The Non-Commutative Brillouin Torus a Non-Commutative Geometry perspective
dc.contributor.advisor | Cano Garcia, Leonardo Arturo | spa |
dc.contributor.advisor | Reyes Lega, Andres | spa |
dc.contributor.author | Florez Jimenez, Juan Sebastian | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=2BAew7oAAAAJ&hl | spa |
dc.date.accessioned | 2025-02-20T13:41:01Z | |
dc.date.available | 2025-02-20T13:41:01Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | La geometría no conmutativa ha encontrado un campo fértil de ejemplos en la mecánica cuántica y ha proporcionado herramientas matemáticas rigurosas para extraer información topológica y geométrica de esos sistemas. Esta tesis es una incursión en algunas de las herramientas utilizadas por Jean Bellissard y colaboradores para el análisis de materiales homogéneos. Con esto en mente, nuestro primer paso es examinar los objetos utilizados en dicho análisis, que son un par de algebras topológicas diseñadas para extender el ámbito del análisis de Fourier sobre Td al estudio de modelos de enlace fuerte para materiales homogéneos. Estas álgebras se presentan como una generalización de C(Td ) y C ∞(Td ), y se consideran como una variedad suave no conmutativa en el campo de la Geometría No Conmutativa, a las que nos referiremos como el Toro de Brillouin No Conmutativo. Exploramos como diversas técnicas del análisis de Fourier sobre Td pueden ser traducidas al Toro de Brillouin No Conmutativo, por ejemplo, los coeficientes de Fourier y la suma de Fejer, y cómo estas técnicas nos permiten capturar la estructura topológica y suave de dicha variedad suave no conmutativa. En este contexto, la estructura topológica se captura mediante un algebra C*, mientras que la estructura suave se captura mediante un tipo particular de algebra de Fréchet, llamada subálgebra suave. Estos resultados resultan ser los bloques de construcción para la construcción de invariantes topológicos de Hamiltonianos a través de la cohomología cíclica continua de la subálgebra suave. Otra herramienta para estudiar invariantes topológicas de Hamiltonianos es la teoría K de algebras C* y subálgebras suaves. Las subálgebras suaves y las álgebras C* comparten un cálculo funcional similar, lo que implica que las subálgebras suaves contienen suficiente información para estudiar la teoría K de sus algebras C*. Este hecho juega un papel crucial en la identificación de invariantes topológicos de Hamiltonianos. Cuando las condiciones son adecuadas (temperatura cercana a 0 y baja densidad de electrones), es una de las causas subyacentes de la cuantización de la conductividad transversal en materiales homogéneos. Esta es otra tesis sobre Geometría No Conmutativa y aislantes topológicos, sin embargo, creemos que será un recurso útil para los recién llegados al campo (Texto tomado de la fuente). | spa |
dc.description.abstract | Non-commutative geometry has found a fruitful field of examples in quantum mechanics and has provided rigorous mathematical tools to extract topological and geometrical information from those systems. This thesis is an incursion into some of the tools used by Jean Bellissard and collaborators for the analysis of homogeneous materials, having this in mind, our first step is to look into the objects used in such analysis, those are a pair of topological algebras devised to extend the realm of Fourier analysis over Td into the study of tight-binding models for homogeneous materials. These algebras come as a generalization of C(Td ) and C ∞(Td ), and are considered as a non-commutative smooth manifold in the field of NonCommutative Geometry, we will refer to them as the Non-Commutative Brillouin Torus. We explore how various techniques from the Fourier analysis over Td can be translated into the Non-Commutative Brillouin Torus e.g. Fourier coefficients and Fejer summation, and those techniques allow us to capture the topological and ´ smooth structure of such non-commutative smooth manifold. In this context, the topological structure is captured by a C* algebra while the smooth structure is captured by a particular type of Frechet algebra, which is called a smooth sub- ´ algebra. These results turn out to be the building blocks for the construction of topological invariants of Hamiltonians through the continuous cyclic cohomology of the smooth sub-algebra. Another tool to study topological invariants of Hamiltonians is the K theory of C* algebras and smooth sub-algebras. Smooth sub-algebras and C* algebras share a similar functional calculus, which implies that smooth sub-algebras contain enough information to study the K theory of their C* algebras. This fact plays a crucial role in the identification of topological invariants of Hamiltonians. When the conditions are right (temperature close to 0 and low electron density), it is one of the underlying causes of the quantization of the transversal conductivity in homogenous materials. This is yet another thesis about Non-Nommutative Geometry and topological insulators, however, we believe that it will be a useful asset for newcomers to the field. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Matemáticas | spa |
dc.format.extent | 336 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87519 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
dc.relation.references | (1984). Functional analysis ; surveys and recent results III: proceedings of the con- ference on functional analysis, paderborn, germany, 24-29 may, 1983. Meeting Name: Conference on Functional Analysis. | spa |
dc.relation.references | (1994). C*-algebras: 1943-1993: a fifty year celebration: AMS special session com- memorating the first fifty years of c*-algebra theory, january 13-14, 1993, san antonio, texas. | spa |
dc.relation.references | (2021). Positivity and its applications: Positivity x, 8-12 july 2019, pretoria, south africa. | spa |
dc.relation.references | (6197), H. (2013). Bounded operators on a hilbert space form a c*-algebra. | spa |
dc.relation.references | Abramovich, Y. A. and Aliprantis, C. D. (2002). An invitation to operator theory. Num- ber v. 50 in Graduate studies in mathematics. American Mathematical Society. | spa |
dc.relation.references | Allan, G. R. (1965). A spectral theory for locally convex algebras. s3-15(1):399–421. | spa |
dc.relation.references | Allan, G. R. and Dales, H. G. (2011). Introduction to Banach spaces and algebras. Num- ber 20 in Oxford graduate texts in mathematics. Oxford University Press. OCLC: ocn691395481 | spa |
dc.relation.references | Argerami, M. (2014). Spectrum of idempotent element. Mathematics Stack Ex- change. https://math.stackexchange.com/q/705540 (version: 2023-04-05). | spa |
dc.relation.references | Argerami, M. (2017). Sufficient condition for a *-homomorphism between C*-algebras being isometric. Mathematics Stack Exchange. https://math. stackexchange.com/q/435105 (version: 2017-09-18). | spa |
dc.relation.references | Argerami, M. (2022). Show that K0 ( A) is a countable group if A is a unital, separable c* algebra. Mathematics Stack Exchange. URL:https://math.stackexchange.com/ q/2214789 (version: 2022-11-30). | spa |
dc.relation.references | Arhippainen, J. and Müller, V. (2007). Norms on unitizations of banach algebras revisited. 114(3):201–204. | spa |
dc.relation.references | Arici, F. and Mesland, B. (2020). Toeplitz extensions in noncommutative topology and mathematical physics. pages 3–29 | spa |
dc.relation.references | Arikan, H., Runov, L., and Zahariuta, V. (2003). Holomorphic functional calculus for operators on a locally convex space. 43(1):23–36. | spa |
dc.relation.references | Asbóth, J. K., Oroszlány, L., and Pályi, A. (2015). A short course on topological insulators: Band-structure topology and edge states in one and two dimensions. Publisher: arXiv Version Number: 1 | spa |
dc.relation.references | Atiyah, M. F. (2018). K-theory. Advanced books classics. CRC Press, Taylor & Francis Group. | spa |
dc.relation.references | Aweygan (2020). K1 ( A) is countable when A is a separable C*-algebra. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/3753144 (version: 2020- 07-11). | spa |
dc.relation.references | Backhouse, N. B. (1970). Projective representations of space groups II: Factor sys- tems. 21(3):277–295 | spa |
dc.relation.references | Backhouse, N. B. and Bradley, C. J. (1970). Projective representations of space groups I: Translation groups. 21(2):203–222. | spa |
dc.relation.references | Bader, U. and Nowak, P. W. (2020). Group algebra criteria for vanishing of cohomol- ogy. | spa |
dc.relation.references | Bahouri, H., Chemin, J.-Y., and Danchin, R. (2011). Fourier Analysis and Nonlinear Partial Differential Equations, volume 343 of Grundlehren der mathematischen Wis- senschaften. Springer Berlin Heidelberg. | spa |
dc.relation.references | Baiborodov, S. P. (1984). Approximation of functions of several variables by fejer sums. 36(1):553–561. | spa |
dc.relation.references | Barnsley, M. F. (1993). Fractals everywhere. Morgan Kaufmann, 2. ed., 3. [print.] edition. | spa |
dc.relation.references | Beckus, S. (2016). Spectral approximation of aperiodic schrodinger operators. Pub- lisher: Unpublished | spa |
dc.relation.references | Beckus, S. and Bellissard, J. (2016). Continuity of the spectrum of a field of self- adjoint operators. 17(12):3425–3442. | spa |
dc.relation.references | Bedos, E. and Conti, R. (2011). On discrete twisted C*-dynamical systems, Hilbert C*-modules and regularity. Publisher: arXiv Version Number: 4. | spa |
dc.relation.references | Bellissard, J., van Elst, A., and Schulz-Baldes, H. (1994). The non-commutative geometry of the quantum hall effect. Publisher: arXiv Version Number: 1. | spa |
dc.relation.references | BHATT, S., INOUE, A., and OGI, H. (2003). Spectral invariance, K-theory isomor- phismand an application to the differential structure of C*-algebras. pages 89–405. | spa |
dc.relation.references | Bhatt, S. J. (2016). Smooth frechet subalgebras of C*-algebras defined by first order differential seminorms. 126(1):125–141. | spa |
dc.relation.references | Bhatt, S. J., Karia, D. J., and Shah, M. M. (2013). On a class of smooth frechet subalgebras of C* -algebras. 123(3):393–413. | spa |
dc.relation.references | Blackadar, B. (1985). Shape theory for C*-algebras. 56:249. | spa |
dc.relation.references | Blackadar, B. (2006). Operator algebras: theory of C*-algebras and von Neumann algebras. Number v. 122. 3 in Encyclopaedia of mathematical sciences, Operator algebras and non-commutative geometry. Springer. | spa |
dc.relation.references | Blackadar, B. (2012). K-theory for operator algebras. Springer. OCLC: 802329230. | spa |
dc.relation.references | Burlando, L. (1994). Continuity of spectrum and spectral radius in banach algebras. 30(1):53–100. | spa |
dc.relation.references | Busby, R. C. and Smith, H. A. (1970). Representations of twisted group algebras. 149(2):503–503. | spa |
dc.relation.references | Bédos, E. and Conti, R. (2009). On twisted fourier analysis and convergence of fourier series on discrete groups. 15(3):336–365. | spa |
dc.relation.references | Bédos, E. and Conti, R. (2015). Fourier series and twisted C*-crossed products. 21(1):32–75. | spa |
dc.relation.references | Bédos, E. and Conti, R. (2016). Fourier theory and C*-algebras. 105:2–24. | spa |
dc.relation.references | Carey, A. L., Gayral, V., Rennie, A., and Sukochev, F. A. (2014). Index theory for locally compact noncommutative geometries. Number volume 231, number 1085 in Memoirs of the American Mathematical Society. American Mathematical Society. | spa |
dc.relation.references | Connes, A. (1985). Non-commutative differential geometry. 62:41–144. | spa |
dc.relation.references | Connes, A. (2014). Noncommutative Geometry. Elsevier Science. OCLC: 1058380634. | spa |
dc.relation.references | Cook, J. (2023). Modes of convergence. | spa |
dc.relation.references | Cordeiro, L. (2017). Prove that an infinite matrix defines a compact operator on l 2 . Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/1243780 (version: 2015-04-20) | spa |
dc.relation.references | COURTNEY, K. and GILLASPY, E. (2023). Notes on c* algebras. | spa |
dc.relation.references | Cuntz, J. J. R., Meyer, R., and Rosenberg, J. M. (2007). Topological and bivariant K- theory. Birkhauser. OCLC: ocn141385291. | spa |
dc.relation.references | Dales, H. G. (2000). Banach algebras and automatic continuity. Number new ser., 24 in Oxford science publications. Clarendon Press ; Oxford University Press | spa |
dc.relation.references | Dales, H. G., Aiena, P., Eschmeier, J., Laursen, K., and Willis, G. A. (2003). Introduc- tion to Banach Algebras, Operators, and Harmonic Analysis. Cambridge University Press, 1 edition | spa |
dc.relation.references | Dales, H. G. and Woodin, W. H. (1987). An Introduction to Independence for Analysts. Cambridge University Press, 1 edition | spa |
dc.relation.references | Davidson, K. R. (1996). C*-algebras by example. Number 6 in Fields Institute mono- graphs. American Mathematical Society | spa |
dc.relation.references | De Chiffre, M. D. (2011). The Haar measure. | spa |
dc.relation.references | Deitmar, A. and Echterhoff, S. (2009). Principles of harmonic analysis. Universitext. Springer. OCLC: ocn277275470. | spa |
dc.relation.references | Driver, B. K. (2020). Functional analysis tools with examples. | spa |
dc.relation.references | Espinoza, J. and Uribe, B. (2014). Topological properties of the unitary group. Pub- lisher: arXiv Version Number: 1 | spa |
dc.relation.references | Exel, R., Giordano, T., and Goncalves, D. (2008). Envelope algebras of partial actions as groupoid c*-algebras. Publisher: arXiv Version Number: 1 | spa |
dc.relation.references | Fefferman, C. (1971a). On the convergence of multiple fourier series. 77(5):744 – 745 | spa |
dc.relation.references | Fefferman, C. (1971b). On the divergence of multiple fourier series. 77(2):191–195. | spa |
dc.relation.references | Fischer, D. (2013). Counterexample for bounded subsets in a frechet space. Mathe- matics Stack Exchange. URL:https://math.stackexchange.com/q/446294 (version: 2013-07-18) | spa |
dc.relation.references | Fischer, D. (2015a). Compatibility of topologies and metrics on the hilbert cube. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/1326186 (version: 2015-06-15). | spa |
dc.relation.references | Fischer, D. (2015b). Is the uniform limit of continuous functions continuous for topo- logical spaces? Mathematics Stack Exchange. URL:https://math.stackexchange. com/q/1026265 (version: 2015-10-14) | spa |
dc.relation.references | Folland, G. B. (1999). Real analysis: modern techniques and their applications. Pure and applied mathematics. Wiley, 2nd ed edition | spa |
dc.relation.references | Folland, G. B. (2016). A course in abstract harmonic analysis. Number 29 in Textbooks in mathematics series. CRC Press/Taylor & Francis, second edition edition. | spa |
dc.relation.references | Fragoulopoulou, M. (2005). Topological algebras with involution. Number 200 in North- Holland mathematics studies. Elsevier, 1. ed edition. | spa |
dc.relation.references | Fragoulopoulou, M., Inoue, A., Weigt, M., and Zarakas, I. (2022). Generalized B*- Algebras and Applications, volume 2298 of Lecture Notes in Mathematics. Springer International Publishing. | spa |
dc.relation.references | Fréchet algebra (2022). Fréchet algebra — Wikipedia, the free encyclopedia. [Online; accessed 8-July-2024] | spa |
dc.relation.references | Garcia F., M. (2018). Convergence and divergence of fourier series. | spa |
dc.relation.references | Garret, P. (2020). Real analysis. | spa |
dc.relation.references | Gilman, J., Kra, I., Rodrı́guez, R. E., and Bers, L. (2007). Complex analysis: in the spirit of Lipman Bers. Number 245 in Graduate texts in mathematics. Springer. OCLC: ocn173498966 | spa |
dc.relation.references | Goldmann, H. (1990). Uniform Frechet algebras. Number 162 in North-Holland math- ematics studies. North-Holland ; Distributors for the U.S. and Canada, Elsevier Science Pub. Co. | spa |
dc.relation.references | Gracia-Bondı́a, J. M., Várilly, J. C., and Figueroa, H. (2001). Elements of noncom- mutative geometry. Birkhäuser advanced texts Basler Lehrbücher. Springer Sci- ence+Business Media | spa |
dc.relation.references | Gramsch, B. (1984). Relative inversion in der strungstheorie von operatoren und Ψ-algebren. 269(1):27–71 | spa |
dc.relation.references | Heil, C. (2011). Introduction to real analysis. | spa |
dc.relation.references | Henrikson, J. T. (1999). Completeness and total boundedness of the hausdorff metric. pages 69–80. | spa |
dc.relation.references | Hewitt, E. and Ross, K. A. (1963). Abstract Harmonic Analysis. Springer Berlin Heidelberg. | spa |
dc.relation.references | Hobart, D. J. E. and Colleges, W. S. (2022). A short introduction to metric spaces section 3: Limits and continuity. Accessed: 18-September-2024 | spa |
dc.relation.references | Horváth, J. (1966). Topological vector spaces and distributions. Dover, corr., unabriged republ edition. | spa |
dc.relation.references | Hunter, J. and Nachtergaele, B. (2005). Aplied Analysis. | spa |
dc.relation.references | Hytönen, T., van Neerven, J., Veraar, M., and Weis, L. (2016). Analysis in Banach Spaces: Volume I: Martingales and Littlewood-Paley Theory. Number 63 in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Springer International Publishing : Imprint: Springer, 1st ed. 2016 edition | spa |
dc.relation.references | Jiménez, C. N. (2023). Pseudodifferential operators on the noncommutative torus: a survey. Publisher: arXiv Version Number: 1 | spa |
dc.relation.references | Kadison, R. V. and Ringrose, J. R. (1983a). Fundamentals of the theory of operator algebras, volume I of Pure and applied mathematics. Academic Press | spa |
dc.relation.references | Kadison, R. V. and Ringrose, J. R. (1983b). Fundamentals of the theory of operator algebras, volume II of Pure and applied mathematics. Academic Press | spa |
dc.relation.references | Kainz, G., Kriegl, A., and Michor, P. (1987). C ∞ -algebras from the functional analytic view point. 46(1):89–107. | spa |
dc.relation.references | Kantorovitz, S. (2003). Introduction to modern analysis. Number 8 in Oxford graduate texts in mathematics. Oxford University Press. | spa |
dc.relation.references | Karoubi, M. (1978). K-Theory: An Introduction. Classics in Mathematics. Springer Berlin Heidelberg. | spa |
dc.relation.references | Katznelson, Y. (2004). An Introduction to Harmonic Analysis. Cambridge University Press, 3 edition. | spa |
dc.relation.references | Khalkhali, M. (2013). Basic noncommutative geometry. EMS series of lectures in math- ematics. European Mathematical Society, second edition edition | spa |
dc.relation.references | Knapp, A. W. (2005). Basic real analysis. Cornerstones. Birkhäuser. | spa |
dc.relation.references | Lafon, S. (2018). How to prove that if the integral of a nonnegative function is zero, then the function is zero. Mathematics Stack Exchange. URL:https://math. stackexchange.com/q/2974242 (version: 2018-10-30). | spa |
dc.relation.references | Lambropoulos, K. and Simserides, C. (2019). Tight-binding modeling of nucleic acid sequences: Interplay between various types of order or disorder and charge transport. 11(8):968. | spa |
dc.relation.references | Lance, C. (1973). On nuclear C*-algebras. 12(2):157–176. | spa |
dc.relation.references | Lebl, J. (2022). Basic Analysis I & II: Introduction to Real Analysis, Volumes I & II. Version 5.6 (volume i) and 2.6 (volume II) edition | spa |
dc.relation.references | Loring, T. A. (2010). C*-algebra relations. 107(1):43. | spa |
dc.relation.references | Lundmark, H. (2013). The basel problem. Mathematics Stack Exchange. URL:https: //math.stackexchange.com/q/8353 (version: 2013-01-19) | spa |
dc.relation.references | Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I., and Vanderbilt, D. (2012). Maxi- mally localized wannier functions: Theory and applications. 84(4):1419–1475 | spa |
dc.relation.references | mathcounterexamples.net (2015). The space of functions that vanish at infinity is a banach space. Mathematics Stack Exchange. URL:https://math.stackexchange. com/q/1315426 (version: 2015-06-07). | spa |
dc.relation.references | Mathonline (2023). The counting measure. | spa |
dc.relation.references | (mathoverflow), U. B. (2022). Which *-algebras are C*-algebras? URL:https://mathoverflow.net/q/414904 (version: 2022-01-28). | spa |
dc.relation.references | mathoverflow.net, S. P. (2013). Universal C*-algebra with generators and relations. MathOverflow. URL:https://mathoverflow.net/q/151951 (version: 2013-12-15) | spa |
dc.relation.references | Meier, E. J., An, F. A., and Gadway, B. (2016). Observation of the topological soliton state in the su–schrieffer–heeger model. 7(1):13986 | spa |
dc.relation.references | Melrose, R. (2014). Introduction to functional analysis. | spa |
dc.relation.references | Michael, E. (1952). Locally Multiplicatively-Convex Topological Algebras. Number 11 in Memoirs of the American Mathematical Society. American Mathematical Society. | spa |
dc.relation.references | Michor, P. W. and Vanžura, J. (1994). Characterizing algebras of smooth functions on manifolds. Publisher: arXiv Version Number: 1. | spa |
dc.relation.references | Mikusinski, P. (2014). Integrals with values in banach spaces and locally convex spaces. Publisher: arXiv Version Number: 4 | spa |
dc.relation.references | Mikusiński, J. (1978). The Bochner integral. Number 55 in Lehrbücher und Mono- graphien aus dem Gebiete der exakten Wissenschaften Mathematische Reihe. Birkhäuser. | spa |
dc.relation.references | Milnor, J. W. (1959). On spaces having the homotopy type of a CW-complex. 90:272– 280 | spa |
dc.relation.references | Mirjam (2013). Is composition of measurable functions measurable? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/283548 (version: 2013- 01-21). | spa |
dc.relation.references | Moerdijk, I. and Reyes, G. E. (1991). Models for Smooth Infinitesimal Analysis. Springer New York. | spa |
dc.relation.references | Murphy, G. J. (1990). C*-algebras and operator theory. Academic Press. | spa |
dc.relation.references | Nagy, G. (2019). Real analysis. | spa |
dc.relation.references | Nameless (2012). Why are norms continuous? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/265285 (version: 2019-06-27). | spa |
dc.relation.references | Narici, L. and Beckenstein, E. (2011). Topological vector spaces. Monographs and textbooks in pure and applied mathematics. CRC Press, 2nd ed edition. OCLC: ocn144216834. | spa |
dc.relation.references | Neeb, K.-H. (1997). On a theorem of S. Banach. 7:293–300. | spa |
dc.relation.references | Nest, R. (1988). Cyclic cohomology of crossed products with Z. 80(2):235–283. | spa |
dc.relation.references | Nest, R. (1998). Cyclic cohomology of non-commutative tori. 40(5):1046–1057. | spa |
dc.relation.references | Newburgh, J. D. (1951). The variation of spectra. Duke Mathematical Journal, 18:165– 176 | spa |
dc.relation.references | Nielsen, O. A. (2017). Direct integral theory. CRC Press. OCLC: 1184238948. | spa |
dc.relation.references | nLab authors (2023a). compact subspaces of Hausdorff spaces are closed. https: //ncatlab.org/nlab/show/compact+subspaces+of+Hausdorff+spaces+are+closed. Revision 11. | spa |
dc.relation.references | nLab authors (2023b). continuous metric space valued function on compact metric space is uniformly continuous. https://ncatlab.org/nlab/show/continuous+ metric+space+valued+function+on+compact+metric+space+is+uniformly+ continuous. Revision 2 | spa |
dc.relation.references | nLab authors (2023c). Hilbert module. module. Revision 17. | spa |
dc.relation.references | nLab authors (2023d). locally compact and second-countable spaces are sigma-compact. https://ncatlab.org/nlab/show/locally+compact+and+ second-countable+spaces+are+sigma-compact. Revision 4. | spa |
dc.relation.references | nLab authors (2023e). Radon measure. measure. Revision 12. | spa |
dc.relation.references | Norbert (2012). Separability of the space of bounded operators on a hilbert space. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/119273 (version: 2012-03-12). | spa |
dc.relation.references | Norbert (2017). a compact operator on l 2 defined by an infinite matrix. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/553928 (version: 2017- 04-13) | spa |
dc.relation.references | Packer, J. A. and Raeburn, I. (1989). 106(2):293–311. | spa |
dc.relation.references | Packer, J. A. and Raeburn, I. (1989). 106(2):293–311. Twisted crossed products of C*-algebras. | spa |
dc.relation.references | Packer, J. A. and Raeburn, I. (1990). Twisted crossed products of C*-algebras. II. 287(1):595–612. | spa |
dc.relation.references | Pap, E. (2002). Handbook of measure theory. Elsevier. | spa |
dc.relation.references | Parts, D. B. (2018). Spectrum of unitary operators lie in the unit circle. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/2648203 (version: 2018- 02-13). | spa |
dc.relation.references | paul garrett (2022). Show that the space of continuously differentiable functions is a banach space. Mathematics Stack Exchange. URL:https://math.stackexchange. com/q/4404313 (version: 2022-03-15). | spa |
dc.relation.references | Pawel (2020). Separable hilbert space have a countable orthonormal basis. Mathe- matics Stack Exchange. URL: ttps://math.stackexchange.com/q/1939088 (version: 2020-10-27). | spa |
dc.relation.references | Perrot, D. (2008). Secondary invariants for frechet algebras and quasihomomor- phisms. Publisher: arXiv Version Number: 2. | spa |
dc.relation.references | Phillips, N. C. (1991). K-theory for Fréchet algebras. 02(1):77–129. | spa |
dc.relation.references | Pimsner, M. and Voiculescu, D. (1980). Exact sequences for K-groups and EXT- groups of certain cross-product C*-algebras. 4(1):93–118 | spa |
dc.relation.references | Pisier, G. (2021). Tensor products of C*-algebras and operator spaces. | spa |
dc.relation.references | Potter, H. T. (2014). The bochner integral and an application to singular integrals. | spa |
dc.relation.references | Prodan, E. (2017). A Computational Non-commutative Geometry Program for Disordered Topological Insulators, volume 23 of SpringerBriefs in Mathematical Physics. Springer International Publishing | spa |
dc.relation.references | Prodan, E. and Schulz-Baldes, H. (2016). Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Mathematical Physics Studies. Springer International Publishing. | spa |
dc.relation.references | Putnam, I. (2019). Lecture notes on C* algebras. | spa |
dc.relation.references | Quigg, J. (2005). Real analysis. | spa |
dc.relation.references | Rennie, A. (2003). Smoothness and locality for nonunital spectral triples. 28(2):127– 165. | spa |
dc.relation.references | Rickart, C. E. (1974). General theory of Banach algebras. R. E. Krieger. | spa |
dc.relation.references | robjohn (2012). On the closedness of L2 under convolution. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/118463 (version: 2012-03-10). | spa |
dc.relation.references | robjohn (2020). If f is measurable and f g is in L1 for all g ∈ Lq , must f ∈ L p ? Math- ematics Stack Exchange. URL:https://math.stackexchange.com/q/61549 (version: 2020-05-07). | spa |
dc.relation.references | Rosenberg, J. (1997). The algebraic K-theory of operator algebras. K-theory, 12(1):75– 99 | spa |
dc.relation.references | rspuzio (2013). Uncountable sums of positive numbers. | spa |
dc.relation.references | Rudin, W. (1967). Fourier analysis on groups. Dover Publications. OCLC: 985339604. | spa |
dc.relation.references | Runde, V. (1996). 120(4):703–708. Discontinuous homomorphisms from Banach *-algebras. | spa |
dc.relation.references | Ruy (2022). Non compact bounded operator A on the hilbert space such that ∥ Aen ∥ → 0 for an orthonormal system. Mathematics Stack Exchange. URL:https: //math.stackexchange.com/q/4470683 (version: 2022-06-12). | spa |
dc.relation.references | Rørdam, M. (2003). Stable c* algebras. Accessed: 21-September-2024. | spa |
dc.relation.references | Rørdam, M., Larsen, F., and Laustsen, N. (2000). An introduction to K-theory for C*- algebras. Number 49 in London Mathematical Society student texts. Cambridge University Press | spa |
dc.relation.references | Schaefer, H. H. and Wolff, M. P. (1999). Topological Vector Spaces. Springer New York : Imprint : Springer, second edition edition. OCLC: 840278135. | spa |
dc.relation.references | Schilling, R. L. (2005). Measures, integrals and martingales. Cambridge University Press. OCLC: 667039826. | spa |
dc.relation.references | Schulz-Baldes, H. and Stoiber, T. (2022). Harmonic analysis in operator algebras and its applications to index theory and topological solid state systems. Publisher: arXiv Version Number: 2. | spa |
dc.relation.references | Schweitzer, L. B. (1992). A short proof that Mn ( A) is local if A is local and fréchet. Publisher: arXiv Version Number: 1. | spa |
dc.relation.references | Spivak, M. (1994). Calculus. Cambridge University Press. | spa |
dc.relation.references | Sugiura, M. (1990). Unitary representations and harmonic analysis: an introduction. Number v. 44 in North-Holland mathematical library. North-Holland ; Kodan- sha ; Distributors for the U.S.A. and Canada, Elsevier Science Pub. Co, 2nd ed edition. | spa |
dc.relation.references | Sundar, S. (2020). Notes on C* algebras. | spa |
dc.relation.references | Takesaki, M. and Takesaki, M. (2003). Theory of operator algebras. Number v. 124- 125, 127 5-6, 8 in Encyclopaedia of mathematical sciences, Operator algebras and non-commutative geometry. Springer. OCLC: ocm51395972. | spa |
dc.relation.references | Tao, T. (2011). An introduction to measure theory. American Mathematical Society. OCLC: 726150205. | spa |
dc.relation.references | t.b. (2011). Why is ℓ1 (Z) not a C*-algebra? Mathematics Stack Exchange. URL:https: //math.stackexchange.com/q/95130 (version: 2011-12-30) | spa |
dc.relation.references | Timoney, R. (2004). Complex analysis for JS & SS mathematics. | spa |
dc.relation.references | Timoney, R. (2008). Functional analysis. | spa |
dc.relation.references | Travaglini, G. (1994). Fejer kernels for fourier series on T n and on compact lie groups. 216(1):265–281. | spa |
dc.relation.references | Treves, F. (2006). Topological vector spaces, distributions and kernels. Dover books on mathematics. Dover Publications. | spa |
dc.relation.references | Ullrich, D. C. (2016). Are compact operators trace class operators? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/1822286 (version: 2016- 06-11). | spa |
dc.relation.references | user125932 (2020). Convolution of l 2 functions is not an l 2 function. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/3583281 (version: 2020- 03-16). | spa |
dc.relation.references | user642796 (2017). Open subspaces of locally compact hausdorff spaces are locally compact. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/ 243170 (version: 2017-04-13). | spa |
dc.relation.references | van Dobben de Bruyn, J. (2017). C*-algebra generated by a. Mathematics Stack Ex- change. URL:https://math.stackexchange.com/q/2405957 (version: 2017-08-25). | spa |
dc.relation.references | Vinroot, R. (2008). The Haar measure. | spa |
dc.relation.references | Waelbroeck, L. (1971). Topological vector spaces and algebras. Number 230 in Lecture notes in mathematics. Springer. | spa |
dc.relation.references | Watson (2016). Generating the compact-open topology on the pontryagin dual group. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/ 1915124 (version: 2016-09-05). | spa |
dc.relation.references | Wegge-Olsen, N. E. (1993). K-theory and C*-algebras: a friendly approach. Oxford University Press. | spa |
dc.relation.references | Yuan, Q. (2020). When exactly is the character space of a banach algebra empty? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/3930961 (version: 2020-12-02) | spa |
dc.relation.references | Zygmund, A. and Fefferman, R. (2003). Trigonometric Series. Cambridge University Press, 3 edition | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 530 - Física::539 - Física moderna | spa |
dc.subject.ddc | 510 - Matemáticas::514 - Topología | spa |
dc.subject.ddc | 510 - Matemáticas::515 - Análisis | spa |
dc.subject.ddc | 510 - Matemáticas::516 - Geometría | spa |
dc.subject.lemb | ALGEBRA-METODOS GRAFICOS | spa |
dc.subject.lemb | Algebra - Graphic methods | eng |
dc.subject.lemb | ESPACIOS ALGEBRAICOS | spa |
dc.subject.lemb | Algebraic spaces | eng |
dc.subject.lemb | GEOMETRIA ALGEBRAICA | spa |
dc.subject.lemb | Geometry, algebraic | eng |
dc.subject.lemb | FUNCIONES ORTOGONALES | spa |
dc.subject.lemb | Functions, orthogonal | eng |
dc.subject.proposal | Non Commutative Brillouin Torus | eng |
dc.subject.proposal | Non Commutative Geometry | eng |
dc.subject.proposal | Functional analysis | eng |
dc.subject.proposal | Fourier Analysis | eng |
dc.subject.proposal | C* algebra | eng |
dc.subject.proposal | K theory | eng |
dc.subject.proposal | Fréchet algebra | eng |
dc.subject.proposal | Smooth sub algebra | eng |
dc.subject.proposal | Toro Non Commutativo de Brillouin | spa |
dc.subject.proposal | Geoemtría No Commutativa | spa |
dc.subject.proposal | Análisis Funcional | spa |
dc.subject.proposal | Análisis de Fourier | spa |
dc.subject.proposal | Álgebra C* | spa |
dc.subject.proposal | K teoría | spa |
dc.subject.proposal | Álgebra de Fréchet | spa |
dc.subject.proposal | Sub álgebra suave | spa |
dc.title | The Non-Commutative Brillouin Torus a Non-Commutative Geometry perspective | eng |
dc.title.translated | El Toro No-Commutativo de Brillouin, una perspetiva desde la geometria no commutativa | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Thesis_for_unal_repository.pdf
- Tamaño:
- 4.77 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: