The Non-Commutative Brillouin Torus a Non-Commutative Geometry perspective

dc.contributor.advisorCano Garcia, Leonardo Arturospa
dc.contributor.advisorReyes Lega, Andresspa
dc.contributor.authorFlorez Jimenez, Juan Sebastianspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=2BAew7oAAAAJ&hlspa
dc.date.accessioned2025-02-20T13:41:01Z
dc.date.available2025-02-20T13:41:01Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa geometría no conmutativa ha encontrado un campo fértil de ejemplos en la mecánica cuántica y ha proporcionado herramientas matemáticas rigurosas para extraer información topológica y geométrica de esos sistemas. Esta tesis es una incursión en algunas de las herramientas utilizadas por Jean Bellissard y colaboradores para el análisis de materiales homogéneos. Con esto en mente, nuestro primer paso es examinar los objetos utilizados en dicho análisis, que son un par de algebras topológicas diseñadas para extender el ámbito del análisis de Fourier sobre Td al estudio de modelos de enlace fuerte para materiales homogéneos. Estas álgebras se presentan como una generalización de C(Td ) y C ∞(Td ), y se consideran como una variedad suave no conmutativa en el campo de la Geometría No Conmutativa, a las que nos referiremos como el Toro de Brillouin No Conmutativo. Exploramos como diversas técnicas del análisis de Fourier sobre Td pueden ser traducidas al Toro de Brillouin No Conmutativo, por ejemplo, los coeficientes de Fourier y la suma de Fejer, y cómo estas técnicas nos permiten capturar la estructura topológica y suave de dicha variedad suave no conmutativa. En este contexto, la estructura topológica se captura mediante un algebra C*, mientras que la estructura suave se captura mediante un tipo particular de algebra de Fréchet, llamada subálgebra suave. Estos resultados resultan ser los bloques de construcción para la construcción de invariantes topológicos de Hamiltonianos a través de la cohomología cíclica continua de la subálgebra suave. Otra herramienta para estudiar invariantes topológicas de Hamiltonianos es la teoría K de algebras C* y subálgebras suaves. Las subálgebras suaves y las álgebras C* comparten un cálculo funcional similar, lo que implica que las subálgebras suaves contienen suficiente información para estudiar la teoría K de sus algebras C*. Este hecho juega un papel crucial en la identificación de invariantes topológicos de Hamiltonianos. Cuando las condiciones son adecuadas (temperatura cercana a 0 y baja densidad de electrones), es una de las causas subyacentes de la cuantización de la conductividad transversal en materiales homogéneos. Esta es otra tesis sobre Geometría No Conmutativa y aislantes topológicos, sin embargo, creemos que será un recurso útil para los recién llegados al campo (Texto tomado de la fuente).spa
dc.description.abstractNon-commutative geometry has found a fruitful field of examples in quantum mechanics and has provided rigorous mathematical tools to extract topological and geometrical information from those systems. This thesis is an incursion into some of the tools used by Jean Bellissard and collaborators for the analysis of homogeneous materials, having this in mind, our first step is to look into the objects used in such analysis, those are a pair of topological algebras devised to extend the realm of Fourier analysis over Td into the study of tight-binding models for homogeneous materials. These algebras come as a generalization of C(Td ) and C ∞(Td ), and are considered as a non-commutative smooth manifold in the field of NonCommutative Geometry, we will refer to them as the Non-Commutative Brillouin Torus. We explore how various techniques from the Fourier analysis over Td can be translated into the Non-Commutative Brillouin Torus e.g. Fourier coefficients and Fejer summation, and those techniques allow us to capture the topological and ´ smooth structure of such non-commutative smooth manifold. In this context, the topological structure is captured by a C* algebra while the smooth structure is captured by a particular type of Frechet algebra, which is called a smooth sub- ´ algebra. These results turn out to be the building blocks for the construction of topological invariants of Hamiltonians through the continuous cyclic cohomology of the smooth sub-algebra. Another tool to study topological invariants of Hamiltonians is the K theory of C* algebras and smooth sub-algebras. Smooth sub-algebras and C* algebras share a similar functional calculus, which implies that smooth sub-algebras contain enough information to study the K theory of their C* algebras. This fact plays a crucial role in the identification of topological invariants of Hamiltonians. When the conditions are right (temperature close to 0 and low electron density), it is one of the underlying causes of the quantization of the transversal conductivity in homogenous materials. This is yet another thesis about Non-Nommutative Geometry and topological insulators, however, we believe that it will be a useful asset for newcomers to the field.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.format.extent336 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87519
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.references(1984). Functional analysis ; surveys and recent results III: proceedings of the con- ference on functional analysis, paderborn, germany, 24-29 may, 1983. Meeting Name: Conference on Functional Analysis.spa
dc.relation.references(1994). C*-algebras: 1943-1993: a fifty year celebration: AMS special session com- memorating the first fifty years of c*-algebra theory, january 13-14, 1993, san antonio, texas.spa
dc.relation.references(2021). Positivity and its applications: Positivity x, 8-12 july 2019, pretoria, south africa.spa
dc.relation.references(6197), H. (2013). Bounded operators on a hilbert space form a c*-algebra.spa
dc.relation.referencesAbramovich, Y. A. and Aliprantis, C. D. (2002). An invitation to operator theory. Num- ber v. 50 in Graduate studies in mathematics. American Mathematical Society.spa
dc.relation.referencesAllan, G. R. (1965). A spectral theory for locally convex algebras. s3-15(1):399–421.spa
dc.relation.referencesAllan, G. R. and Dales, H. G. (2011). Introduction to Banach spaces and algebras. Num- ber 20 in Oxford graduate texts in mathematics. Oxford University Press. OCLC: ocn691395481spa
dc.relation.referencesArgerami, M. (2014). Spectrum of idempotent element. Mathematics Stack Ex- change. https://math.stackexchange.com/q/705540 (version: 2023-04-05).spa
dc.relation.referencesArgerami, M. (2017). Sufficient condition for a *-homomorphism between C*-algebras being isometric. Mathematics Stack Exchange. https://math. stackexchange.com/q/435105 (version: 2017-09-18).spa
dc.relation.referencesArgerami, M. (2022). Show that K0 ( A) is a countable group if A is a unital, separable c* algebra. Mathematics Stack Exchange. URL:https://math.stackexchange.com/ q/2214789 (version: 2022-11-30).spa
dc.relation.referencesArhippainen, J. and Müller, V. (2007). Norms on unitizations of banach algebras revisited. 114(3):201–204.spa
dc.relation.referencesArici, F. and Mesland, B. (2020). Toeplitz extensions in noncommutative topology and mathematical physics. pages 3–29spa
dc.relation.referencesArikan, H., Runov, L., and Zahariuta, V. (2003). Holomorphic functional calculus for operators on a locally convex space. 43(1):23–36.spa
dc.relation.referencesAsbóth, J. K., Oroszlány, L., and Pályi, A. (2015). A short course on topological insulators: Band-structure topology and edge states in one and two dimensions. Publisher: arXiv Version Number: 1spa
dc.relation.referencesAtiyah, M. F. (2018). K-theory. Advanced books classics. CRC Press, Taylor & Francis Group.spa
dc.relation.referencesAweygan (2020). K1 ( A) is countable when A is a separable C*-algebra. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/3753144 (version: 2020- 07-11).spa
dc.relation.referencesBackhouse, N. B. (1970). Projective representations of space groups II: Factor sys- tems. 21(3):277–295spa
dc.relation.referencesBackhouse, N. B. and Bradley, C. J. (1970). Projective representations of space groups I: Translation groups. 21(2):203–222.spa
dc.relation.referencesBader, U. and Nowak, P. W. (2020). Group algebra criteria for vanishing of cohomol- ogy.spa
dc.relation.referencesBahouri, H., Chemin, J.-Y., and Danchin, R. (2011). Fourier Analysis and Nonlinear Partial Differential Equations, volume 343 of Grundlehren der mathematischen Wis- senschaften. Springer Berlin Heidelberg.spa
dc.relation.referencesBaiborodov, S. P. (1984). Approximation of functions of several variables by fejer sums. 36(1):553–561.spa
dc.relation.referencesBarnsley, M. F. (1993). Fractals everywhere. Morgan Kaufmann, 2. ed., 3. [print.] edition.spa
dc.relation.referencesBeckus, S. (2016). Spectral approximation of aperiodic schrodinger operators. Pub- lisher: Unpublishedspa
dc.relation.referencesBeckus, S. and Bellissard, J. (2016). Continuity of the spectrum of a field of self- adjoint operators. 17(12):3425–3442.spa
dc.relation.referencesBedos, E. and Conti, R. (2011). On discrete twisted C*-dynamical systems, Hilbert C*-modules and regularity. Publisher: arXiv Version Number: 4.spa
dc.relation.referencesBellissard, J., van Elst, A., and Schulz-Baldes, H. (1994). The non-commutative geometry of the quantum hall effect. Publisher: arXiv Version Number: 1.spa
dc.relation.referencesBHATT, S., INOUE, A., and OGI, H. (2003). Spectral invariance, K-theory isomor- phismand an application to the differential structure of C*-algebras. pages 89–405.spa
dc.relation.referencesBhatt, S. J. (2016). Smooth frechet subalgebras of C*-algebras defined by first order differential seminorms. 126(1):125–141.spa
dc.relation.referencesBhatt, S. J., Karia, D. J., and Shah, M. M. (2013). On a class of smooth frechet subalgebras of C* -algebras. 123(3):393–413.spa
dc.relation.referencesBlackadar, B. (1985). Shape theory for C*-algebras. 56:249.spa
dc.relation.referencesBlackadar, B. (2006). Operator algebras: theory of C*-algebras and von Neumann algebras. Number v. 122. 3 in Encyclopaedia of mathematical sciences, Operator algebras and non-commutative geometry. Springer.spa
dc.relation.referencesBlackadar, B. (2012). K-theory for operator algebras. Springer. OCLC: 802329230.spa
dc.relation.referencesBurlando, L. (1994). Continuity of spectrum and spectral radius in banach algebras. 30(1):53–100.spa
dc.relation.referencesBusby, R. C. and Smith, H. A. (1970). Representations of twisted group algebras. 149(2):503–503.spa
dc.relation.referencesBédos, E. and Conti, R. (2009). On twisted fourier analysis and convergence of fourier series on discrete groups. 15(3):336–365.spa
dc.relation.referencesBédos, E. and Conti, R. (2015). Fourier series and twisted C*-crossed products. 21(1):32–75.spa
dc.relation.referencesBédos, E. and Conti, R. (2016). Fourier theory and C*-algebras. 105:2–24.spa
dc.relation.referencesCarey, A. L., Gayral, V., Rennie, A., and Sukochev, F. A. (2014). Index theory for locally compact noncommutative geometries. Number volume 231, number 1085 in Memoirs of the American Mathematical Society. American Mathematical Society.spa
dc.relation.referencesConnes, A. (1985). Non-commutative differential geometry. 62:41–144.spa
dc.relation.referencesConnes, A. (2014). Noncommutative Geometry. Elsevier Science. OCLC: 1058380634.spa
dc.relation.referencesCook, J. (2023). Modes of convergence.spa
dc.relation.referencesCordeiro, L. (2017). Prove that an infinite matrix defines a compact operator on l 2 . Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/1243780 (version: 2015-04-20)spa
dc.relation.referencesCOURTNEY, K. and GILLASPY, E. (2023). Notes on c* algebras.spa
dc.relation.referencesCuntz, J. J. R., Meyer, R., and Rosenberg, J. M. (2007). Topological and bivariant K- theory. Birkhauser. OCLC: ocn141385291.spa
dc.relation.referencesDales, H. G. (2000). Banach algebras and automatic continuity. Number new ser., 24 in Oxford science publications. Clarendon Press ; Oxford University Pressspa
dc.relation.referencesDales, H. G., Aiena, P., Eschmeier, J., Laursen, K., and Willis, G. A. (2003). Introduc- tion to Banach Algebras, Operators, and Harmonic Analysis. Cambridge University Press, 1 editionspa
dc.relation.referencesDales, H. G. and Woodin, W. H. (1987). An Introduction to Independence for Analysts. Cambridge University Press, 1 editionspa
dc.relation.referencesDavidson, K. R. (1996). C*-algebras by example. Number 6 in Fields Institute mono- graphs. American Mathematical Societyspa
dc.relation.referencesDe Chiffre, M. D. (2011). The Haar measure.spa
dc.relation.referencesDeitmar, A. and Echterhoff, S. (2009). Principles of harmonic analysis. Universitext. Springer. OCLC: ocn277275470.spa
dc.relation.referencesDriver, B. K. (2020). Functional analysis tools with examples.spa
dc.relation.referencesEspinoza, J. and Uribe, B. (2014). Topological properties of the unitary group. Pub- lisher: arXiv Version Number: 1spa
dc.relation.referencesExel, R., Giordano, T., and Goncalves, D. (2008). Envelope algebras of partial actions as groupoid c*-algebras. Publisher: arXiv Version Number: 1spa
dc.relation.referencesFefferman, C. (1971a). On the convergence of multiple fourier series. 77(5):744 – 745spa
dc.relation.referencesFefferman, C. (1971b). On the divergence of multiple fourier series. 77(2):191–195.spa
dc.relation.referencesFischer, D. (2013). Counterexample for bounded subsets in a frechet space. Mathe- matics Stack Exchange. URL:https://math.stackexchange.com/q/446294 (version: 2013-07-18)spa
dc.relation.referencesFischer, D. (2015a). Compatibility of topologies and metrics on the hilbert cube. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/1326186 (version: 2015-06-15).spa
dc.relation.referencesFischer, D. (2015b). Is the uniform limit of continuous functions continuous for topo- logical spaces? Mathematics Stack Exchange. URL:https://math.stackexchange. com/q/1026265 (version: 2015-10-14)spa
dc.relation.referencesFolland, G. B. (1999). Real analysis: modern techniques and their applications. Pure and applied mathematics. Wiley, 2nd ed editionspa
dc.relation.referencesFolland, G. B. (2016). A course in abstract harmonic analysis. Number 29 in Textbooks in mathematics series. CRC Press/Taylor & Francis, second edition edition.spa
dc.relation.referencesFragoulopoulou, M. (2005). Topological algebras with involution. Number 200 in North- Holland mathematics studies. Elsevier, 1. ed edition.spa
dc.relation.referencesFragoulopoulou, M., Inoue, A., Weigt, M., and Zarakas, I. (2022). Generalized B*- Algebras and Applications, volume 2298 of Lecture Notes in Mathematics. Springer International Publishing.spa
dc.relation.referencesFréchet algebra (2022). Fréchet algebra — Wikipedia, the free encyclopedia. [Online; accessed 8-July-2024]spa
dc.relation.referencesGarcia F., M. (2018). Convergence and divergence of fourier series.spa
dc.relation.referencesGarret, P. (2020). Real analysis.spa
dc.relation.referencesGilman, J., Kra, I., Rodrı́guez, R. E., and Bers, L. (2007). Complex analysis: in the spirit of Lipman Bers. Number 245 in Graduate texts in mathematics. Springer. OCLC: ocn173498966spa
dc.relation.referencesGoldmann, H. (1990). Uniform Frechet algebras. Number 162 in North-Holland math- ematics studies. North-Holland ; Distributors for the U.S. and Canada, Elsevier Science Pub. Co.spa
dc.relation.referencesGracia-Bondı́a, J. M., Várilly, J. C., and Figueroa, H. (2001). Elements of noncom- mutative geometry. Birkhäuser advanced texts Basler Lehrbücher. Springer Sci- ence+Business Mediaspa
dc.relation.referencesGramsch, B. (1984). Relative inversion in der strungstheorie von operatoren und Ψ-algebren. 269(1):27–71spa
dc.relation.referencesHeil, C. (2011). Introduction to real analysis.spa
dc.relation.referencesHenrikson, J. T. (1999). Completeness and total boundedness of the hausdorff metric. pages 69–80.spa
dc.relation.referencesHewitt, E. and Ross, K. A. (1963). Abstract Harmonic Analysis. Springer Berlin Heidelberg.spa
dc.relation.referencesHobart, D. J. E. and Colleges, W. S. (2022). A short introduction to metric spaces section 3: Limits and continuity. Accessed: 18-September-2024spa
dc.relation.referencesHorváth, J. (1966). Topological vector spaces and distributions. Dover, corr., unabriged republ edition.spa
dc.relation.referencesHunter, J. and Nachtergaele, B. (2005). Aplied Analysis.spa
dc.relation.referencesHytönen, T., van Neerven, J., Veraar, M., and Weis, L. (2016). Analysis in Banach Spaces: Volume I: Martingales and Littlewood-Paley Theory. Number 63 in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Springer International Publishing : Imprint: Springer, 1st ed. 2016 editionspa
dc.relation.referencesJiménez, C. N. (2023). Pseudodifferential operators on the noncommutative torus: a survey. Publisher: arXiv Version Number: 1spa
dc.relation.referencesKadison, R. V. and Ringrose, J. R. (1983a). Fundamentals of the theory of operator algebras, volume I of Pure and applied mathematics. Academic Pressspa
dc.relation.referencesKadison, R. V. and Ringrose, J. R. (1983b). Fundamentals of the theory of operator algebras, volume II of Pure and applied mathematics. Academic Pressspa
dc.relation.referencesKainz, G., Kriegl, A., and Michor, P. (1987). C ∞ -algebras from the functional analytic view point. 46(1):89–107.spa
dc.relation.referencesKantorovitz, S. (2003). Introduction to modern analysis. Number 8 in Oxford graduate texts in mathematics. Oxford University Press.spa
dc.relation.referencesKaroubi, M. (1978). K-Theory: An Introduction. Classics in Mathematics. Springer Berlin Heidelberg.spa
dc.relation.referencesKatznelson, Y. (2004). An Introduction to Harmonic Analysis. Cambridge University Press, 3 edition.spa
dc.relation.referencesKhalkhali, M. (2013). Basic noncommutative geometry. EMS series of lectures in math- ematics. European Mathematical Society, second edition editionspa
dc.relation.referencesKnapp, A. W. (2005). Basic real analysis. Cornerstones. Birkhäuser.spa
dc.relation.referencesLafon, S. (2018). How to prove that if the integral of a nonnegative function is zero, then the function is zero. Mathematics Stack Exchange. URL:https://math. stackexchange.com/q/2974242 (version: 2018-10-30).spa
dc.relation.referencesLambropoulos, K. and Simserides, C. (2019). Tight-binding modeling of nucleic acid sequences: Interplay between various types of order or disorder and charge transport. 11(8):968.spa
dc.relation.referencesLance, C. (1973). On nuclear C*-algebras. 12(2):157–176.spa
dc.relation.referencesLebl, J. (2022). Basic Analysis I & II: Introduction to Real Analysis, Volumes I & II. Version 5.6 (volume i) and 2.6 (volume II) editionspa
dc.relation.referencesLoring, T. A. (2010). C*-algebra relations. 107(1):43.spa
dc.relation.referencesLundmark, H. (2013). The basel problem. Mathematics Stack Exchange. URL:https: //math.stackexchange.com/q/8353 (version: 2013-01-19)spa
dc.relation.referencesMarzari, N., Mostofi, A. A., Yates, J. R., Souza, I., and Vanderbilt, D. (2012). Maxi- mally localized wannier functions: Theory and applications. 84(4):1419–1475spa
dc.relation.referencesmathcounterexamples.net (2015). The space of functions that vanish at infinity is a banach space. Mathematics Stack Exchange. URL:https://math.stackexchange. com/q/1315426 (version: 2015-06-07).spa
dc.relation.referencesMathonline (2023). The counting measure.spa
dc.relation.references(mathoverflow), U. B. (2022). Which *-algebras are C*-algebras? URL:https://mathoverflow.net/q/414904 (version: 2022-01-28).spa
dc.relation.referencesmathoverflow.net, S. P. (2013). Universal C*-algebra with generators and relations. MathOverflow. URL:https://mathoverflow.net/q/151951 (version: 2013-12-15)spa
dc.relation.referencesMeier, E. J., An, F. A., and Gadway, B. (2016). Observation of the topological soliton state in the su–schrieffer–heeger model. 7(1):13986spa
dc.relation.referencesMelrose, R. (2014). Introduction to functional analysis.spa
dc.relation.referencesMichael, E. (1952). Locally Multiplicatively-Convex Topological Algebras. Number 11 in Memoirs of the American Mathematical Society. American Mathematical Society.spa
dc.relation.referencesMichor, P. W. and Vanžura, J. (1994). Characterizing algebras of smooth functions on manifolds. Publisher: arXiv Version Number: 1.spa
dc.relation.referencesMikusinski, P. (2014). Integrals with values in banach spaces and locally convex spaces. Publisher: arXiv Version Number: 4spa
dc.relation.referencesMikusiński, J. (1978). The Bochner integral. Number 55 in Lehrbücher und Mono- graphien aus dem Gebiete der exakten Wissenschaften Mathematische Reihe. Birkhäuser.spa
dc.relation.referencesMilnor, J. W. (1959). On spaces having the homotopy type of a CW-complex. 90:272– 280spa
dc.relation.referencesMirjam (2013). Is composition of measurable functions measurable? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/283548 (version: 2013- 01-21).spa
dc.relation.referencesMoerdijk, I. and Reyes, G. E. (1991). Models for Smooth Infinitesimal Analysis. Springer New York.spa
dc.relation.referencesMurphy, G. J. (1990). C*-algebras and operator theory. Academic Press.spa
dc.relation.referencesNagy, G. (2019). Real analysis.spa
dc.relation.referencesNameless (2012). Why are norms continuous? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/265285 (version: 2019-06-27).spa
dc.relation.referencesNarici, L. and Beckenstein, E. (2011). Topological vector spaces. Monographs and textbooks in pure and applied mathematics. CRC Press, 2nd ed edition. OCLC: ocn144216834.spa
dc.relation.referencesNeeb, K.-H. (1997). On a theorem of S. Banach. 7:293–300.spa
dc.relation.referencesNest, R. (1988). Cyclic cohomology of crossed products with Z. 80(2):235–283.spa
dc.relation.referencesNest, R. (1998). Cyclic cohomology of non-commutative tori. 40(5):1046–1057.spa
dc.relation.referencesNewburgh, J. D. (1951). The variation of spectra. Duke Mathematical Journal, 18:165– 176spa
dc.relation.referencesNielsen, O. A. (2017). Direct integral theory. CRC Press. OCLC: 1184238948.spa
dc.relation.referencesnLab authors (2023a). compact subspaces of Hausdorff spaces are closed. https: //ncatlab.org/nlab/show/compact+subspaces+of+Hausdorff+spaces+are+closed. Revision 11.spa
dc.relation.referencesnLab authors (2023b). continuous metric space valued function on compact metric space is uniformly continuous. https://ncatlab.org/nlab/show/continuous+ metric+space+valued+function+on+compact+metric+space+is+uniformly+ continuous. Revision 2spa
dc.relation.referencesnLab authors (2023c). Hilbert module. module. Revision 17.spa
dc.relation.referencesnLab authors (2023d). locally compact and second-countable spaces are sigma-compact. https://ncatlab.org/nlab/show/locally+compact+and+ second-countable+spaces+are+sigma-compact. Revision 4.spa
dc.relation.referencesnLab authors (2023e). Radon measure. measure. Revision 12.spa
dc.relation.referencesNorbert (2012). Separability of the space of bounded operators on a hilbert space. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/119273 (version: 2012-03-12).spa
dc.relation.referencesNorbert (2017). a compact operator on l 2 defined by an infinite matrix. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/553928 (version: 2017- 04-13)spa
dc.relation.referencesPacker, J. A. and Raeburn, I. (1989). 106(2):293–311.spa
dc.relation.referencesPacker, J. A. and Raeburn, I. (1989). 106(2):293–311. Twisted crossed products of C*-algebras.spa
dc.relation.referencesPacker, J. A. and Raeburn, I. (1990). Twisted crossed products of C*-algebras. II. 287(1):595–612.spa
dc.relation.referencesPap, E. (2002). Handbook of measure theory. Elsevier.spa
dc.relation.referencesParts, D. B. (2018). Spectrum of unitary operators lie in the unit circle. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/2648203 (version: 2018- 02-13).spa
dc.relation.referencespaul garrett (2022). Show that the space of continuously differentiable functions is a banach space. Mathematics Stack Exchange. URL:https://math.stackexchange. com/q/4404313 (version: 2022-03-15).spa
dc.relation.referencesPawel (2020). Separable hilbert space have a countable orthonormal basis. Mathe- matics Stack Exchange. URL: ttps://math.stackexchange.com/q/1939088 (version: 2020-10-27).spa
dc.relation.referencesPerrot, D. (2008). Secondary invariants for frechet algebras and quasihomomor- phisms. Publisher: arXiv Version Number: 2.spa
dc.relation.referencesPhillips, N. C. (1991). K-theory for Fréchet algebras. 02(1):77–129.spa
dc.relation.referencesPimsner, M. and Voiculescu, D. (1980). Exact sequences for K-groups and EXT- groups of certain cross-product C*-algebras. 4(1):93–118spa
dc.relation.referencesPisier, G. (2021). Tensor products of C*-algebras and operator spaces.spa
dc.relation.referencesPotter, H. T. (2014). The bochner integral and an application to singular integrals.spa
dc.relation.referencesProdan, E. (2017). A Computational Non-commutative Geometry Program for Disordered Topological Insulators, volume 23 of SpringerBriefs in Mathematical Physics. Springer International Publishingspa
dc.relation.referencesProdan, E. and Schulz-Baldes, H. (2016). Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Mathematical Physics Studies. Springer International Publishing.spa
dc.relation.referencesPutnam, I. (2019). Lecture notes on C* algebras.spa
dc.relation.referencesQuigg, J. (2005). Real analysis.spa
dc.relation.referencesRennie, A. (2003). Smoothness and locality for nonunital spectral triples. 28(2):127– 165.spa
dc.relation.referencesRickart, C. E. (1974). General theory of Banach algebras. R. E. Krieger.spa
dc.relation.referencesrobjohn (2012). On the closedness of L2 under convolution. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/118463 (version: 2012-03-10).spa
dc.relation.referencesrobjohn (2020). If f is measurable and f g is in L1 for all g ∈ Lq , must f ∈ L p ? Math- ematics Stack Exchange. URL:https://math.stackexchange.com/q/61549 (version: 2020-05-07).spa
dc.relation.referencesRosenberg, J. (1997). The algebraic K-theory of operator algebras. K-theory, 12(1):75– 99spa
dc.relation.referencesrspuzio (2013). Uncountable sums of positive numbers.spa
dc.relation.referencesRudin, W. (1967). Fourier analysis on groups. Dover Publications. OCLC: 985339604.spa
dc.relation.referencesRunde, V. (1996). 120(4):703–708. Discontinuous homomorphisms from Banach *-algebras.spa
dc.relation.referencesRuy (2022). Non compact bounded operator A on the hilbert space such that ∥ Aen ∥ → 0 for an orthonormal system. Mathematics Stack Exchange. URL:https: //math.stackexchange.com/q/4470683 (version: 2022-06-12).spa
dc.relation.referencesRørdam, M. (2003). Stable c* algebras. Accessed: 21-September-2024.spa
dc.relation.referencesRørdam, M., Larsen, F., and Laustsen, N. (2000). An introduction to K-theory for C*- algebras. Number 49 in London Mathematical Society student texts. Cambridge University Pressspa
dc.relation.referencesSchaefer, H. H. and Wolff, M. P. (1999). Topological Vector Spaces. Springer New York : Imprint : Springer, second edition edition. OCLC: 840278135.spa
dc.relation.referencesSchilling, R. L. (2005). Measures, integrals and martingales. Cambridge University Press. OCLC: 667039826.spa
dc.relation.referencesSchulz-Baldes, H. and Stoiber, T. (2022). Harmonic analysis in operator algebras and its applications to index theory and topological solid state systems. Publisher: arXiv Version Number: 2.spa
dc.relation.referencesSchweitzer, L. B. (1992). A short proof that Mn ( A) is local if A is local and fréchet. Publisher: arXiv Version Number: 1.spa
dc.relation.referencesSpivak, M. (1994). Calculus. Cambridge University Press.spa
dc.relation.referencesSugiura, M. (1990). Unitary representations and harmonic analysis: an introduction. Number v. 44 in North-Holland mathematical library. North-Holland ; Kodan- sha ; Distributors for the U.S.A. and Canada, Elsevier Science Pub. Co, 2nd ed edition.spa
dc.relation.referencesSundar, S. (2020). Notes on C* algebras.spa
dc.relation.referencesTakesaki, M. and Takesaki, M. (2003). Theory of operator algebras. Number v. 124- 125, 127 5-6, 8 in Encyclopaedia of mathematical sciences, Operator algebras and non-commutative geometry. Springer. OCLC: ocm51395972.spa
dc.relation.referencesTao, T. (2011). An introduction to measure theory. American Mathematical Society. OCLC: 726150205.spa
dc.relation.referencest.b. (2011). Why is ℓ1 (Z) not a C*-algebra? Mathematics Stack Exchange. URL:https: //math.stackexchange.com/q/95130 (version: 2011-12-30)spa
dc.relation.referencesTimoney, R. (2004). Complex analysis for JS & SS mathematics.spa
dc.relation.referencesTimoney, R. (2008). Functional analysis.spa
dc.relation.referencesTravaglini, G. (1994). Fejer kernels for fourier series on T n and on compact lie groups. 216(1):265–281.spa
dc.relation.referencesTreves, F. (2006). Topological vector spaces, distributions and kernels. Dover books on mathematics. Dover Publications.spa
dc.relation.referencesUllrich, D. C. (2016). Are compact operators trace class operators? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/1822286 (version: 2016- 06-11).spa
dc.relation.referencesuser125932 (2020). Convolution of l 2 functions is not an l 2 function. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/3583281 (version: 2020- 03-16).spa
dc.relation.referencesuser642796 (2017). Open subspaces of locally compact hausdorff spaces are locally compact. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/ 243170 (version: 2017-04-13).spa
dc.relation.referencesvan Dobben de Bruyn, J. (2017). C*-algebra generated by a. Mathematics Stack Ex- change. URL:https://math.stackexchange.com/q/2405957 (version: 2017-08-25).spa
dc.relation.referencesVinroot, R. (2008). The Haar measure.spa
dc.relation.referencesWaelbroeck, L. (1971). Topological vector spaces and algebras. Number 230 in Lecture notes in mathematics. Springer.spa
dc.relation.referencesWatson (2016). Generating the compact-open topology on the pontryagin dual group. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/ 1915124 (version: 2016-09-05).spa
dc.relation.referencesWegge-Olsen, N. E. (1993). K-theory and C*-algebras: a friendly approach. Oxford University Press.spa
dc.relation.referencesYuan, Q. (2020). When exactly is the character space of a banach algebra empty? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/3930961 (version: 2020-12-02)spa
dc.relation.referencesZygmund, A. and Fefferman, R. (2003). Trigonometric Series. Cambridge University Press, 3 editionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.ddc510 - Matemáticas::514 - Topologíaspa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.ddc510 - Matemáticas::516 - Geometríaspa
dc.subject.lembALGEBRA-METODOS GRAFICOSspa
dc.subject.lembAlgebra - Graphic methodseng
dc.subject.lembESPACIOS ALGEBRAICOSspa
dc.subject.lembAlgebraic spaceseng
dc.subject.lembGEOMETRIA ALGEBRAICAspa
dc.subject.lembGeometry, algebraiceng
dc.subject.lembFUNCIONES ORTOGONALESspa
dc.subject.lembFunctions, orthogonaleng
dc.subject.proposalNon Commutative Brillouin Toruseng
dc.subject.proposalNon Commutative Geometryeng
dc.subject.proposalFunctional analysiseng
dc.subject.proposalFourier Analysiseng
dc.subject.proposalC* algebraeng
dc.subject.proposalK theoryeng
dc.subject.proposalFréchet algebraeng
dc.subject.proposalSmooth sub algebraeng
dc.subject.proposalToro Non Commutativo de Brillouinspa
dc.subject.proposalGeoemtría No Commutativaspa
dc.subject.proposalAnálisis Funcionalspa
dc.subject.proposalAnálisis de Fourierspa
dc.subject.proposalÁlgebra C*spa
dc.subject.proposalK teoríaspa
dc.subject.proposalÁlgebra de Fréchetspa
dc.subject.proposalSub álgebra suavespa
dc.titleThe Non-Commutative Brillouin Torus a Non-Commutative Geometry perspectiveeng
dc.title.translatedEl Toro No-Commutativo de Brillouin, una perspetiva desde la geometria no commutativaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Thesis_for_unal_repository.pdf
Tamaño:
4.77 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: