and Biotechnology, 16(1), 191–201. https://doi.org/10.1016/j.jgeb.2017.10.012spa
dc.relation.referencesAburjai, T., & Natsheh, F. (2003). Plants used in cosmetics. Phytotherapy research, 17, 987–1000.spa
dc.relation.referencesAgrawal, A. A., & Weber, M. (2015). On the study of plant defence and herbivory using comparative approaches : How important are secondary plant compounds On the study of plant defence and herbivory using comparative approaches : how important are secondary plant compounds. Ecology Letters, 1–7. https://doi.org/10.1111/ele.12482spa
dc.relation.referencesAhmad, N., Abbasi, B., Rahman, I., & Fazal, H. (2013). Piper nigrum : Micropropagation , Antioxidative enzyme activities , and Chromatographic Fingerprint Analysis for Quality Control. Applied Biochemistry and Biotechnology, 169, 2004–2015. https://doi.org/10.1007/s12010-013-0104-7spa
dc.relation.referencesAhmad, N., Haider, B., Fazal, H., Ali, M., & Siddique, M. (2014). Effect of reverse photoperiod on in vitro regeneration and piperine production in Piper nigrum L . Comptes rendus - Biologies, 337, 19–28. https://doi.org/10.1016/j.crvi.2013.10.011spa
dc.relation.referencesAli, M., Haider, B., Nisar, A., Syed, A., Ali, S., Ali, S., & Shad, G. (2016). Sucrose-enhanced biosynthesis of medicinally important antioxidant secondary metabolites in cell suspension cultures of Artemisia absinthium L . Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-016-1668-8spa
dc.relation.referencesAnand, A., & Chaluvadi, S. R. (2000). A rapid in vitro propagation protocol for Piper barberi Gamble , a critically endangered plant. In Vitro Cell. Dev. Biol., 36, 61–64. https://doi.org/10.1007/s11627-000-0014-6spa
dc.relation.referencesAnand, A., & Srinivasa, C. (2000). A RAPID IN VITRO PROPAGATION PROTOCOL FOR PIPER BARBERI GAMBLE , A CRITICALLY ENDANGERED PLANT. In Vitro Cell. Dev. Biol., 36, 61–64.spa
dc.relation.referencesAnulika, N. P., Ignatius, E. O., Raymond, E. S., Osasere, O., & Hilda, A. (2016). The Chemistry Of Natural Product: Plant Secondary Metabolites. International Journal of Technology enhancements and emerging engineering research, 4(8), 1–8.spa
dc.relation.referencesArias, J. P., Zapata, K., Rojano, B., & Arias, M. (2016). Effect of light wavelength on cell growth , content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana. Journal of Photochemistry & Photobiology, B: Biology, 163, 87–91. https://doi.org/10.1016/j.jphotobiol.2016.08.014spa
dc.relation.referencesArias, M., Aguirre, A., Angarita, M., & Restrpo, J. (2009). Aspectos ingenieriles divo in vitro de células vegetales para la produccion de metabolitos secundarios. Dyna, (76), 109–121.spa
dc.relation.referencesBalandrin, M. F., Klocke, J. A., Wurtele, E. S., & Bollinger, W. H. (1985). Natural Plant Chemicals : Sources of Industrial and Medicinal Materials. Science, 228, 1154–1160.spa
dc.relation.referencesBalbuena, T. S., Santa-Catarina, C., Silveira, V., Kato, M. J., & Floh, E. I. S. (2009). In vitro morphogenesis and cell suspension culture establishment in Piper solmsianum C. DC. (Piperaceae). Acta Botanica Brasilica, 23(1), 274–281. https://doi.org/10.1590/S0102-33062009000100029spa
dc.relation.referencesBarrales-Cureño, H., Reyes, C., Vásquez, I., López, L., Gómez, A., Cortés, J., … Montiel, J. (2019). Alcaloids of Pharmacological Importance in Catharanthus roseus. En J. Kurek (Ed.), Alcaloids: Their importance in nature and human life (pp. 1–12). IntechOpen.spa
dc.relation.referencesBaskin, C., & Baskin, J. (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press.spa
dc.relation.referencesBatish, D., Pal, H., Kumar, R., & Kaur, S. (2008). Eucalyptus essential oil as a natural pesticide. Forest Ecology and Management, 256, 2166–2174. https://doi.org/10.1016/j.foreco.2008.08.008spa
dc.relation.referencesBazán-Calderón, J., Ventura-flores, R., Kato, M. J., Rojas-idrogo, C., & Guillermo, E. (2011). Actividad insecticida de Piper tuberculatum Jacq. sobre Aedes aegypti L. (Diptera: Culicidae) y Anopheles pseudopunctipennis Tehobal (Diptera: Culicidae), 135–147.spa
dc.relation.referencesBernal, R., Galeano, G., Rodríguez, A., Sarmiento, H., & M., G. (2017). Nombres Comunes de las Plantas de Colombia. Recuperado de http://www.biovirtual.unal.edu.co/nombrescomunes/spa
dc.relation.referencesBernal, R., Gradstein, S., & Celis, M. (2015). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. Recuperado de http://catalogoplantasdecolombia.unal.edu.cospa
dc.relation.referencesBhatia, Saurabh, & Bera, T. (2015). Classical and Nonclassical Techniques for Secondary Metabolite Production in Plant Cell Culture. En S Bhatia, K. Sharma, R. Dahiya, & T. Bera (Eds.), Modern Applications of Plant Biotechnology in Pharmaceutical Sciences (pp. 231–291). Academic Press. https://doi.org/10.1016/B978-0-12-802221-4.00007-8spa
dc.relation.referencesBlum, U. (2019). General Background for Plant-Plant Allelopathic Interactions. En Plant-Plant Allelopathic Interactions III (pp. 27–48). Springer, Cham. https://doi.org/10.1007/978-3-030-22098-3spa
dc.relation.referencesBraga, N. P., Cremasco, M. A., & Valle, R. C. C. R. (2005). The effects of fixed-bed drying on the yield and composition of essential oil from long pepper (Piper hispidinervium C. DC) leaves. Brazilian Journal of Chemical Engineering, 22(2), 257–262.spa
dc.relation.referencesCabanillas, B. J., Le Lamer, A. C., Castillo, D., Arevalo, J., Estevez, Y., Rojas, R., Fabre, N. (2012). Dihydrochalcones and benzoic acid derivatives from piper dennisii. Planta Medica, 78(9), 914–918. https://doi.org/10.1055/s-0031-1298459spa
dc.relation.referencesCai, Z., Kastell, A., Knorr, D., & Smetanska, I. (2012). Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Reports, 31, 461–477. https://doi.org/10.1007/s00299-011-1165-0spa
dc.relation.referencesCastro-Concha, L. A., Escobedo, R. M., & Miranda-Ham, M. D. L. (2006). Measurement of Cell Viability in In Vitro Cultures. Plant Cell Culture Protocols. Methods in Molecular BiologyTM, 318(6), 71–76.spa
dc.relation.referencesChahal, J., Ohlyan, R., Kandale, A., Walia, A., & Puri, S. (2011). Introduction, Phytochemistry, traditional uses and biological activity of genus Piper: A review. International Journal of Current Pharmaceutical Review and Research, 2(2), 130–144.spa
dc.relation.referencesChe, C.-T., & Zhang, H. (2019). Plant Natural Products for Human Health. International Journal of Molecular Sciences, 20(4). https://doi.org/10.3390/ijms20040830spa
dc.relation.referencesChua, H. C., Christensen, E. T. H., Hoestgaard-Jensen, K., Hartiadi, L. Y., Ramzan, I., Jensen, A. A., … Chebib, M. (2016). Kavain, the major constituent of the anxiolytic kava extract, potentiates gabaa receptors: Functional characteristics and molecular mechanism. PLoS ONE, 11(6), 1–17. https://doi.org/10.1371/journal.pone.0157700spa
dc.relation.referencesCremasco, M. A., & Braga, N. D. P. (2010). Isomerização do óleo essencial de pimenta-longa (Piper hispidinervium C. DC) para a obtenção de isosafrol. Acta Amazonica, 40(4), 737–740. https://doi.org/10.1590/S0044-59672010000400014spa
dc.relation.referencesDa Silva, R., De Souza, G. H. B., Da Silva, A. A., De Souza, V. A., Pereira, A. C., Royo, V. D. A., … Bastos, J. K. (2005). Synthesis and biological activity evaluation of lignan lactones derived from (-)-cubebin. Bioorganic and Medicinal Chemistry Letters, 15(4), 1033–1037. https://doi.org/10.1016/j.bmcl.2004.12.035spa
dc.relation.referencesDanelutte, A. P., Costantin, M. B., Delgado, G. E., Braz-Filho, R., & Kato, M. J. (2005). Divergence of secondary metabolism in cell suspension cultures and differentiated plants of Piper cernuum and P. crassinervium. Journal of the Brazilian Chemical Society, 16(6 B), 1425–1430. https://doi.org/10.1590/S0103-50532005000800022spa
dc.relation.referencesDelgado-Paredes, G., Duque-Aurazo, A., Vásquez-Díaz, C., & Rojas-Idrogo, C. (2017). Propagación masiva del matico ( Piper tuberculatum Jacq .) y su aplicación en la erradicación de vectores de enfermedades metaxénicas en Lambayeque ( Perú ). Revista Latinoamericana de Recursos Naturales, 13(2), 39–50.spa
dc.relation.referencesDelgado-Paredes, G. E., Kato, M. J., & Vásquez-Dueñas, N. (2012). Cultivo de tejidos de Piper sp. (Piperaceae): Propagación, organogénesis y conservación de germoplasma in vitro. Revista Colombiana de Biotecnología, 14(2), 49–60.spa
dc.relation.referencesDelgado-Paredes, G., Kato, M., & Rojas-Idrogo, C. (2013). Suspensiones celulares y producción de metabolitos secundarios en cultivos in vitro de Piper sp. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 12(3), 269–282.spa
dc.relation.referencesDelgoda, R., & Murray, J. E. (2017). Evolutionary Perspectives on the Role of Plant Secondary Metabolites. (S. Badal & R. Delgoda, Eds.), Pharmacognosy: Fundamentals, applications and strategies. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802104-0.00007-Xspa
dc.relation.referencesDyer, Lee, & Palmer, A. (2004). Piper: A model Genus for Studies of Phytochemistry, Ecology, and Evolution. Kluwer Academic/Plenum Publishers. Kluwer Academic / Plenum Publishers. https://doi.org/10.1007/s13398-014-0173-7.2spa
dc.relation.referencesFazal, H., Haider, B., & Nisar, A. (2015). Sucrose induced osmotic stress and photoperiod regimes enhanced the biomass and production of antioxidant secondary metabolites in shake-flask suspension cultures of Prunella vulgaris L. Plant Cell, Tissue and Organ Culture (PCTOC). https://doi.org/10.1007/s11240-015-0915-zspa
dc.relation.referencesGandhi, S., Mahajan, V., & Bedi, Y. (2014). Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta. https://doi.org/10.1007/s00425-014-2232-xspa
dc.relation.referencesGaravito, G., Rincón, J., Arteaga, L., Hata, Y., Bourdy, G., Gimenez, A., … Deharo, E. (2006). Antimalarial activity of some Colombian medicinal plants. Journal of Ethnopharmacology, 107(3), 460–462. https://doi.org/10.1016/j.jep.2006.03.033spa
dc.relation.referencesGarcía-Osuna, H., Bocardo, L., Robledo-Torres, V., Benavides, A., & Ramírez, F. (2015). Germinación y micropropagación de tomate de cáscara (Physalis ixocarpa) tetraploide. Revista mexicana de ciencias agrícolas, 12, 2301–2311.spa
dc.relation.referencesGary, S., Adegboye, J., Popp, B., Cocuron, J., Woodrum, B., & Kovinich, N. (2018). Combining semi-synthesis with plant and microbial biocatalysis : new frontiers in producing a chemical arsenal against cancer. RSC Advances, 8, 21332–21339. https://doi.org/10.1039/c8ra02184hspa
dc.relation.referencesGeipel, K., Socher, M. L., Haas, C., Bley, T., & Steingroewer, J. (2013). Growth kinetics of a Helianthus annuus and a Salvia fruticosa suspension cell line: Shake flask cultivations with online monitoring system. Engineering in Life Sciences, 13(6), 593–602. https://doi.org/10.1002/elsc.201200148spa
dc.relation.referencesGeorgiev, V., Slavov, A., Vasileva, I., & Pavlov, A. (2018). Plant cell culture as emerging technology for production of active cosmetic ingredients. Engineering in Life Science, 18, 779–798. https://doi.org/10.1002/elsc.201800066spa
dc.relation.referencesGiri, C., & Zaheer, M. (2016). Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell, Tissue and Organ Culture (PCTOC), 126(1). https://doi.org/10.1007/s11240-016-0985-6spa
dc.relation.referencesGómez-Torres, L. M., Moreno-Gómez, B., Velásquez-Lozano, M. E., Aguirre-Mancilla, C., & Aguado-Santacruz, G. A. (2014). Plant cell photoautotrophic suspension cultures. Establishment and application perspectives. Revista Fitotecnia Mexicana, 37(2), 165–179.spa
dc.relation.referencesGonzález, T., & Patiño, O. (2016). Evaluación de diferentes condiciones nutricionales y ambientales para evitar la actividad oxidativa en formación de callos friables a partir de plántulas cultivadas un vitro de Piper cumanense. Universidad Francisco de Paula Santander.spa
dc.relation.referencesGorgani, L., Mohammadi, M., Najafpour, G. D., & Nikzad, M. (2017). Sequential Microwave-Ultrasound-Assisted Extraction for Isolation of Piperine from Black Pepper (Piper nigrum L .). https://doi.org/10.1007/s11947-017-1994-0spa
dc.relation.referencesGrajales-Conesa, J., Meléndez-Ramírez, V., & Cruz-López, L. (2011). Aromas florales y su interacción con los insectos polinizadores. Revista Mexicana de Biodiversidad, 82, 1356–1367.spa
dc.relation.referencesGuo, Z. G., Liu, Y., & Xing, X. H. (2011). Enhanced catharanthine biosynthesis through regulation of cyclooxygenase in the cell suspension culture of Catharanthus roseus (L.) G. Don. Process Biochemistry, 46(3), 783–787. https://doi.org/10.1016/j.procbio.2010.10.017spa
dc.relation.referencesHeberle, H., Meirelles, G. V., Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn : a web-based tool for the analysis of sets through Venn diagrams, 1–7. https://doi.org/10.1186/s12859-015-0611-3spa
dc.relation.referencesHieu, L. D., Thang, T. D., Hoi, T. M., & Ogunwande, I. A. (2014). Chemical Composition of Essential Oils from Four Vietnamese Species of Piper ( Piperaceae ). Journal of Oleo Science, 217(3), 211–217.spa
dc.relation.referencesHussain, A., Naz, S., Hummer, N., & Shinwari, Z. (2011). Tissue culture of black pepper (Piper nigrum L.) in Pakistan. Pakistan Journal of Botany, 43(2), 1069–1078.spa
dc.relation.referencesIqbal, G., Iqbal, A., Mahmood, A., Farhat, S., & Ahmed, T. (2016). Memory Enhancing Effect of Black Pepper in the AlCl3 Induced Neurotoxicity Mouse Model is Mediated Through Its Active Component Chavicine. Current Pharmaceutical Biotechnology, 17(11). https://doi.org/10.2174/1389201017666160709202124spa
dc.relation.referencesJaramillo, M. A., & Callejas, R. (2004). Current Perspectives on the Classification and Phylogenetics of the Genus Piper L . En L Dyer & A. Palmer (Eds.), Piper: A Model Genus for Studies of Phytochemistry, Ecology, and Evolution (pp. 179–198). Springer, Boston, MA.spa
dc.relation.referencesJaramillo, M. A., Callejas, R., Davidson, C., Smith, J. F., Stevens, A. C., & Tepe, E. J. (2008). A Phylogeny of the Tropical Genus <I>Piper</I> Using ITS and the Chloroplast Intron <I>psbJ–petA</I>. Systematic Botany, 33(4), 647–660. https://doi.org/10.1600/036364408786500244spa
dc.relation.referencesJaramillo, M. A., & Manos, P. S. (2001). Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). American Journal of Botany, 88(4), 706–716. https://doi.org/10.2307/2657072spa
dc.relation.referencesKang, S., Min, J., Kim, Y., Kang, Y., Park, D., Jung, H., … Choi, M. (2006). Efects of methyl jasmonate and salicylic acid on the production of bilobalide and ginkgolides in cell cultures of Ginkgo biloba. In Vitro Cell. Dev. Biol., 44–49. https://doi.org/10.1079/IVP2005719spa
dc.relation.referencesKelkar, S., Deboo, G. B., & Krishnamurthy, K. V. (1996). In vitro plant regeneration from leaf callus in Piper colubrinum Link. Plant Cell Reports, 16, 215–218.spa
dc.relation.referencesKessler, A., & Kalske, A. (2018). Plant Secondary Metabolite Diversity and Species Interactions. Annual Review of Ecology, Evolution, and Systematics, 49, 115–138.spa
dc.relation.referencesKhan, S., Banu, T., Islam, M., & Das, N. (2017). In vitro regeneration of Piper nigrum L . Bangladesh J. Bot., 46(2), 789–793.spa
dc.relation.referencesKooke, R., & Keurentjes, J. (2012). Multi-dimensional regulation of metabolic networks shaping plant development and performance. Journal of Experimental Botany, 63(9), 3353–3365. https://doi.org/10.1093/jxb/err373spa
dc.relation.referencesKusari, S., Verma, V., Lamshoeft, M., & Spiteller, M. (2012). An endophytic fungus from Azadirachta indica A . Juss . that produces azadirachtin. World Journal of Microbiology Biotechnology, 28, 1287–1294. https://doi.org/10.1007/s11274-011-0876-2spa
dc.relation.referencesLago, J. H. G., Ito, A. T., Fernandes, C. M., Young, M. C. M., & Kato, M. J. (2012). Secondary metabolites isolated from Piper chimonantifolium and their antifungal activity. Natural Product Research, 26(8), 770–773. https://doi.org/10.1080/14786419.2011.561435spa
dc.relation.referencesLanghansová, L., & Maršík, P. (2005). Production of saponins from Panax ginseng suspension and adventitious root cultures. Biologia Plantarum, 49(3), 463–465.spa
dc.relation.referencesLima, R. G. De, Barros, M. T., & de Laurentiz, R. da S. (2018). Medicinal Attributes of Lignans Extracted from Piper Cubeba : Current Developments. ChemistryOpen, 7(2), 180–191. https://doi.org/10.1002/open.201700182spa
dc.relation.referencesLudwig-Müller, J. (2015). Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters, 37. https://doi.org/10.1007/s10529-015-1814-4spa
dc.relation.referencesMarcotullio, M. C., Pelosi, A., & Curini, M. (2014). Hinokinin, an emerging bioactive lignan. Molecules, 19(9), 14862–14878. https://doi.org/10.3390/molecules190914862spa
dc.relation.referencesMartínez, C., Carvalho, M. R., Santiago, M., & Jaramillo, C. A. (2015). A late cretaceous Piper (Piperaceae) from Colombia and diversification patterns for the genus. American Journal of Botany, 102(2), 273–289. https://doi.org/10.3732/ajb.1400427spa
dc.relation.referencesMatsuura, H. N., Malik, S., de Costa, F., Yousefzadi, M., Mirjalili, M. H., Arroo, R., … Fett-Neto, A. G. (2017). Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production. Molecular Biotechnology, 60(2), 169–183. https://doi.org/10.1007/s12033-017-0056-1spa
dc.relation.referencesMgbeahuruike, E. E., Yrjönen, T., Vuorela, H., & Holm, Y. (2017). Bioactive compounds from medicinal plants: Focus on Piper species. South African Journal of Botany, 112, 54–69. https://doi.org/10.1016/j.sajb.2017.05.007spa
dc.relation.referencesMiguel, C., & Marum, L. (2011). An epigenetic view of plant cells cultured in vitro: Somaclonal variation and beyond. Journal of Experimental Botany, 62(11), 3713–3725. https://doi.org/10.1093/jxb/err155spa
dc.relation.referencesMiresmailli, S., & Isman, M. B. (2014). Botanical insecticides inspired by plant – herbivore chemical interactions. Trends in Plant Science, 19(1), 29–35. https://doi.org/10.1016/j.tplants.2013.10.002spa
dc.relation.referencesMohammed, G. J., Omran, A. M., & Hussein, H. M. (2016). Antibacterial and Phytochemical Analysis of Piper nigrum using Gas Chromatography – Mass Spectrum and Fourier-Transform Infrared Spectroscopy. International Journal of Pharmacognosy and Phytochemical Research, 8(6), 977–996.spa
dc.relation.referencesMurashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.spa
dc.relation.referencesNaeem, M., Aftab, T., & Khan, M. (2017). Catharanthus roseus: Current Research and Future Prospects. Springer. https://doi.org/10.1007/978-3-319-51620-2spa
dc.relation.referencesNakamura, Y., Darnieder, L., Deeb, T., & Moss, S. (2015). Regulation of GABAARs by Phosphorylation Yasuko. Adv. Pharmacol., 72, 97–146. https://doi.org/10.5588/ijtld.16.0716.Isoniazidspa
dc.relation.referencesNarayani, M., & Srivastava, S. (2017). Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochemistry Reviews, 16(6), 1227–1252. https://doi.org/10.1007/s11101-017-9534-0spa
dc.relation.referencesNetala, V. R., Kotakadi, V. S., Gaddam, S. A., Ghosh, S. B., & Tartte, V. (2016). Elicitation of gymnemic acid production in cell suspension cultures of Gymnema sylvestre R.Br. through endophytic fungi. 3 Biotech, 6(2), 1–11. https://doi.org/10.1007/s13205-016-0555-yspa
dc.relation.referencesNicoletti, R., & Fiorentino, A. (2015). Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta. Agriculture, 5, 918–970. https://doi.org/10.3390/agriculture5040918spa
dc.relation.referencesNiranjana, H., Lee, M. E., & Paek, K. (2014). Production of secondary metabolites from cell and organ cultures : Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-014-0467-7spa
dc.relation.referencesNitola, Y., Muñoz, D., Patiño, O., & Prieto, J. (2016). Caracterización fitoquímica y evaluación de actividad inhibitoria sobre acetilcolinesterasa de hojas de piper pesaresanum C. DC. Revista Cubana de Plantas Medicinales, 21(4), 1–10.spa
dc.relation.referencesNobler, J. D., Camp, M. J., Crowell, M. M., Shipley, L. A., Dadabay, C., Rachlow, J. L., … Forbey, J. S. (2018). Preferences of Specialist and Generalist Mammalian Herbivores for Mixtures Versus Individual Plant Secondary Metabolites. Journal of Chemical Ecology. https://doi.org/10.1007/s10886-018-1030-5spa
dc.relation.referencesNova-López, C. J., Muñoz-Pérez, J. M., Granger-Serrano, L. F., Arias-Zabala, M. E., & Arango-Isaza, R. E. (2017). Expresión de la proteína recombinante Cry 1Ac en cultivos de células de papa en suspensión: Establecimiento del cultivo y optimización de la producción de la biomasa y la proteína mediante la adición de nitrógeno. Dyna, 84(201), 34. https://doi.org/10.15446/dyna.v84n201.59829spa
dc.relation.referencesOchoa-Villareal, M., Howat, S., Hong, S., Jang, M., Jin, Y., Lee, E., & Loake, G. (2016). Plant cell culture strategies for the production of natural products. BMB Reports, 49(3), 149–158.spa
dc.relation.referencesOraei, M., Panahirad, S., Zaare-nahandi, F., & Gohari, G. (2019). Pre-véraison treatment of salicylic acid to enhance anthocyanin content of grape ( Vitis vinifera L .) berries. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.9869spa
dc.relation.referencesParmar, V., Subhash, J., Bisht, K., Jain, R., Taneja, P., Jha, A., … Boll, P. (1997). Phytochemistry of the genus Piper, 46(4), 597–673.spa
dc.relation.referencesParra, J., & Cuca, S. (2019). Búsqueda de agentes fitosanitarios provenientes de especies del género Piper (Piperaceae) para el control de Fusarium oxysporum f.sp. passiflorae.spa
dc.relation.referencesParra, J. E., Delgado, W., & Cuca, L. (2011). Cumanensic acid, a new chromene isolated from Piper cf. cumanense Kunth. (Piperaceae). Phytochemistry Letters, 4, 280–282.spa
dc.relation.referencesParra, J. E., Patiño, O. J., Prieto, J. A., Delgado, W. A., & Cuca, L. E. (2013). A new benzoic acid derivative isolated from Piper cf. cumanense Kunth (Piperaceae). Phytochemistry Letters, 6, 590–592. https://doi.org/10.1016/j.phytol.2013.07.014spa
dc.relation.referencesPérez-Alonso, N., & Jiménez, E. (2011). Producción de metabolitos secundarios de plantas mediante el cultivo in vitro. Biotecnología vegetal, 11(4), 1–15.spa
dc.relation.referencesPérez-González, M. Z., Nieto-Trujillo, A., Gutiérrez-Rebolledo, G. A., & García-Martínez, I. (2019). Lupeol acetate production and antioxidant activity of a cell suspension culture from Cnidoscolus chayamansa leaves. South African Journal of Botany, 125, 30–38. https://doi.org/10.1016/j.sajb.2019.06.030spa
dc.relation.referencesPOWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. (2019). Recuperado de http://www.plantsoftheworldonline.org/spa
dc.relation.referencesPrajapati, V., Patel, M., Jha, S., & Makwana, K. (2019). De novo organogenesis from leaf explants in Piper longum L. Journal of Pharmacognosy and Phytochemistry, 8(3), 483–485.spa
dc.relation.referencesQuijano-Abril, M. A., Callejas-Posada, R., & Miranda-Esquivel, D. R. (2006). Areas of endemism and distribution patterns for Neotropical Piper species (Piperaceae). Journal of Biogeography, 33(7), 1266–1278. https://doi.org/10.1111/j.1365-2699.2006.01501.xspa
dc.relation.referencesRamirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusid?, R., & Palazon, J. (2016). Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules, 21(2), 182. https://doi.org/10.3390/molecules21020182spa
dc.relation.referencesRamulifho, E., Goche, T., As, J. Van, Tsilo, T. J., Chivasa, S., & Ngara, R. (2019). Establishment and Characterization of Callus and Cell Suspension Cultures of Selected Sorghum bicolor ( L .) Moench Varieties : A Resource for Gene Discovery in Plant Stress Biology. Agronomy. https://doi.org/10.3390/agronomy9050218spa
dc.relation.referencesRani, D., & Kumar, P. (2012). Direct shoot regeneration from nodal , internodal and petiolar segments of Piper longum L . and in vitro conservation of indexed plantlets. Plant Cell Tiss Organ Cult, 109, 9–17. https://doi.org/10.1007/s11240-011-0068-7spa
dc.relation.referencesRapado, L. N., FreitasB, G. C., Polpo, A., Rojas-Cardozo, M., Rincón, J. V., Scotti, M. T., … Yamaguchi, L. F. (2014). A benzoic acid derivative and flavokawains from piper species as schistosomiasis vector controls. Molecules, 19(4), 5205–5218. https://doi.org/10.3390/molecules19045205spa
dc.relation.referencesRodríguez Beraud, M. M., Latsague Vidal, M. I., Chacón Fuentes, M. A., & Astorga Brevis, P. K. (2014). Inducción in vitro de callogénesis y organogénesis indirecta a partir de explantes de cotiledón, hipocótilo y hoja en Ugni molinae. Bosque (Valdivia), 35(1), 21–22. https://doi.org/10.4067/S0717-92002014000100011spa
dc.relation.referencesRoyal Botanical Garden, & Kew. (2017). State of the World’s Plants. (K. Willis, Ed.).spa
dc.relation.referencesRutala, W. A., & Weber, D. J. (2008). Draft Guideline for Disinfection and Sterilization in Healthcare Facilities. CDC (Centers for Disease Control and Prevention).spa
dc.relation.referencesSahraroo, A., Mirjalili, M. H., Corchete, P., Babalar, M., Fattahi-Moghadam, M. R., & Zarei, A. (2018). Enhancement of rosmaniric acid production by Satureja khuzistanica cell suspensions: Effect of phenylalanine and sucrose. SABRAO Journal of Breeding and Genetics, 50(1), 25–35.spa
dc.relation.referencesSarmadi, M., Karimi, N., Palazón, J., Ghassempour, A., & Mirjalili, M. (2018). The effects of salicylic acid and glucose on biochemical traits and taxane production in a Taxus baccata callus culture. Plant Physiology and Biochemistry, 132, 271–280. https://doi.org/10.1016/j.plaphy.2018.09.013spa
dc.relation.referencesScodro, R. B. D. L., Espelho, S. C., Agostinho Pires, C. T., Garcia, V. A. D. S., Cardozo-Filho, L., Cortez, L. E. R., … Cortez, D. A. G. (2015). A new benzoic acid derivative from Piper diospyrifolium and its anti-Mycobacterium tuberculosis activity. Phytochemistry Letters, 11, 18–23. https://doi.org/10.1016/j.phytol.2014.10.015spa
dc.relation.referencesSharma, S., Walia, S., & Kumar, R. (2016). Comprehensive review on agro technologies of low-calorie natural sweetener stevia ( Stevia rebaudiana Bertoni ): a boon to diabetic. J Sci FoodAgric, 96, 1867–1879. https://doi.org/10.1002/jsfa.7500spa
dc.relation.referencesSiddiqui, Z., Hareramdas, B., Abbas, Z., Parween, T., & Nasir, M. (2018). Use of Plant Secondary Metabolites as Nutraceuticals for Treatment and Management of Cancer : Approaches and Challenges. En M. Sayeed & M. Kumara (Eds.), Anticancer plants: Properties and Application (pp. 395–413). Springer Singapore.spa
dc.relation.referencesSilva, M. L. A., Martins, C. H. G., Lucarini, R., Sato, D. N., Pavanb, F. R., Freitas, N. H. A., … Al., E. (2009). Antimycobacterial activity of natural and semi-synthetic lignans. Z. Naturforsch. C, 64, 77–7849.spa
dc.relation.referencesSingh, G. (2010). Plant Systematics. An Integrated Approach. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesSingh, V., Vinod, K., & Dixit, K. (2013). Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana ( J . Grah .) Mabberley, 357–369. https://doi.org/10.1007/s11816-012-0270-zspa
dc.relation.referencesSingh, Y. (1992). Kava: an overview. Journal of Ethnopharmacology, 37(1), 13–45. https://doi.org/10.1016/0378-8741(92)90003-Aspa
dc.relation.referencesSoniya, E. V, & Das, M. R. (2002). In vitro micropropagation of Piper longum – an important medicinal plant. Plant Cell, Tissue and Organ Culture, 70, 325–327.spa
dc.relation.referencesStaniszewska, I., Królicka, A., Maliński, E., Łojkowska, E., & Szafranek, J. (2003). Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme and Microbial Technology, 33(5), 565–568. https://doi.org/10.1016/S0141-0229(03)00180-7spa
dc.relation.referencesSubban, K., Subramani, R., Priya, V., Srinivasan, M., Johnpaul, M., & Jayabaskaran, C. (2019). Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS ONE, 1–17. https://doi.org/10.1371/journal.pone.0212736 Februaryspa
dc.relation.referencesSzabados, L., Mroginski, L. A., & Roca, W. M. (1991). Suspensiones celulares: descripción, manipulación y aplicaciones. En Cultivo de Tejidos en la Agricultura, Fundamentos y Aplicaciones (Centro Int, pp. 174–195).spa
dc.relation.referencesTaiz, L., & Zeiger, E. (2006). Plant physiology (4th ed.). Sinauer Associates, Inc.spa
dc.relation.referencesTalib, W. H. (2017). Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Scientia Pharmaceutica, 85(3), 1–11. https://doi.org/10.3390/scipharm85030027spa
dc.relation.referencesTepe, E., Rodríguez-Castañeda, G., Glassmire, A., & Dyer, L. (2014). Piper kelleyi, a hotspot of ecological interactions and a new species from Ecuador and Peru. PhytoKeys, 34, 19–32. https://doi.org/10.3897/phytokeys.34.6376spa
dc.relation.referencesTrejo-Espino, J. L., Rodríguez-Monroy, M., Vernon-Carter, E. J., & Cruz-Sosa, F. (2011). Establishment and characterization of Prosopis laevigata (Humb. & Bonpl. ex Willd) M.C. Johnst. cell suspension culture: A biotechnology approach for mesquite gum production. Acta Physiologiae Plantarum, 33(5), 1687–1695. https://doi.org/10.1007/s11738-010-0705-5spa
dc.relation.referencesVerma, N., & Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Dermatological Science. https://doi.org/10.1016/j.jarmap.2015.09.002spa
dc.relation.referencesWei, Y., Qian-liang, M., Bing, L., Khalid, R., Cheng-Jian, Z., Ting, H., & Lu-ping, Q. (2016). Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical Reviews in Biotechnology, 36(2), 215–232.spa
dc.relation.referencesWilson, S., & Roberts, S. (2012). Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnology Journal, 10, 249–268.spa
dc.relation.referencesWróbel, T., Dreger, M., Wielgus, K., & Slomski, R. (2017). The application of plant in vitro cultures in cannabinoid production. Biotechnology Letters. https://doi.org/10.1007/s10529-017-2492-1spa
dc.relation.referencesYazaki, K. (2017). Lithospermum erythrorhizon cell cultures: Present and future aspects. Plant Biotechnology, 34(3), 131–142. https://doi.org/10.5511/plantbiotechnology.17.0823aspa
dc.relation.referencesYue, W., Ming, Q., Lin, B., Rahman, K., Zheng, C.-J., Han, T., & Qin, L. (2016). Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Critical Reviews in Biotechnology, 36(2), 215–232. https://doi.org/10.3109/07388551.2014.923986spa
dc.relation.referencesYun, B., Yan, Z., Amir, R., Hong, S., Jin, Y., Lee, E., & Loake, G. J. (2012a). Plant natural products : history, limitations and the potential of cambial meristematic cells. Biotechnology and Genetic Engineering Reviews, 28(1), 47–60. https://doi.org/10.5661/bger-28-47spa
dc.relation.referencesYun, B., Yan, Z., Amir, R., Hong, S., Jin, Y., Lee, E., & Loake, G. J. (2012b). Plant natural products : history , limitations and the potential of cambial meristematic cells Plant natural products : history , limitations and the potential of cambial meristematic cells. Biotechnology and Genetic Engineering Reviews, 28, 47–60. https://doi.org/10.5661/bger-28-47spa
dc.relation.referencesZamboni, A., Gatto, P., Cestaro, A., Pilati, S., Viola, R., Mattivi, F., … Velasco, R. (2009). Grapevine cell early activation of specific responses to DIMEB , a resveratrol elicitor. BMC Genomics, 10. https://doi.org/10.1186/1471-2164-10-363spa
dc.relation.referencesZanuncio, J. C., Mourão, S. A., Martínez, L. C., Wilcken, C. F., Ramalho, F. S., Plata-rueda, A., … Serrão, J. E. (2016). Toxic effects of the neem oil ( Azadirachta indica ) formulation on the stink bug predator , Podisus nigrispinus ( Heteroptera : Pentatomidae ). Scientific Reports, 6(30261). https://doi.org/10.1038/srep30261spa
dc.relation.referencesZhou, P., Yang, J., Zhu, J., He, S., Zhang, W., Yu, R., … Huang, X. (2015). Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Applied Microbiology and Biotechnology, 99(17), 7035–7045. https://doi.org/10.1007/s00253-015-6651-9spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalPiperspa
dc.subject.proposalPipereng
dc.subject.proposalin vitro germinationeng
dc.subject.proposalgerminación in vitrospa
dc.subject.proposalcallogénesisspa
dc.subject.proposalcallogenesiseng
dc.subject.proposalplant cell suspensionseng
dc.subject.proposalsuspensiones celularesspa
dc.subject.proposalelicitaciónspa
dc.subject.proposalmethyl jasmonateeng
dc.subject.proposalsalicylic acideng
dc.subject.proposaljasmonato de metilospa
dc.subject.proposalácido salicílicospa
dc.subject.proposalelicitationeng
dc.titleEvaluación del efecto de algunos elicitores sobre la producción de metabolitos secundarios en suspensiones celulares de Piper sp.spa
dc.title.alternativeEvaluation of the effect of some elicitors on the production of secondary metabolites in cell suspensions of Piper spspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013621003.2020..pdf
Tamaño:
2.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: