Genotipificación de SNVs de la región promotora de los genes IL-6, IL-1β, TNF-a asociados a respuesta inflamatoria en los fenotipos de Apnea Obstructiva del Sueño y Enfermedad Periodontal

dc.contributor.advisorRey Buitrago, Mauricio
dc.contributor.advisorOtero Mendoza, Liliana Margarita
dc.contributor.advisorGonzález Martínez, Farith Damián
dc.contributor.authorSir-Mendoza, Francisco Javier
dc.contributor.researchgroupGenetica clinicaspa
dc.date.accessioned2022-08-11T14:25:08Z
dc.date.available2022-08-11T14:25:08Z
dc.date.issued2022-03-04
dc.descriptiongráficas, ilustraciones, tablasspa
dc.description.abstractEl objetivo del presente estudio fue determinar variantes de nucleótido único (SNVs) en la región promotora de los genes IL-1β c.-511C>T, c.-31T>C; TNF-α c.-308 G>A; IL-6 c.- 572G>C, c.-174C>G, y los niveles de proteínas de estas citoquinas proinflamatorias en saliva de individuos con apnea obstructiva del sueño (AOS) y periodontitis crónica (PC). Se realizó un estudio de casos y controles que comprendió un total de 129 individuos de Bogotá, Colombia. El grupo de casos fue subdividido en PC, AOS, PC más AOS. Para la genotipificación se realizó extracción de ADN y amplificación por PCR para llevar a cabo secuenciación Sanger. Los datos fueron analizados mediante estadística descriptiva e inferencial con el programa R (v3.6.2). Los alelos IL-1β presentaron asociación significativa (IL-1β c.-511T p=0.0007 (OR 2.83 IC: 1.57-5.10), IL-1β c.-31C p=0.001 (OR 2.81 IC: 1.51- 5.20)) y en sus estados homocigotos (IL-1β c.-511TT p=0.002 (OR 7.9 IC : 2.09-29.8), IL-1β c.-31CC p=0.0001 (OR 7.2 IC: 1.8-27.9)). Estas estimaciones se obtuvieron al comparar individuos con AOS vs controles, y sujetos con PC más AOS vs controles, sugiriendo que individuos con estos SNVs poseen más de dos veces riesgo de desarrollar estos fenotipos inflamatorios, incluso aumenta a más de 7 veces siendo homocigotos. En ambos análisis, alélico y genotípico, el efecto de riesgo se mantuvo en pacientes diagnosticados concomitantemente con ambas enfermedades. Este efecto puede ser correlacionado con los niveles de proteínas, individuos IL-1β c.-511TT con PC más AOS tuvieron mayores niveles de proteína IL-1β en saliva que controles IL-1β c.-511 CC (p= 0.011), así mismo, controles IL-1β c.-31TT vs PC más AOS IL-1β c.-31 CT (p= 0.001). Los alelos de IL-1β analizados incrementan el riesgo de desarrollar AOS y/o AOS más PC simultáneamente, siendo mayor en genotipos homocigotos. Por otro lado, se ha identificado una nueva variante en IL-1β con un efecto protector (IL-1β c.4654A p=0.028 (OR 0.22 IC:0.06-0.7)). (Texto tomado de la fuente)spa
dc.description.abstractThe aim of the present research was to determine single nucleotide variants (SNVs) in the promoter region of IL-1β (c.-511C>T, c.-31T>C), TNF-α (c.-308G>A), IL-6 (c.-572G>C, c.-174C>G) gene, and the protein level of these proinflammatory cytokines in saliva of individuals with Obstructive Sleep Apnea (OSA) and Chronic periodontitis (CP). A case and control study that comprised a total 129 subjects from Bogotá, Colombia was conducted. The cases group was subdivided into a group with only CP, only with OSA, and presenting CP and OSA in concomitance. For genotyping, DNA extraction and PCR amplification were performed to carry out Sanger sequencing. Descriptive and inferential statistic was performed using R (v3.6.2). The IL-1β alleles had significant association (IL-1β c.-511T p=0.0007 (OR 2.83 CI: 1.57-5.10), IL-1β c.-31C p=0.001 (OR 2.81 CI: 1.51-5.20)) as well as its homozygous states (IL-1β c.-511TT p=0.002 (OR 7.9 CI : 2.09-29.8), IL-1β c.-31CC p=0.0001 (OR 7.2 CI: 1.8-27.9)). These estimations were obtained when comparing individuals with OSA vs Controls and subjects with CP + OSA vs Controls, suggesting that individuals with the mentioned SNVs have two times more risk to develop these inflammatory phenotypes and the risk is even seven times more when having two copies of the allele. In both allelic and genotypes analyzes the risk effect of the SNVs was maintained in patients diagnosed with both diseases. In addition, this genotypic effect could be correlated to the protein level, homozygous individuals IL-1β c.-511TT diagnosed simultaneously with OSA and CP had more IL-1β protein level in saliva than controls IL-1β c.-511CC (p= 0.011), as well as when comparing controls IL-1β c.-31TT with OSA and CP IL-1β c.-31 CT (p= 0.001). The alleles IL-1β c.-511T and IL-1β c.-31C increase the risk of develop OSA and/or OSA with CP concomitantly, even more in a homozygous state. Otherwise, a novel variant in IL-1β has been identified with a protective effect (IL-1β c.4654A p=0.028 (OR 0.22 IC:0.06-0.7)). (Text taken fron the source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Genética Humanaspa
dc.description.methodsSe realizó un estudio de casos y controles que comprendió un total de 129 individuos de Bogotá, Colombia. El grupo de casos fue subdividido en PC, AOS, PC más AOS. Para la genotipificación se realizó extracción de ADN y amplificación por PCR para llevar a cabo secuenciación Sanger. Los datos fueron analizados mediante estadística descriptiva e inferencial con el programa R (v3.6.2).spa
dc.format.extentxv, 82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81845
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Genéticaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Genética Humanaspa
dc.relation.referencesDe Pablo P, Chapple ILC, Buckley CD, Dietrich T. Periodontitis in systemic rheumatic diseases. Nat Rev Rheumatol. 2009;5(4):218–24spa
dc.relation.referencesVos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59.spa
dc.relation.referencesNazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim). 2017;11(2):72.spa
dc.relation.referencesLindhe J, Karring T, Lang NP. Clinical periodontology and implant dentistry. Blackwell; 2003.spa
dc.relation.referencesEstudio Nacional de Salud Bucal ENSAB IV [Internet]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENSAB IV-Situacion-Bucal-Actual.pdfspa
dc.relation.referencesEstudio Nacional de Salud Bucal ENSAB IV [Internet]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENSAB IV-Situacion-Bucal-Actual.pdfspa
dc.relation.referencesTremblay C, Beaudry P, Bissonnette C, Gauthier CA, Girard S, Milot MP, et al. Periodontitis and obstructive sleep apnea: A literature review. J Dent Sleep Med. 2017;4:103–10.spa
dc.relation.referencesMedicine AA of S. International classification of sleep disorders. Diagnostic coding Man. 2005;51–5.spa
dc.relation.referencesAlDabal L, BaHammam AS. Metabolic, endocrine, and immune consequences of sleep deprivation. Open Respir Med J. 2011;5:31.spa
dc.relation.referencesGoel N, Rao H, Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. In: Seminars in neurology. © Thieme Medical Publishers; 2009. p. 320–39.spa
dc.relation.referencesBesedovsky L, Lange T, Born J. Sleep and immune function. Pflügers Arch J Physiol. 2012;463(1):121–37.spa
dc.relation.referencesLal C, Strange C, Bachman D. Neurocognitive impairment in obstructive sleep apnea. Chest. 2012;141(6):1601–10.spa
dc.relation.referencesGuilleminault C, Abad VC. Obstructive sleep apnea. Curr Treat Options Neurol. 2004;6(4):309–17.spa
dc.relation.referencesOtero L, del Carmen Figueredo M, Riveros-Rivera A, Hidalgo P. Cognitive impairment and obstructive sleep apnea. In: Updates in Sleep Neurology and Obstructive Sleep Apnea. IntechOpen; 2019.spa
dc.relation.referencesAl-Jewair TS, Al-Jasser R, Almas K. Periodontitis and obstructive sleep apnea’s bidirectional relationship: a systematic review and meta-analysis. Sleep Breath. 2015;19(4):1111–20.spa
dc.relation.referencesLatorre C, Escobar F, Velosa J, Rubiano D, Hidalgo-Martinez P, Otero L. Association between obstructive sleep apnea and comorbidities with periodontal disease in adults. J Indian Soc Periodontol. 2018;22(3):215.spa
dc.relation.referencesSeo WH, Cho ER, Thomas RJ, An S, Ryu JJ, Kim H, et al. The association between periodontitis and obstructive sleep apnea: a preliminary study. J Periodontal Res. 2013;48(4):500–6.spa
dc.relation.referencesPopko K, Gorska E, Potapinska O, Wasik M, Stoklosa A, Plywaczewski R, et al. Frequency of distribution of inflammatory cytokines IL-1, IL-6 and TNF-alpha gene polymorphism in patients with obstructive sleep apnea. J Physiol Pharmacol. 2008;59(Suppl 6):607–14.spa
dc.relation.referencesZhang Z, Wang Q, Chen B, Wang Y, Miao Y, Han L. Association study of genetic variations of inflammatory biomarkers with susceptibility and severity of obstructive sleep apnea. Mol Genet genomic Med. 2019;7(8):e801.spa
dc.relation.referencesBird S, Zou J, Wang T, Munday B, Cunningham C, Secombes CJ. Evolution of interleukin-1β. Cytokine Growth Factor Rev. 2002;13(6):483–502.spa
dc.relation.referencesBird S, Zou J, Wang T, Munday B, Cunningham C, Secombes CJ. Evolution of interleukin-1β. Cytokine Growth Factor Rev. 2002;13(6):483–502.spa
dc.relation.referencesKornman KS, di Giovine FS. Genetic variations in cytokine expression: a risk factor for severity of adult periodontitis. Ann Periodontol. 1998 Jul;3(1):327–38.spa
dc.relation.referencesOwens RL, Eckert DJ, Yeh SY, Malhotra A. Upper airway function in the pathogenesis of obstructive sleep apnea: a review of the current literature. Curr Opin Pulm Med. 2008;14(6):519.spa
dc.relation.referencesSoga Y, Nishimura F, Ohyama H, Maeda H, Takashiba S, Murayama Y. Tumor necrosis factor-alpha gene (TNF-alpha) -1031/-863, -857 single-nucleotide polymorphisms (SNPs) are associated with severe adult periodontitis in Japanese. J Clin Periodontol. 2003 Jun;30(6):524–31.spa
dc.relation.referencesWu X, Offenbacher S, Lόpez NJ, Chen D, Wang H, Rogus J, et al. Association of interleukin‐1 gene variations with moderate to severe chronic periodontitis in multiple ethnicities. J Periodontal Res. 2015;50(1):52–61.spa
dc.relation.referencesNikolopoulos GK, Dimou NL, Hamodrakas SJ, Bagos PG. Cytokine gene polymorphisms in periodontal disease: a meta-analysis of 53 studies including 4178 cases and 4590 controls. J Clin Periodontol. 2008 Sep;35(9):754–67.spa
dc.relation.referencesMonguí AC, Pastrana MCM, Quiroga GMS, Torres MH, Uriza CL, Arregocés FE, et al. Condición periodontal de pacientes con apnea obstructiva del sueño/Periodontal Status of Patients with Obstructive Sleep Apnea. Univ Odontológica. 2016;35(74):141–58.spa
dc.relation.referencesDinarello CA. Proinflammatory cytokines. Chest. 2000;118(2):503–8spa
dc.relation.referencesZhang J-M, An J. Cytokines, inflammation and pain. Int Anesthesiol Clin. 2007;45(2):27.spa
dc.relation.referencesTakeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17(1):1–14.spa
dc.relation.referencesTakeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21(1):335–76.spa
dc.relation.referencesDong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20(1):55–72.spa
dc.relation.referencesGay NJ, Keith FJ. Drosophila Toll and IL-1 receptor. Nature. 1991;351(6325):355– 6.spa
dc.relation.referencesDinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, J Am Soc Hematol. 2011;117(14):3720–32.spa
dc.relation.referencesLibby P, Ordovas JM, Auger KR, Robbins AH, Birinyi LK, Dinarello CA. Endotoxin and tumor necrosis factor induce interleukin-1 gene expression in adult human vascular endothelial cells. Am J Pathol. 1986;124(2):179.spa
dc.relation.referencesEder C. Mechanisms of interleukin-1β release. Immunobiology. 2009;214(7):543– 53.spa
dc.relation.referencesKominato Y, Galson D, Waterman WR, Webb AC, Auron PE. Monocyte expression of the human prointerleukin 1 beta gene (IL1B) is dependent on promoter sequences which bind the hematopoietic transcription factor Spi-1/PU. 1. Mol Cell Biol. 1995;15(1):59–68.spa
dc.relation.referencesAdamik J, Wang KZQ, Unlu S, Su A-JA, Tannahill GM, Galson DL, et al. Distinct mechanisms for induction and tolerance regulate the immediate early genes encoding interleukin 1β and tumor necrosis factor α. PLoS One. 2013;8(8):e70622.spa
dc.relation.referencesHagemeier C, Bannister AJ, Cook A, Kouzarides T. The activation domain of transcription factor PU. 1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro: RB shows sequence similarity to TFIID and TFIIB. Proc Natl Acad Sci. 1993;90(4):1580–4spa
dc.relation.referencesPulugulla SH, Packard TA, Galloway NLK, Grimmett ZW, Doitsh G, Adamik J, et al. Distinct mechanisms regulate IL1B gene transcription in lymphoid CD4 T cells and monocytes. Cytokine. 2018;111:373–81.spa
dc.relation.referencesDinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.spa
dc.relation.referencesGaestel M, Kotlyarov A, Kracht M. Targeting innate immunity protein kinase signalling in inflammation. Nat Rev Drug Discov. 2009;8(6):480–99.spa
dc.relation.referencesDinarello CA. Biologic basis for interleukin-1 in disease. 1996spa
dc.relation.referencesWeber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway. Sci Signal. 2010;3(105):cm1–cm1.spa
dc.relation.referencesGreenfeder SA, Nunes P, Kwee L, Labow M, Chizzonite RA, Ju G. Molecular Cloning and Characterization of a Second Subunit of the Interleukin 1 Receptor Complex∗. J Biol Chem. 1995;270(23):13757–65spa
dc.relation.referencesBrikos C, Wait R, Begum S, O’Neill LAJ, Saklatvala J. Mass spectrometric analysis of the endogenous type I interleukin-1 (IL-1) receptor signaling complex formed after IL-1 binding identifies IL-1RAcP, MyD88, and IRAK-4 as the stable components. Mol Cell Proteomics. 2007;6(9):1551–9spa
dc.relation.referencesLi S, Strelow A, Fontana EJ, Wesche H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci. 2002;99(8):5567– 72.spa
dc.relation.referencesKawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, et al. Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2. Nat Immunol. 2008;9(6):684–91spa
dc.relation.referencesCao Z, Xiong J, Takeuchi M, Kurama T, Goeddel D V. TRAF6 is a signal transducer for interleukin-1. Nature. 1996;383(6599):443–6.spa
dc.relation.referencesChang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37–40.spa
dc.relation.referencesWhitmarsh AJ, Davis RJ. Role of mitogen-activated protein kinase kinase 4 in cancer. Oncogene. 2007;26(22):3172–84.spa
dc.relation.referencesAhn Y-H, Yang Y, Gibbons DL, Creighton CJ, Yang F, Wistuba II, et al. Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing peroxisome proliferator-activated receptor γ2 expression. Mol Cell Biol. 2011;31(21):4270–85.spa
dc.relation.referencesTanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.spa
dc.relation.referencesTanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.spa
dc.relation.referencesTanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.spa
dc.relation.referencesSims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2009;28:367–88.spa
dc.relation.referencesLibermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol. 1990;10(5):2327–34.spa
dc.relation.referencesAkira S, Kishimoto T. IL-6 and NF-IL6 in acute-phase response and viral infection. Immunol Rev. 1992;127:25–50.spa
dc.relation.referencesCosta-Pereira AP. Regulation of IL-6-type cytokine responses by MAPKs. Portland Press Ltd.; 2014.spa
dc.relation.referencesOhtani T, Ishihara K, Atsumi T, Nishida K, Kaneko Y, Miyata T, et al. Dissection of signaling cascades through gp130 in vivo: reciprocal roles for STAT3-and SHP2- mediated signals in immune responses. Immunity. 2000;12(1):95–105spa
dc.relation.referencesKamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;1–38.spa
dc.relation.referencesMoutabarrik A, Nakanishi I, Ishibashi M. Interleukin‐6 and interleukin‐6 receptor are expressed by cultured glomerular epithelial cells. Scand J Immunol. 1994;40(2):181–6.spa
dc.relation.referencesOberg H-H, Wesch D, Grüssel S, Rose-John S, Kabelitz D. Differential expression of CD126 and CD130 mediates different STAT-3 phosphorylation in CD4+ CD25− and CD25high regulatory T cells. Int Immunol. 2006;18(4):555–63.spa
dc.relation.referencesSu H, Lei C-T, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol. 2017;8:405.spa
dc.relation.referencesNovick D, Engelmann H, Wallach D, Rubinstein M. Soluble cytokine receptors are present in normal human urine. J Exp Med. 1989;170(4):1409–14spa
dc.relation.referencesAtsumi T, Ishihara K, Kamimura D, Ikushima H, Ohtani T, Hirota S, et al. A point mutation of Tyr-759 in interleukin 6 family cytokine receptor subunit gp130 causes autoimmune arthritis. J Exp Med. 2002;196(7):979–90.spa
dc.relation.referencesScheller J, Rose-John S. Interleukin-6 and its receptor: from bench to bedside. Med Microbiol Immunol. 2006;195(4):173–83.spa
dc.relation.referencesEbihara N, Matsuda A, Nakamura S, Matsuda H, Murakami A. Role of the IL-6 classic-and trans-signaling pathways in corneal sterile inflammation and wound healing. Invest Ophthalmol Vis Sci. 2011;52(12):8549–57spa
dc.relation.referencesRothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta (BBA)-Molecular Cell Res. 2016;1863(6):1218–27spa
dc.relation.referencesLust JA, Donovan KA, Kline MP, Greipp PR, Kyle RA, Maihle NJ. Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor. Cytokine. 1992;4(2):96–100.spa
dc.relation.referencesLamas JR, Rodríguez-Rodríguez L, Tornero-Esteban P, Villafuertes E, Hoyas J, Abasolo L, et al. Alternative splicing and proteolytic rupture contribute to the generation of soluble IL-6 receptors (sIL-6R) in rheumatoid arthritis. Cytokine. 2013;61(3):720–3.spa
dc.relation.referencesDimitrov S, Lange T, Benedict C, Nowell MA, Jones SA, Scheller J, et al. Sleep enhances IL‐6 trans‐signaling in humans. FASEB J. 2006;20(12):2174–6.spa
dc.relation.referencesChalaris A, Gewiese J, Paliga K, Fleig L, Schneede A, Krieger K, et al. ADAM17- mediated shedding of the IL6R induces cleavage of the membrane stub by γ secretase. Biochim Biophys Acta (BBA)-Molecular Cell Res. 2010;1803(2):234–45.spa
dc.relation.referencesMatthews V, Schuster B, Schütze S, Bussmeyer I, Ludwig A, Hundhausen C, et al. Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem. 2003;278(40):38829–39.spa
dc.relation.referencesSchumacher N, Meyer D, Mauermann A, von der Heyde J, Wolf J, Schwarz J, et al. Shedding of endogenous interleukin-6 receptor (IL-6R) is governed by a disintegrin and metalloproteinase (ADAM) proteases while a full-length IL-6R isoform localizes to circulating microvesicles. J Biol Chem. 2015;290(43):26059–71.spa
dc.relation.referencesScheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro-and anti inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta (BBA)- Molecular Cell Res. 2011;1813(5):878–88.spa
dc.relation.referencesStahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE, Yancopoulos GD. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science (80- ). 1995;267(5202):1349–53spa
dc.relation.referencesHemmann U, Gerhartz C, Heesel B, Sasse J, Kurapkat G, Grötzinger J, et al. Differential activation of acute phase response factor/Stat3 and Stat1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130: II. Src homology SH2 domains define the specificity of stat factor activation. J Biol Chem. 1996;271(22):12999–3007spa
dc.relation.referencesHeinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6- type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334(2):297–314.spa
dc.relation.referencesFlynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, et al. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995;2(6):561–72.spa
dc.relation.referencesSpriggs DR, Deutsch S, Kufe DW. Genomic structure, induction, and production of TNF-alpha. Immunol Ser. 1992;56:3–34.spa
dc.relation.referencesKriegler M, Perez C, DeFay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell. 1988;53(1):45–53.spa
dc.relation.referencesTartaglia LA, Pennica D, Goeddel D V. Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem. 1993;268(25):18542–8spa
dc.relation.referencesHsu H, Xiong J, Goeddel D V. The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell. 1995;81(4):495–504.spa
dc.relation.referencesHsu H, Huang J, Shu H-B, Baichwal V, Goeddel D V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity. 1996;4(4):387–96.spa
dc.relation.referencesTakeuchi M, Rothe M, Goeddel D V. Anatomy of TRAF2: distinct domains for nuclear factor-κB activation and association with tumor necrosis factor signaling proteins. J Biol Chem. 1996;271(33):19935–42.spa
dc.relation.referencesVallabhapurapu S, Karin M. Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.spa
dc.relation.referencesChen ZJ. Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol. 2005;7(8):758– 65.spa
dc.relation.referencesChen ZJ. Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol. 2005;7(8):758– 65.spa
dc.relation.referencesCaton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS, et al. A new classification scheme for periodontal and peri‐implant diseases and conditions–Introduction and key changes from the 1999 classification. Vol. 89, Journal of periodontology. Wiley Online Library; 2018. p. S1–8.spa
dc.relation.referencesKinane DF, Peterson M, Stathopoulou PG. Environmental and other modifying factors of the periodontal diseases. Periodontol 2000. 2006;40(1):107–19.spa
dc.relation.referencesLalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol. 2011;7(12):738–48.spa
dc.relation.referencesEke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91(10):914–20spa
dc.relation.referencesFeres M, Teles F, Teles R, Figueiredo LC, Faveri M. The subgingival periodontal microbiota of the aging mouth. Periodontol 2000. 2016;72(1):30–53.spa
dc.relation.referencesKinane DF, Demuth DR, Gorr S-U, Hajishengallis GN, Martin MH. Human variability in innate immunity. Periodontol 2000. 2007;45:14–34spa
dc.relation.referencesKinane DF, Hajishengallis G. Polymicrobial infections, biofilms, and beyond. J Clin Periodontol. 2009;36(5):404–5.spa
dc.relation.referencesBenakanakere M, Kinane DF. Innate cellular responses to the periodontal biofilm. Periodontal Dis. 2012;15:41–55.spa
dc.relation.referencesGemmell E, Marshall RI, Seymour GJ. Cytokines and prostaglandins in immune homeostasis and tissue destruction in periodontal disease. Periodontol 2000. 1997;14(1):112–43spa
dc.relation.referencesSalud M de. IV Estudio Nacional de Salud Bucal. ENSAB IV. Situación en Salud Bucal. Para Saber cómo estamos y saber qué hacemos. Ministerio de Salud, República de Colombia Bogotá; 2014.spa
dc.relation.referencesBibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW, Garcia FAR, et al. Screening for obstructive sleep apnea in adults: US Preventive Services Task Force recommendation statement. Jama. 2017;317(4):407–14.spa
dc.relation.referencesEguía VM, Cascante JA. Síndrome de apnea-hipopnea del sueño: Concepto, diagnóstico y tratamiento médico. In: Anales del Sistema Sanitario de Navarra. SciELO Espana; 2007. p. 53–74.spa
dc.relation.referencesTietjens JR, Claman D, Kezirian EJ, De Marco T, Mirzayan A, Sadroonri B, et al. Obstructive sleep apnea in cardiovascular disease: a review of the literature and proposed multidisciplinary clinical management strategy. J Am Heart Assoc. 2019;8(1):e010440.spa
dc.relation.referencesDempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90(1):47–112.spa
dc.relation.referencesLloberes P, Durán-Cantolla J, Martínez-García MÁ, Marín JM, Ferrer A, Corral J, et al. Diagnóstico y tratamiento del síndrome de apneas-hipopneas del sueño. Arch Bronconeumol. 2011;47(3):143–56.spa
dc.relation.referencesJordan AS, McSharry DG, Malhotra A. Adult obstructive sleep apnoea. Lancet. 2014;383(9918):736–47.spa
dc.relation.referencesÁlvarez-Sala JL, Calle M, Fernández JM, Martínez R, Rodríguez JL. Apnea obstructiva del sueño. Inf Ter Sist Nac Salud. 1999;23(5):121–31.spa
dc.relation.referencesSenaratna C V, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70–81.spa
dc.relation.referencesCruz AA. Global surveillance, prevention and control of chronic respiratory diseases: a comprehensive approach. World Health Organization; 2007.spa
dc.relation.referencesBenjafield A V, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687–98.spa
dc.relation.referencesHidalgo-Martínez P, Lobelo R. Epidemiología mundial, latinoamericana y colombiana y mortalidad del síndrome de apnea-hipopnea obstructiva del sueño (SAHOS). Rev la Fac Med. 2017;65(1Sup):17–20.spa
dc.relation.referencesWang HF, He FQ, Xu CJ, Li DM, Sun XJ, Chi YT, et al. Association between the interleukin-1β C-511T polymorphism and periodontitis: a meta-analysis in the Chinese population. Genet Mol Res. 2017;16(1):1–9.spa
dc.relation.referencesKarimbux NY, Saraiya VM, Elangovan S, Allareddy V, Kinnunen T, Kornman KS, et al. Interleukin‐1 gene polymorphisms and chronic periodontitis in adult whites: a systematic review and meta‐analysis. J Periodontol. 2012;83(11):1407–19.spa
dc.relation.referencesRogus J, Beck JD, Offenbacher S, Huttner K, Iacoviello L, Latella MC, et al. IL1B gene promoter haplotype pairs predict clinical levels of interleukin-1β and C reactive protein. Hum Genet. 2008;123(4):387–98.spa
dc.relation.referencesGok I, Huseyinoglu N, Ilhan D. Genetic polymorphisms variants in interleukin-6 and interleukin-1beta patients with obstructive sleep apnea syndrome in East Northern Turkey. Med Glas. 2015;12(2).spa
dc.relation.referencesWu W, Li Z, Tang T, Wu J, Liu F, Gu L. 5‐HTR2A and IL‐6 polymorphisms and obstructive sleep apnea‐hypopnea syndrome. Biomed reports. 2016;4(2):203–8spa
dc.relation.referencesLarkin EK, Patel SR, Zhu X, Tracy RP, Jenny NS, Reiner AP, et al. A Study of The Relationship between The Interleukin‐6 Gene and Obstructive Sleep Apnea. Clin Transl Sci. 2010;3(6):337–9.spa
dc.relation.referencesCosta AM, Guimarães MCM, de Souza ER, Nóbrega OT, Bezerra ACB. Interleukin 6 (G-174C) and tumour necrosis factor-alpha (G-308A) gene polymorphisms in geriatric patients with chronic periodontitis. Gerodontology. 2010 Mar;27(1):70–5.spa
dc.relation.referencesVgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K, Chrousos GP. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab. 1997;82(5):1313–6spa
dc.relation.referencesDosseva-Panova V, Mlachkova A, Popova C, Kicheva M. EVALUATION OF INTERLEUKIN-6, LYMPHOTOXIN-alpha AND TNF-alpha GENE POLYMORPHISMS IN CHRONIC PERIODONTITIS. J IMAB. 2015;21(3):868–75.spa
dc.relation.referencesHaffajee AD. Microbial etiological agents of destructive periodontal diseases. Periodontol 2000. 1994;5:78–111.spa
dc.relation.referencesAlbandar JM, Brunelle JA, Kingman A. Destructive periodontal disease in adults 30 years of age and older in the United States, 1988‐1994. J Periodontol. 1999;70(1):13–29.spa
dc.relation.referencesVan Dyke TE, van Winkelhoff AJ. Infection and inflammatory mechanisms. J Clin Periodontol. 2013;40:S1–7.spa
dc.relation.referencesKoziel J, Mydel P, Potempa J. The link between periodontal disease and rheumatoid arthritis: an updated review. Curr Rheumatol Rep. 2014;16(3):408spa
dc.relation.referencesNizam N, Basoglu OK, Tasbakan MS, Nalbantsoy A, Buduneli N. Salivary cytokines and the association between obstructive sleep apnea syndrome and periodontal disease. J Periodontol. 2014;85(7):e251–8spa
dc.relation.referencesVan Dyke TE, Dave S. Risk factors for periodontitis. J Int Acad Periodontol. 2005;7(1):3.spa
dc.relation.referencesYoung T, Skatrud J, Peppard PE. Risk factors for obstructive sleep apnea in adults. Jama. 2004;291(16):2013–6.spa
dc.relation.referencesLoke W, Girvan T, Ingmundson P, Verrett R, Schoolfield J, Mealey BL. Investigating the association between obstructive sleep apnea and periodontitis. J Periodontol. 2015;86(2):232–43.spa
dc.relation.referencesAhmad NE, Sanders AE, Sheats R, Brame JL, Essick GK. Obstructive sleep apnea in association with periodontitis: a case–control study. Am Dent Hyg Assoc. 2013;87(4):188–99.spa
dc.relation.referencesSaito T, Shimazaki Y, Koga T, Tsuzuki M, Ohshima A. Relationship between upper body obesity and periodontitis. J Dent Res. 2001;80(7):1631–6.spa
dc.relation.referencesZhang X, Liu R-Y, Lei Z, Zhu Y, Huang J-A, Jiang X, et al. Genetic variants in interleukin-6 modified risk of obstructive sleep apnea syndrome. Int J Mol Med. 2009;23(4):485–93.spa
dc.relation.referencesSong Z, Song Y, Yin J, Shen Y, Yao C, Sun Z, et al. Genetic variation in the TNF gene is associated with susceptibility to severe sepsis, but not with mortality. 2012;spa
dc.relation.referencesLembo D, Caroccia F, Lopes C, Moscagiuri F, Sinjari B, D’Attilio M. Obstructive sleep apnea and periodontal disease: a systematic review. Medicina (B Aires). 2021;57(6):640.spa
dc.relation.referencesTrevilatto PC, de Souza Pardo AP, Scarel-Caminaga RM, de Brito Jr RB, Alvim Pereira F, Alvim-Pereira CC, et al. Association of IL1 gene polymorphisms with chronic periodontitis in Brazilians. Arch Oral Biol. 2011;56(1):54–62.spa
dc.relation.referencesHuang HY, Zhang JC. Investigation on the association of interleukin-1 genotype polymorphism with chronic periodontitis. Hua xi kou Qiang yi xue za zhi= Huaxi Kouqiang Yixue Zazhi= West China J Stomatol. 2004;22(5):415–9.spa
dc.relation.referencesTanaka K, Miyake Y, Hanioka T, Arakawa M. Relationship between IL1 gene polymorphisms and periodontal disease in Japanese women. DNA Cell Biol. 2014;33(4):227–33.spa
dc.relation.referencesSchulz S, Stein JM, Altermann W, Klapproth J, Zimmermann U, Reichert Y, et al. Single nucleotide polymorphisms in interleukin-1gene cluster and subgingival colonization with Aggregatibacter actinomycetemcomitans in patients with aggressive periodontitis. Hum Immunol. 2011;72(10):940–6.spa
dc.relation.referencesRibeiro MSM, Pacheco RBA, Fischer RG, Macedo JMB. Interaction of IL1B and IL1RN polymorphisms, smoking habit, gender, and ethnicity with aggressive and chronic periodontitis susceptibility. Contemp Clin Dent. 2016;7(3):349.spa
dc.relation.referencesDomínguez-Pérez RA, Loyola-Rodriguez JP, Abud-Mendoza C, Alpuche-Solis AG, Ayala-Herrera JL, Martínez-Martínez RE. Association of cytokines polymorphisms with chronic peridontitis and rheumatoid arthritis in a Mexican population. Acta Odontol Scand. 2017 May;75(4):243–8.spa
dc.relation.referencesHong S-J, Kang SW, Kim SK, Kim YS, Ban JY. Lack of association between interleukin-1β gene polymorphism (rs16944) and chronic periodontitis: from a case control studies to an updated meta-analysis. Dis Markers. 2018;2018.spa
dc.relation.referencesLiu X, Li H. A Systematic Review and Meta-Analysis on Multiple Cytokine Gene Polymorphisms in the Pathogenesis of Periodontitis. Front Immunol. 2021;12:713198.spa
dc.relation.referencesTang TY, Zhou XX, Huang H, Huang QD. Relationship between IL-1β polymorphisms and obstructive sleep apnea syndrome. Eur Rev Med Pharmacol Sci. 2017;21(13):3120–8.spa
dc.relation.referencesMajumder P, Panda SK, Ghosh S, Dey SK. Interleukin gene polymorphisms in chronic periodontitis: a case-control study in the Indian population. Arch Oral Biol. 2019;101:156–64.spa
dc.relation.referencesKomatsu Y, Galicia JC, Kobayashi T, Yamazaki K, Yoshie H. Association of interleukin‐1 receptor antagonist+ 2018 gene polymorphism with Japanese chronic periodontitis patients using a novel genotyping method. Int J Immunogenet. 2008;35(2):165–70.spa
dc.relation.referencesKobayashi T, Murasawa A, Ito S, Yamamoto K, Komatsu Y, Abe A, et al. Cytokine gene polymorphisms associated with rheumatoid arthritis and periodontitis in Japanese adults. J Periodontol. 2009 May;80(5):792–9.spa
dc.relation.referencesShete AR, Joseph R, Vijayan NN, Srinivas L, Banerjee M. Association of Single Nucleotide Gene Polymorphism at Interleukin‐1β+ 3954,− 511, and− 31 in Chronic Periodontitis and Aggressive Periodontitis in Dravidian Ethnicity. J Periodontol. 2010;81(1):62–9.spa
dc.relation.referencesAmirisetty R, Patel RP, Das S, Saraf J, Jyothy A, Munshi A. Interleukin 1ß (+ 3954,-511 and-31) polymorphism in chronic periodontitis patients from North India. 2015spa
dc.relation.referencesHuang W, He B-Y, Shao J, Jia X-W, Yuan Y-D. Interleukin-1β rs1143627 polymorphism with susceptibility to periodontal disease. Oncotarget. 2017;8(19):31406spa
dc.relation.referencesBrodzikowska A, Górska R, Kowalski J. Interleukin-1 genotype in periodontitis. Arch Immunol Ther Exp (Warsz). 2019;67(6):367–73spa
dc.relation.referencesDing C, Ji X, Chen X, Xu Y, Zhong L. TNF-α gene promoter polymorphisms contribute to periodontitis susceptibility: evidence from 46 studies. J Clin Periodontol. 2014 Aug;41(8):748–59.spa
dc.relation.referencesRiha RL, Brander P, Vennelle M, Mcardle N, Kerr SM, Anderson NH, et al. Tumour necrosis factor-α (− 308) gene polymorphism in obstructive sleep apnoea– hypopnoea syndrome. Eur Respir J. 2005;26(4):673–8.spa
dc.relation.referencesCoventry J, Griffiths G, Scully C, Tonetti M. Periodontal disease. Bmj. 2000;321(7252):36–9.spa
dc.relation.referencesAzab E, Elfasakhany FM. Effect of Tumor Necrosis Factor Alpha (TNF-α)-308 and 1031 Gene Polymorphisms on Periodontitis among Saudi Subjects. Saudi Dent J. 2022spa
dc.relation.referencesShi L, Zhang L, Zhang D, Zhou J, Jiang X, Jin Y, et al. Association between TNF‐α G‐308A (rs1800629) polymorphism and susceptibility to chronic periodontitis and type 2 diabetes mellitus: a meta‐analysis. J Periodontal Res. 2021;56(2):226–35spa
dc.relation.referencesTrombone APF, Cardoso CR, Repeke CE, Ferreira SBJ, Martins WJ, Campanelli AP, et al. Tumor necrosis factor-alpha -308G/A single nucleotide polymorphism and red-complex periodontopathogens are independently associated with increased levels of tumor necrosis factor-alpha in diseased periodontal tissues. J Periodontal Res. 2009 Oct;44(5):598–608.spa
dc.relation.referencesMoreira PR, Costa JE, Gomez RS, Gollob KJ, Dutra WO. TNFA and IL10 gene polymorphisms are not associated with periodontitis in Brazilians. Open Dent J. 2009 Sep;3:184–90.spa
dc.relation.referencesMenezes NG de, Colombo APV. Lack of association between the TNF-alpha -308 (G/A) genetic polymorphism and periodontal disease in Brazilians. Braz Oral Res 2008;22(4):322–7.spa
dc.relation.referencesHuang J, Liao N, Huang Q-P, Xie Z-F. Association between tumor necrosis factor α-308G/A polymorphism and obstructive sleep apnea: a meta-analysis. Genet Test Mol Biomarkers. 2012;16(4):246–51.spa
dc.relation.referencesWu Y, Cao C, Wu Y, Zhang C, Zhu C, Ying S, et al. TNF-α-308G/A polymorphism contributes to obstructive sleep apnea syndrome risk: evidence based on 10 case control studies. PLoS One. 2014;9(9):e106183spa
dc.relation.referencesSaygun I, Nizam N, Keskiner I, Bal V, Kubar A, Açıkel C, et al. Salivary infectious agents and periodontal disease status. J Periodontal Res. 2011 Apr;46(2):235–9.spa
dc.relation.referencesRico-Rosillo MG, Vega-Robledo GB. [Sleep and immune system]. Rev Alerg Mex. 2018;65(2):160–70.spa
dc.relation.referencesNadeem R, Molnar J, Madbouly EM, Nida M, Aggarwal S, Sajid H, et al. Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J Clin sleep Med JCSM Off Publ Am Acad Sleep Med. 2013 Oct;9(10):1003–12.spa
dc.relation.referencesIacoviello L, Di Castelnuovo A, Gattone M, Pezzini A, Assanelli D, Lorenzet R, et al. Polymorphisms of the interleukin-1beta gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclearspa
dc.relation.referencesChen H, Wilkins LM, Aziz N, Cannings C, Wyllie DH, Bingle C, et al. Single nucleotide polymorphisms in the human interleukin-1B gene affect transcription according to haplotype context. Hum Mol Genet. 2006 Feb;15(4):519–29.spa
dc.relation.referencesHall SK, Perregaux DG, Gabel CA, Woodworth T, Durham LK, Huizinga TWF, et al. Correlation of polymorphic variation in the promoter region of the interleukin-1 beta gene with secretion of interleukin-1 beta protein. Arthritis Rheum. 2004 Jun;50(6):1976–83.spa
dc.relation.referencesViguera E, Canceill D, Ehrlich SD. Replication slippage involves DNA polymerase pausing and dissociation. EMBO J. 2001 May;20(10):2587–95spa
dc.relation.referencesCheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. Int J Oral Sci. 2020 Jan;12(1):2.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcGeneticaspa
dc.subject.ddcPatologiaspa
dc.subject.proposalPeriodontitisspa
dc.subject.proposalApnea obstructiva del sueñospa
dc.subject.proposalSNVspa
dc.subject.proposalCitoquinasspa
dc.subject.proposalPeriodontitiseng
dc.subject.proposalObstructive sleep apneaeng
dc.subject.proposalSNVeng
dc.subject.proposalcytokineseng
dc.titleGenotipificación de SNVs de la región promotora de los genes IL-6, IL-1β, TNF-a asociados a respuesta inflamatoria en los fenotipos de Apnea Obstructiva del Sueño y Enfermedad Periodontalspa
dc.title.translatedGenotyping of SNVs of the promoter region of the genes IL-6, IL-1β, TNF-a associated to inflammatory response in Obstructive Sleep Apnea and Periodontal Disease phenotypeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleGenotipificación de SNVs de la región promotora de los genes IL-6, IL-1β, TNF-α y sus niveles proteicos asociados a respuesta inflamatoria en Apnea Obstructiva del Sueño y Enfermedad Periodontalspa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernamePontificia Universidad Javerianaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1143381570.2022.pdf.pdf
Tamaño:
1.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Genética Humana

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: