Evaluar dos metodologías para el análisis de residuos de los fungicidas mancozeb y propineb en frutas y vegetales como alternativas de análisis de su calidad e inocuidad

dc.contributor.advisorGuerrero Dallos, Jairo Arturo
dc.contributor.authorAlzate Pérez, Diana Gabriela
dc.contributor.researchgroupResidualidad y Destino Ambiental de Plaguicidas en Sistemas Agricolasspa
dc.date.accessioned2023-01-16T16:36:38Z
dc.date.available2023-01-16T16:36:38Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractLos ditiocarbamatos (DTC), específicamente mancozeb y propineb, son los fungicidas más vendidos en Colombia, estos son aplicados en una gran variedad de cultivos debido a su actividad fúngica de amplio espectro, además han sido reportados en los últimos años con gran frecuencia en los monitoreos de residuos de plaguicidas realizados por la Comisión Europea. Los DTC son analizados por métodos indirectos debido a su inestabilidad química y baja solubilidad, razón por la que su análisis presenta importantes retos. En el presente trabajo se implementó y evaluó dos metodologías para el análisis de residuos de ditiocarbamatos, específicamente para mancozeb y propineb en frutas y vegetales. Esto con el objetivo de brindar una herramienta para evaluar la calidad e inocuidad de alimentos en Colombia. La primera metodología desarrollada fue propuesta como alternativa y solución a dificultades en la metodología oficial de la Comisión Europea. Esta consistió en la derivatización de mancozeb y propineb a los productos metilados Dimetil-etilenbisditiocarbamato (dimetil-EBDC) y Dimetil-propilenbisditiocarbamato (dimetil-PBDC), extracción con QuEChERS y análisis por Cromatografía Líquida de alta resolución con detector de arreglo de diodos. La metodología se optimizó y validó en una gran variedad de matrices, los resultados demostraron que es eficaz, precisa, lineal y selectiva puesto que permite identificar y separar los residuos de mancozeb y propineb. Se obtuvieron límites de cuantificación expresados como disulfuro de carbono por kilogramo de matriz de 0.059 mg CS2/ kg para Mancozeb (Dimetil-EBDC) y 0.065 mg CS2/kg para Propineb (Dimetil-PBDC) con coeficientes de variación menores al 20%. Adicionalmente, muestra que es adecuada para evaluar la calidad e inocuidad de frutas y vegetales de acuerdo con los límites máximos de residuos establecidos por el CODEX Alimentarius. La segunda metodología se basó en el método oficial de la Comisión Europea. Consiste en realizar una hidrolisis ácida al ditiocarbamato con el fin de producir disulfuro de carbono. Esta no es selectiva para la identificación individual de mancozeb y propineb, ya que el producto de transformación de ambos ditiocarbamatos es disulfuro de carbono. Se realizó la validación de la metodología y se demostró que es lineal, precisa, veraz y selectiva en matrices que no sean de las familias Brassicaceae y Alliaceae, ya que estas matrices producen disulfuro de carbono endógeno. El límite de cuantificación fue de 0.050 mg CS2/kg con coeficientes de variación menor al 20%, porcentajes de recuperación entre el rango de 70%-120%. Por último, se evaluó la estabilidad de los residuos de mancozeb y propineb durante la etapa de procesamiento, se determinó a partir de pruebas estadísticas que el proceso de homogeneización a baja temperatura previene la degradación del ditiocarbamato. Las dos metodologías de análisis demostraron ser equivalentes para el cumplimiento de los límites máximos de residuos en ditiocarbamatos para frutas y vegetales, el método oficial presenta retos que pueden ser superados con el método por derivatización, lo cual permitiria, obtener más información sobre el origen del disulfuro de carbono, mejorar los monitoreos y disminuir la probabilidad de reportar falsos positivos (Texto tomado de la fuente)spa
dc.description.abstractDithiocarbamates (DTC), specifically mancozeb and propineb, are the best-selling fungicides in Colombia, these are applied in a wide variety of crops due to their broad-spectrum fungal activity, and have also been reported in recent years with great frequency in monitoring of pesticide residues carried out by the European Commission. DTCs are analyzed by indirect methods due to their chemical instability and low solubility, which is why their analysis presents important challenges. In the present work, two methodologies were implemented and evaluated for the analysis of dithiocarbamate residues, specifically for mancozeb and propineb in fruits and vegetables. This with the objective of providing a tool to evaluate the quality and safety of food in Colombia. The first methodology developed was proposed as an alternative and solution to difficulties presented by the official methodology of the European Commission. This Consisted of the derivatization of mancozeb and propineb to the methylated products Dimethyl-EBDC and Dimethyl-PBDC, extraction with QuEChERS and analysis by High Performance Liquid Chromatography with diode array detector. It was optimized and validated in a wide variety of matrices, the results showed that this methodology is efficient, precise, linear and selective, it since it allows to identify and separate mancozeb and propineb residues. Quantification limits expresed as miligrams of carbon disulfide per kilogramo of matrix of 0.059 mg CS2/kg were obtained for Mancozeb (Dimethyl-EBDC) and 0.065 mg CS2/kg for Propineb (Dimethyl-PBDC) with coefficients of variation less than 20%. Additionally, the derivatization methodology is suitable for evaluating the quality and safety of fruits and vegetables in accordance with the maximum residue limits established by the CODEX Alimentarius. The second methodology was based on the official method of the European Commission. This consists of carrying out an acid hydrolysis of the dithiocarbamate in order to produce carbon disulfide. This methodology is not selective for the individual identification of mancozeb and propineb, since the transformation product in both dithiocarbamates is carbon disulfide. The validation of the methodology was carried out and it was shown that it is linear, precise, truthful and selective in matrices that are not from the Brassicaceae and Alliaceae families, since these matrices produce endogenous carbon disulfide. The quantification limit was 0.050 mg CS2/kg with coefficients of variation less than 20%, recovery percentages between the range of 70%-120%. Finally, the stability of mancozeb and propineb residues during the processing stage was evaluated, it was determined from statistical tests that the low temperature homogenization process prevents the degradation of dithiocarbamate. The two analysis methodologies proved to be equivalent for compliance with the maximum residue limits in dithiocarbamates for fruits and vegetables, the official method presents challenges that can be overcome with the derivatization method, which would allow obtaining more information on the origin of carbon disulfide, improve monitoring and reduce the probability of reporting false positives.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaQuímica analíticaspa
dc.format.extent100 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82942
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references1. Hodson E, Castaño J, Poveda G, Roldan G. Food and Nutrition Security in Colombia [Internet]. 2017 [cited 2019 Jul 16]. Available from: https://cgspace.cgiar.org/bitstream/handle/10568/92502/Food and Nutrition Security in Colombia.pdf?sequence=1&isAllowed=yspa
dc.relation.references2. Ernesto Á, Peláez P. LINEAMIENTOS Y ESTRATEGIAS DE ARTICULACIÓN DE REPRESENTANTES EMPRESAS AGROINDUSTRIALES JUNIO DE 2017. 2017;spa
dc.relation.references3. FAO. Colombia - Nota de Análisis Sectorial: Agricultura y Desarrollo [Internet]. 2013 [cited 2019 Jul 16]. Available from: http://www.fao.org/3/a-ak167s.pdfspa
dc.relation.references4. MinSalud. Perfil nacional de consumo de frutas y verduras [Internet]. Fao. 2013. 263 p. Available from: http://www.osancolombia.gov.co/doc/Perfil_Nacional_Consumo_FyV_Colombia_2012.pdfspa
dc.relation.references5. Food and Agriculture Organization FAO. International Code of Conduct on the Distribution and Use of Pesticides: Guidelines for the Registration of Pesticides. Assessment [Internet]. 2010;(April):42pp. Available from: http://www.who.int/whopes/resources/resources_2010/en/spa
dc.relation.references6. Elsa N. Los plaguicidas en Colombia. Semillas [Internet]. 2004 [cited 2019 Jul 17]; Available from: http://www.semillas.org.co/es/los-plaguicidas-en-colombiaspa
dc.relation.references7. Instituto Colombiano Agropecuario I. Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2015.spa
dc.relation.references8. Instituto Colombiano Agropecuario I. DE PLAGUICIDAS POR DE PLAGUICIDAS POR. 2019spa
dc.relation.references9. Gullino ML, Tinivella F, Garibaldi A, Kemmitt GM, Bacci L, Sheppard B. Mancozeb: Past, Present, and Future. Plant Dis. 2010;94(9):1076–87.spa
dc.relation.references10. Suguiyama L. Toxicología Ambiental del Mancozeb y del ETU Propiedades Físico-Químicasspa
dc.relation.references11. Caldas ED, Conceição MH, Miranda MCC, De Souza LCKR, Lima JF. Determination of dithiocarbamate fungicide residues in food by a spectrophotometric method using a vertical disulfide reaction system. J Agric Food Chem. 2001;49(10):4521–5.spa
dc.relation.references12. Pizzutti IR, De Kok A, Da Silva RC, Rohers GN. Comparison between three chromatographic (GC-ECD, GC-PFPD and GC-ITD-MS) methods and a UV-Vis spectrophotometric method for the determination of dithiocarbamates in lettuce. J Braz Chem Soc. 2017;28(5):775–81.spa
dc.relation.references13. Abakerli RB, Sparrapan R, Sawaya ACHF, Eberlin MN, Jara JLP, Rodrigues NR, et al. Carbon disulfide formation in papaya under conditions of dithiocarbamate residue analysis. Food Chem [Internet]. 2015;188:71–6. Available from: http://dx.doi.org/10.1016/j.foodchem.2015.04.059spa
dc.relation.references14. Crnogorac G, Schwack W. Residue analysis of dithiocarbamate fungicides. TrAC - Trends Anal Chem. 2009;28(1):40–50.spa
dc.relation.references15. Food E, Authority S. Modification of the existing MRLs for mancozeb in fresh peas ( without. 2010;8(January):1–27.spa
dc.relation.references16. López-Fernández O, Rial-Otero R, González-Barreiro C, Simal-Gándara J. Surveillance of fungicidal dithiocarbamate residues in fruits and vegetables. Food Chem. 2012;134(1):366–74.spa
dc.relation.references17. Gustafsson KH, Fahlgren CH. Determination of Dithiocarbamate Fungicides in Vegetable Foodstuffs by High-Performance Liquid Chromatography. J Agric Food Chem. 1983;31(2):461–3.spa
dc.relation.references18. Hayama T, Takada M. Simple and rapid method for the determination of ethylenebisdithiocarbamate fungicides in fruits and vegetables using liquid chromatography with tandem mass spectrometry. Anal Bioanal Chem. 2008;392(5):969–76.spa
dc.relation.references19. Özhan G, Alpertunga B. Liquid chromatographic analysis of maneb and its main degradation product, ethylenethiouera, in fruit juice. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 2008;25(8):961–70.spa
dc.relation.references20. Taylor P, Nakazawa H, Tsuda Y, Ito K, Yoshimura Y, Kubo H. Journal of Liquid Chromatography & Related Determination of Dithiocarbamate Fungicides by Reversed ‐ Phase Ion ‐ Pair Liquid Chromatography with Chemiluminescence Detection Determination of Dithiocarbamate Fungicides by Reversed-Phase Ion-Pair Liquid Chro. (October 2014):37–41.spa
dc.relation.references21. European Comission. Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. Dir Gen Heal FOOD Saf. 2017;SANTE/1181.spa
dc.relation.references22. Hayama T, Yada K, Onimaru S, Yoshida H, Todoroki K, Nohta H, et al. Simplified method for determination of polycarbamate fungicide in water samples by liquid chromatography with tandem mass spectrometry following derivatization with dimethyl sulfate. J Chromatogr A. 2007;1141(2):251–8.spa
dc.relation.references23. Blasco C, Font G, Picó Y. Determination of dithiocarbamates and metabolites in plants by liquid chromatography-mass spectrometry. J Chromatogr A. 2004;1028(2):267–76.spa
dc.relation.references24. Union E. The 2017 European Union report on pesticide residues in food. 2019;17(396).spa
dc.relation.references25. Perz RC, Van Lishaut H, Schwack W. CS2 blinds in Brassica crops: False positive results in the dithiocarbamate residue analysis by the acid digestion method. J Agric Food Chem. 2000;48(3):792–6.spa
dc.relation.references26. Guidelines AE, Chemicals SA, Academy N. Committee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Division on Earth and Life Studies. Vol. 7.spa
dc.relation.references27. Ayano Kakitani. A rapid and sensitive analysis of dithiocarbamate fungicides using modified QuEChERS method and liquid chromatography–tandem mass spectrometry. J Pestic Sci. 2017;42(4):145–150.spa
dc.relation.references28. FAO. PROPINEB. 1992; Available from:http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation93/propineb.pdfspa
dc.relation.references29. Yohanna N, Rodr V. Validación de metodologías analíticas para la determinación de productos de degradación de fungicidas ditiocarbamatos. 2013;spa
dc.relation.references30. Kwon D, Chung H, Shin W, Park Y, Kwon S. Toxicological evaluation of dithiocarbamate fungicide mancozeb on the endocrine functions in male rats. 2018;105–12.spa
dc.relation.references31. Kackar R, Srivastava MK, Raizada RB. Assessment of toxicological effects of mancozeb in male rats after chronic exposure *. 1999;37(1950):553–9.spa
dc.relation.references32. Axelstad M, Boberg J, Nellemann C, Kiersgaard M, Jacobsen PR, Christiansen S, et al. Exposure to the Widely Used Fungicide Mancozeb Causes Thyroid Hormone Disruption in Rat Dams but No Behavioral Effects in the Offspring. 2011;120(2):439–46.spa
dc.relation.references33. Peer review of the pesticide risk assessment of the active substance mancozeb _ Enhanced Reader.pdf.spa
dc.relation.references34. Service UF, St C, Durkin PR. Mancozeb : WorksheetMaker Workbook Documentation Final Report Submitted by : 2015.spa
dc.relation.references35. US EPA. Mancozeb Facts. Prev Pestic Toxic Subst. 2005;(Pd 4):1–6.spa
dc.relation.references36. States U, Substances T. Reregistration Eligibility Decision for Mancozeb. 2005;(September).spa
dc.relation.references37. OMS | ¿Residuos de plaguicidas en los alimentos? WHO [Internet]. 2016 [cited 2019 May 15]; Available from: https://www.who.int/features/qa/87/es/spa
dc.relation.references38. Slorach SA, Administration NF. The regulation of chemical contaminants. 2001;13.spa
dc.relation.references39. Carrasco Cabrera L, Medina Pastor P. The 2019 European Union report on pesticide residues in food. Vol. 19, EFSA Journal. 2021.spa
dc.relation.references40. Abdourahime H, Anastassiadou M, Arena M, Auteri D, Barmaz S, Brancato A, et al. Abdourahime, H., Anastassiadou, M., Arena, M., Auteri, D., Barmaz, S., Brancato, A., Bura, L., Carrasco Cabrera, L., Chaideftou, E., Chiusolo, A., Court Marques, D., Crivellente, F., De Lentdecker, C., Egsmose, M., Fait, G., Ferreira, L., Gatto, V., Greco. EFSA J [Internet]. 2020 Dec 1 [cited 2022 Feb 28];18(12):e05755. Available from: https://onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2020.5755spa
dc.relation.references41. Food Safety Authority E, Abdourahime H, Anastassiadou M, Arena M, Auteri D, Barmaz S, et al. Peer review of the pesticide risk assessment of the active substance Reynoutria sachalinensis extract. Journal [Internet]. 2019;18(12):5755. Available from: www.efsa.europa.eu/efsajournalspa
dc.relation.references42. Cómo garantiza Europa que los plaguicidas sean seguros [Internet]. [cited 2022 Feb 27]. Available from: https://multimedia.efsa.europa.eu/pesticides-authorisation/index.htm#activesubstancesspa
dc.relation.references43. Alavanja MCR, Hoppin JA, Kamel F. HEALTH EFFECTS OF CHRONIC PESTICIDE EXPOSURE: Cancer and Neurotoxicity * 3. Annu Rev Public Heal [Internet]. 2004 [cited 2020 May 6];25:155–97. Available from:www.annualreviews.orgspa
dc.relation.references44. Ntzani EE, Ntritsos G CM, Evangelou E, Tzoulaki I. Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Support Publ. 2017 Mar 7;10(10).spa
dc.relation.references45. Sobhanzadeh E, Abu Bakar NK, Abas MR, Nemati K. Sample Preparation Methods for Pesticides Analysis in Food Matrices and Environmental Samples by Chromatography-Based Techniques: A Review. Malaysian J Fundam Appl Sci. 2014;5(2).spa
dc.relation.references46. Zhang L, Liu S, Cui X, Pan C, Zhang A, Chen F. A review of sample preparation methods for the pesticide residue analysis in foods. Cent Eur J Chem. 2012;10(3):900–25.spa
dc.relation.references47. Amvrazi EG, Albanis TA. Multiresidue method for determination of 35 pesticides in virgin olive oil by using liquid-liquid extraction techniques coupled with solid-phase extraction clean up and gas chromatography with nitrogen phosphorus detection and electron capture detection. J Agric Food Chem. 2006;54(26):9642–51.spa
dc.relation.references48. Walton HF. General considerations. Ligand Exch Chromatogr. 2018;7–30.spa
dc.relation.references49. Et A. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce [Internet]. Vol. 86, JOURNAL OF AOAC INTERNATIONAL. 2003 [cited 2021 Mar 28]. Available from: https://academic.oup.com/jaoac/article/86/2/412/5656996spa
dc.relation.references50. Farías D (Universidad N. EVALUACION DE RESIDUOS DE PLAGUICIDAS EN TOMATE. Bogotá; 2004.spa
dc.relation.references51. European Comission. Analysis of Dithiocarbamate Residues in Foods of Plant Origin involving Cleavage into Carbon Disulfide , Partitioning into Isooctane and Determinative Analysis by GC-ECD 1 . Aim and Scope 2 . Safety Instructions 3 . Short Description of Procedure. 2005;1–12.spa
dc.relation.references52. Xu G, Nie J, Li H, Yan Z, Cheng Y. Determination of mancozeb residue in fruit by derivatization and a modified QuEChERS method using ultraperformance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem. 2017;409(21):5057–63.spa
dc.relation.references53. López-Fernández O, Rial-Otero R, Simal-Gándara J. Factors governing the removal of mancozeb residues from lettuces with washing solutions. Food Control [Internet]. 2013;34(2):530–8. Available from: http://dx.doi.org/10.1016/j.foodcont.2013.05.022spa
dc.relation.references54. Zhou L, Xu J, Luan L, Ma J, Gong Y, Qin D, et al. Optimization and validation of a method based on derivatization with methylating agent followed by HPLC-DAD for determining dithiocarbamates residues. Acta Chromatogr. 2013;25(4):613–25.spa
dc.relation.references55. Petha NH, Lokhande RS, Seshadri DT, Patil RM, Bhagat TS, Patil JG. A simple pre-column derivatization method for the determination of mancozeb technical (fungicide) by reverse phase HPLC-UV. Anal Methods [Internet]. 2017;9(32):4702–8. Available from: http://dx.doi.org/10.1039/C7AY00830Aspa
dc.relation.references56. Gustafsson KH, Thompson RA. High-Pressure Liquid Chromatographic Determination of Fungicidal Dithiocarbamates. J Agric Food Chem. 1981;29(4):729–32.spa
dc.relation.references57. Atienza J, Jimenez JJ, Alvarez J, Martin MT, Toribio L. Extraction With Edta/Methanol And Supercritical Carbon Dioxide For The Analysis Of Ziram Residues On Spinach. Toxicol Environ Chem. 1994;45(3–4):179–87.spa
dc.relation.references58. Mujawar S, Utture SC, Fonseca E, Matarrita J, Banerjee K. Validation of a GC-MS method for the estimation of dithiocarbamate fungicide residues and safety evaluation of mancozeb in fruits and vegetables. Food Chem [Internet]. 2014;150:175–81. Available from: http://dx.doi.org/10.1016/j.foodchem.2013.10.148spa
dc.relation.references59. Dh KMOJ, Makoto TJ, Bdid SN. A new method for the determination of dithiocarbamate.pdf. 2010;(October):213–9.spa
dc.relation.references60. Schmidt B, Christensen HB, Petersen A, Sloth JJ, Poulsen ME. Method validation and analysis of nine dithiocarbamates in fruits and vegetables by LC-MS/MS. Food Addit Contam - Part A Chem Anal Control Expo Risk Assess. 2013;30(7):1287–98.spa
dc.relation.references61. Barreto AV. Implementación y validación de una metodología analíticia para la determinación de etilentiourea en orina y parches de extracción. Bogotá: Rev. Col. Cienc. Quím. Farm; 2003. p. 32 (1), 51–7.spa
dc.relation.references62. Glosario de términos sobre garantía de calidad y buenas prácticas de laboratorio.spa
dc.relation.references63. Edition T. Guide to Quality in Analytical Chemistry. 2016.spa
dc.relation.references64. Jimenez J. Evaluación de la contaminación por bifenilos policlorados (PCB: 28, 52, 101, 118,138, 153 y 180) en leche cruda bovina de los departamentos de Cundinamarca, Antioquia, Nariño, Quindío y Boyacá por cromatografía de gases con detector de microcaptura de ele. 2018;spa
dc.relation.references65. Corley J. Best practices in establishing detection and quantification limits for pesticide residues in foods. Handb Residue Anal Methods Agrochem. 2003;409(c):1–18.spa
dc.relation.references66. Alejandro D, Forigua A. Reducción del efecto matriz en el análisis de residuos de Plaguicidas mediante Cromatografía de gases. 2010;spa
dc.relation.references67. España Amórtegui JC, Guerrero Dallos JA. Practical aspects in gas chromatography-mass spectrometry for the analysis of pesticide residues in exotic fruits. Food Chem. 2015;182:14–22.spa
dc.relation.references68. MacBean C (Colin), British Crop Protection Council. The pesticide manual- Supplementary Entries- Extended. MacBean C, editor. 2012;1439.spa
dc.relation.references69. Li J, Dong C, Yang Q, An W, Zheng ZT, Jiao B. Simultaneous Determination of Ethylenebisdithiocarbamate (EBDC) and Propylenebisdithiocarbamate (PBDC) Fungicides in Vegetables, Fruits, and Mushrooms by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. Food Anal Methods. 2019;2045–55.spa
dc.relation.references70. Tujia P., Amadeo F., Carmen F., Mette E., Bjöm H. MA. ANALYTICAL QUALITY CONTROL AND METHOD VALIDATION PROCEDURES FOR PESTICIDE RESIDUES ANALYSIS IN FOOD AND FEED. SANTE 11312/2021. 2021spa
dc.relation.references71. Monzón D, Monzón Paiva D. Introducción al diseño de experimentos. Rev la Fac Agron la Univ Cent Venez. 1992;(Alcance 34):167 p.spa
dc.relation.references72. Kobayashi H, Nishida M, Matano O, Goto S. Effect of Cysteine on the Stability of Ethylenethiourea and Ethylenebis(dithiocarbamate) in Crops during Storage and/or Analysis. J Agric Food Chem. 1992;40(1):76–80.spa
dc.relation.references73. Version E, Quechers A. Analysis of Acidic Pesticides using QuEChERS ( EN15662 ) and acidified QuEChERS method Subject : Analytical observations report concerning the following … Brief description : Apparatus and Consumables : Acidified QuEChERS ( A-QuEChERS ): Measurement : 2015;1:1–2.spa
dc.relation.references74. Gilbert-López B, García-Reyes JF, Molina-Díaz A. Sample treatment and determination of pesticide residues in fatty vegetable matrices: A review. Talanta. 2009;79(2):109–28.spa
dc.relation.references75. Yang Y, Ye M, Trinh A, Henderson T, Road NH. Application of PSA and Carbon / PSA SPE Cartridges for Cleanup of Vegetables , Foods and Fruit Extracts.spa
dc.relation.references76. Miller J, Miller J. Métodos de Calibración en Análisis Instrumental: Regresión y Correlación. Estadísitica y Quimiometría para Química Analítica. 2002. p. 120–34.spa
dc.relation.references77. Zhou W, Yang S, Wang PG. Matrix effects and application of matrix effect factor. Bioanalysis. 2017;9(23):1839–44.spa
dc.relation.references78. Durante I, Procesamiento EL, Erazo A, Guerrero JA. Uncertainty During Sample Processing of Fruits. 2006;(2):163–75.spa
dc.relation.references79. Bao SF. MÁSTER UNIVERSITARIO EN INGENIERÍA QUÍMICA DISEÑO DE EXPERIMENTOS : DISEÑO FACTORIAL Memoria y Anexos. 2020;spa
dc.relation.references80. López DR. de plaguicidas en miel de abejas provenientes de los departamentos de Boyacá , Cundinamarca , Magdalena y Santander Evaluación de la presencia de residuos de plaguicidas en miel de abejas provenientes de los departamentos de Boyacá , Cundinamarca , Magdal. 2011;spa
dc.relation.references81. Dasgupta S, Mujawar S, Banerjee K, Huebschmann H. Analysis of Dithiocarbamate Pesticides by GC-MS. Thermo Sci. 2012;3–7.spa
dc.relation.references82. Fussell RJ, Hetmanski MT, Colyer A, Caldow M, Smith F, Findlay D, et al. Assessment of the Stability of Pesticides During the Cryogenic Processing of Fruits and Vegetables To cite this version : r P Fo r R w On ly. 2011.spa
dc.relation.references83. Roussev M, Lehotay SJ, Pollaehne J. Cryogenic Sample Processing with Liquid Nitrogen for E ff ective and. J Agric Food Chem. 2019;67:9203–9.spa
dc.relation.references84. Ambrus Á. Measurement Uncertainty Associated with Sample Processing of Oranges and Tomatoes for Pesticide Residue Analysis Related papers.spa
dc.relation.references85. OMS. Comisión del Codex Alimentarius: Manual de procedimiento. [Internet]. Codex Alimentarius - Joint FAO/WHO Food Standards Programme. 2013. 255 p. Available from: http://www.fao.org/publications/card/es/c/CA2329ESspa
dc.relation.references86. Waddington G, Smith JC, Williamson KD, Scott DW. CARBON DISULFIDE AS A REFERENCE SUBSTANCE FOR VAPOR-FLOW CALORIMETRY; THE CHEMICAL THERMODYNAMIC PROPERTIES. J Phys Chem. 1962;66(6):1074–7.spa
dc.relation.references87. Dass C. Fundamentals of Contemporary Mass Spectrometry. Fundamentals of Contemporary Mass Spectrometry. 2006. 1–585 p.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.proposalDitiocarbamatosspa
dc.subject.proposalDisulfuro de carbonospa
dc.subject.proposalDerivatizaciónspa
dc.subject.proposalPlaguicidasspa
dc.subject.proposalDithiocarbamateseng
dc.subject.proposalCarbon disulfideeng
dc.subject.proposalDerivatizationeng
dc.subject.proposalPesticideseng
dc.subject.proposalQuEChERSeng
dc.subject.unescoPlaguicidaspa
dc.subject.unescoPesticideseng
dc.subject.unescoQuímica agrícolaspa
dc.subject.unescoAgricultural chemistryeng
dc.titleEvaluar dos metodologías para el análisis de residuos de los fungicidas mancozeb y propineb en frutas y vegetales como alternativas de análisis de su calidad e inocuidadspa
dc.title.translatedEvaluation of two methodologies for the analysis of residues of the fungicides mancozeb and propineb in fruits and vegetables as alternatives for the analysis of their quality and safetyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026288256.2022.pdf
Tamaño:
2.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: