Estandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)

dc.contributor.advisorRosero Alpala, Elvia Amparo
dc.contributor.advisorGamez Carrillo, Rocio Margarita
dc.contributor.advisorHoyos Sánchez, Rodrigo Alberto
dc.contributor.authorPerez Pazos, Jazmin Vanessa
dc.date.accessioned2022-10-25T14:49:57Z
dc.date.available2022-10-25T14:49:57Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractLa batata (Ipomoea batatas L.) es un cultivo de alta importancia en seguridad alimentaria por sus propiedades nutracéuticas. La disponibilidad de material de siembra libre de enfermedades asegura el éxito en el establecimiento, rendimiento y calidad del cultivo. La micropropagación in vitro es una alternativa eficaz para obtener material vegetal con calidad fitosanitaria. El objetivo de este estudio fue estandarizar las condiciones de producción in vitro y ex vitro para la propagación y escalado de material de siembra de batata En condiciones de laboratorio se evaluaron estrategias de desinfección, caracterizaron microorganismos contaminantes y determinó la influencia de reguladores de crecimiento sobre plántulas in vitro. En invernadero y vivero se evaluaron mezclas de sustratos a base de turba (T), lombriabono (LA), cascarilla de arroz (CA), fibra de coco (FC) y arena fina (A) para mejorar la producción de material de siembra. Los resultados indicaron que lavado con yodopovidona y desinfección con hipoclorito de sodio al 2%, ácido acético y amonio cuaternario permitió erradicar el 70% de contaminantes. de los géneros Fusarium, Sarocladium, Cladosporium, Aspergillus, Pseudozyma, Moesziomyces y Curtobacterium. Los explantes cultivados con ANA (0,2ppm) presentaron una mayor producción de nudos y crecimiento aéreo significativamente superior al control. Para la aclimatación de vitroplantas, el sustrato compuesto por T:LA:CA (3:1:1) y cámara húmeda por 8 días permitió obtener plántulas super elite con buen crecimiento, altas tasas de supervivencia (92%) y multiplicación (3,53) en comparación con la estrategia convencional (turba, sin cámara húmeda). En condiciones de vivero, sustrato de A:LA:FC (7:1:2), produjo exitosamente hasta 79 mini-raíces/m2. Una mayor eficiencia en la producción de material de siembra de alta calidad con condiciones fitosanitarias garantizadas es una contribución importante para mejorar las estrategias globales de manejo de enfermedades en el cultivo de batata. (Texto tomado de la fuente)spa
dc.description.abstractSweet potato (Ipomoea batatas L.) is a highly important crop for food security due to its nutraceutical properties. The availability of disease-free planting material ensures successful establishment, yield, and quality of the crop. In vitro micropropagation is an effective alternative to obtain plant material with phytosanitary quality. The objective of this study was to standardize the in vitro and ex vitro production conditions for the propagation and scaling of sweet potato planting material. In laboratory conditions, disinfection strategies were evaluated, contaminating microorganisms were characterized and the influence of growth regulators on the development of the in vitro plant was determined. In the greenhouse and nursery, mixtures of substrates based on peat (T), vermicompost (LA), rice husks (CA), coconut fiber (FC) and fine sand (A) were evaluated to improve the production of planting material. The results indicated that washing with povidone-iodine and disinfection with 2% sodium hypochlorite, acetic acid and quaternary ammonium eradicated 70% of contaminants. of the genera Fusarium, Sarocladium, Cladosporium, Aspergillus, Pseudozyma, Moesziomyces and Curtobacterium. The explants cultured with ANA (0.2ppm) showed a higher production of nodes and aerial growth significantly higher than the control. For the acclimatization of vitroplants, the substrate composed of T:LA:CA (3:1:1) and a humid chamber for 8 days allowed obtaining super elite seedlings with good growth, high survival rates (92%) and multiplication (3, 53) compared to the conventional strategy (peat, without humid chamber). Under nursery conditions, A:LA:FC (7:1:2) substrate successfully produced up to 79 mini-roots/m2. Greater efficiency in the production of high-quality planting material with guaranteed phytosanitary conditions is an important contribution to improve global disease management strategies in sweet potato cultivation.eng
dc.description.curricularareaÁrea Curricular Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biotecnologíaspa
dc.description.sponsorshipCorporación Colombiana de Investigación Agropecuaria - AGROSAVIA (Ejecutor)spa
dc.format.extentxxv, 136 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82447
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAbad, M., Noguera, P., & Burés, S. (2001). National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresource Technology, 77(2), 197–200. https://doi.org/10.1016/S0960-8524(00)00152-8spa
dc.relation.referencesAbad, M., Noguera, P., Puchades, R., Maquieira, A., & Noguera, V. (2002). Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technology, 82(3), 241–245. https://doi.org/10.1016/S0960-8524(01)00189-4spa
dc.relation.referencesAbu Zeid, I. M., Soliman, H. I. A., & Metwali, E. M. R. (2021). In vitro evaluation of some high yield potato (Solanum tuberosum L.) cultivars under imposition of salinity at the cellular and organ levels. Saudi Journal of Biological Sciences. https://doi.org/10.1016/J.SJBS.2021.12.040spa
dc.relation.referencesAcemi, A., Bayrak, B., Çakır, M., Demiryürek, E., Gün, E., El Gueddari, N. E., & Özen, F. (2018). Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cellular and Developmental Biology - Plant, 54(5), 537–544. https://doi.org/10.1007/s11627-018-9915-0spa
dc.relation.referencesAdamski, J. M., Danieloski, R., Deuner, S., Braga, E. J. B., de Castro, L. A. S., & Peters, J. A. (2012). Responses to excess iron in sweet potato: Impacts on growth, enzyme activities, mineral concentrations, and anatomy. Acta Physiologiae Plantarum, 34(5), 1827–1836. https://doi.org/10.1007/S11738-012-0981-3/FIGURES/5spa
dc.relation.referencesAgrawal, A., Singh, S., Malhotra, E. V., Meena, D. P. S., Tyagi, R. K., Agrawal, A., Singh, S., Malhotra, · E V, & Meena, · D P S. (2019). In Vitro Conservation and Cryopreservation of Clonally Propagated Horticultural Species. Conservation and Utilization of Horticultural Genetic Resources, 529–578. https://doi.org/10.1007/978-981-13-3669-0_18spa
dc.relation.referencesAguoru, C., & Amuzie, U. (2009). Associated microbial contaminants in in-vitro micropropagation of sweet potato (Ipomoea batatas L.). International Journal of Natural and Applied Sciences, 5(2). https://doi.org/10.4314/ijonas.v5i2.49964spa
dc.relation.referencesAhmed, A. B. A., Pallela, R., Rao, A. S., Rao, M. V, & Mat Taha, R. (2011). Optimized conditions for callus induction, plant regeneration and alkaloids accumulation in stem and shoot tip explants of Phyla nodiflora. Spanish Journal of Agricultural Research, 9(4), 1262–1270. https://doi.org/10.5424/sjar/20110904-453-10spa
dc.relation.referencesAksakal, E. L., Angin, I., & Sari, S. (2020). A new approach for calculating aggregate stability: Mean weight aggregate stability (MWAS). Catena, 194, 104708. https://doi.org/10.1016/j.catena.2020.104708spa
dc.relation.referencesAlam, I., Sharmin, A. S., Naher, K. M., Alam, J. M., Anisuzzaman, M., & Alam, F. M. (2010). Effect of growth regulators on meristem culture and plantlet establishment in sweet potato [Ipomoea batatas (L.) Lam.]. Plant Omics Journal, 3(2), 35–39.spa
dc.relation.referencesAlam, J., Alam, I., Sharmin, A. S., Rahman, M. M., Anisuzzaman, M., & Alam, F. M. (2010). Micropropagation and antimicrobial activity of Operculina turpethum (syn. Ipomoea turpethum), an endangered medicinal plant. Planr Omics Journal, 3(2), 40–46.spa
dc.relation.referencesAlam, M. K., Sams, S., Rana, Z. H., Akhtaruzzaman, M., & Islam, S. N. (2020). Minerals, vitamin C, and effect of thermal processing on carotenoids composition in nine varieties orange-fleshed sweet potato (Ipomoea batatas L.). Journal of Food Composition and Analysis, 92, 103582. https://doi.org/10.1016/J.JFCA.2020.103582spa
dc.relation.referencesAltschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2spa
dc.relation.referencesAlula, K., Zeleke, H., & Manikandan, M. (2018). In vitro propagation of sweet potato Ipomoea batatas (L.) Lam) through apical meristem culture. J. Pharmacognosy and Phytochem., 7, 2386–2392.spa
dc.relation.referencesAmagloh, F. C., Yada, B., Tumuhimbise, G. A., Amagloh, F. K., & Kaaya, A. N. (2021). The Potential of Sweetpotato as a Functional Food in Sub-Saharan Africa and Its Implications for Health: A Review. Molecules 2021, Vol. 26, Page 2971, 26(10), 2971. https://doi.org/10.3390/MOLECULES26102971spa
dc.relation.referencesAmeri, A., Tehranifar, A., Shoor, M., & Davarynejad, G. H. (2012). Effect of substrate and cultivar on growth characteristic of strawberry in soilless culture system. AFRICAN JOURNAL OF BIOTECHNOLOGY, 11(56), 11960–11966. https://doi.org/10.5897/ajb-11-2524spa
dc.relation.referencesAmirmijani, A., Khodaparast, S. A., & Zare, R. (2014). Contribution to the identification of Cladosporium species in the North of Iran. Rostaniha, 15(2), 133–145. https://doi.org/10.22092/BOTANY.2014.101237spa
dc.relation.referencesBashyal, B. M., Yadav, J., Gupta, A. K., & Aggarwal, R. (2019). Understanding the secondary metabolite production of Gibberella fujikuroi species complex in genomic era. In Indian Phytopathology (Vol. 72, Issue 4, pp. 607–617). Springer. https://doi.org/10.1007/s42360-019-00141-wspa
dc.relation.referencesBechtaoui, N., Rabiu, M. K., Raklami, A., Oufdou, K., Hafidi, M., & Jemo, M. (2021). Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. Frontiers in Plant Science, 12, 2357.spa
dc.relation.referencesBecker, B., Henningsen, L., Paulmann, D., Bischoff, B., Todt, D., Steinmann, E., Steinmann, J., Brill, F. H. H., & Steinmann, J. (2019). Evaluation of the virucidal efficacy of disinfectant wipes with a test method simulating practical conditions. Antimicrobial Resistance and Infection Control, 8(1), 121. https://doi.org/10.1186/s13756-019-0569-4spa
dc.relation.referencesBen-Amar, A., Oueslati, S., & Mliki, A. (2017). Universal direct PCR amplification system: a time- and cost-effective tool for high-throughput applications. 3 Biotech 2017 7:4, 7(4), 1–7. https://doi.org/10.1007/S13205-017-0890-7spa
dc.relation.referencesBensch, K., Groenewald, J. Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B. A., Shin, H. D., Dugan, F. M., Schroers, H. J., Braun, U., & Crous, P. W. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology, 67, 1–94. https://doi.org/10.3114/sim.2010.67.01spa
dc.relation.referencesBeyene, B., Menamo, T., & Haile, G. (2020). Protocol optimization for in vitro propagation of Kulfo, orange flesh sweet potato (Ipomoea batatas) variety using shoot tip culture. African Journal of Plant Science, 14(10), 395–401. https://doi.org/10.5897/AJPS2017.1621spa
dc.relation.referencesBhatia, S. (2015). Plant Tissue Culture. In Saurabh Bhatia, Kiran Sharma, Randhir Dahiya, & Tanmoy Bera (Eds.), Modern Applications of Plant Biotechnology in Pharmaceutical Sciences (1st ed., pp. 31–107). Academic Press. https://doi.org/10.1016/B978-0-12-802221-4.00002-9spa
dc.relation.referencesBigliardi, P. L., Alsagoff, S. A. L., El-Kafrawi, H. Y., Pyon, J. K., Wa, C. T. C., & Villa, M. A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery, 44, 260–268. https://doi.org/10.1016/j.ijsu.2017.06.073spa
dc.relation.referencesBoekhout, T. (1995). Pseudozyma Bandoni emend. Boekhout, a genus for yeast-like anamorphs of Ustilaginales. The Journal of General and Applied Microbiology, 41(4), 359–366. https://doi.org/10.2323/jgam.41.359spa
dc.relation.referencesBurbano-Erazo, E., Cordero, C., Pastrana, I., Espitia, L., Gomez, E., Morales, A., Pérez, J., López, L., & Rosero, A. (2020). Interrelation of ecophysiological and morpho-agronomic parameters in low altitude evaluation of selected ecotypes of sweet potato (Ipomoea batatas [l.] lam.). Horticulturae, 6(4), 1–22. https://doi.org/10.3390/horticulturae6040099spa
dc.relation.referencesBuxdorf, K., Rahat, I., Gafni, A., & Levy, M. (2013). The epiphytic fungus Pseudozyma aphidis induces jasmonic acid-and salicylic acid/nonexpressor of PR1-independent local and systemic resistance. Plant Physiology, 161(4), 2014–2022. https://doi.org/10.1104/pp.112.212969spa
dc.relation.referencesCachique, D. H., Solsol, H. R., Sanchez, M. A. G., López, L. A. A., & Kodahl, N. (2018). Vegetative propagation of the underutilized oilseed crop sacha inchi (Plukenetia volubilis L.). Genetic Resources and Crop Evolution, 65(7), 2027–2036. https://doi.org/10.1007/S10722-018-0659-9/FIGURES/3spa
dc.relation.referencesCardona, W. A., Benavides, M. M. B., & Montoya, W. C. (2016). Effect of chemical and organic fertilizers on the aggregation of a soil cultivated with Musa acuminata AA. Acta Agronomica, 65(2), 144–148. https://doi.org/10.15446/acag.v65n2.44493spa
dc.relation.referencesCarmello, C. R., & Cardoso, J. C. (2018). Effects of plant extracts and sodium hypochlorite on lettuce germination and inhibition of Cercospora longissima in vitro. Scientia Horticulturae, 234, 245–249. https://doi.org/10.1016/j.scienta.2018.02.056spa
dc.relation.referencesChandrasekara, A., & Josheph Kumar, T. (2016). Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. International Journal of Food Science, 2016. https://doi.org/10.1155/2016/3631647spa
dc.relation.referencesCheval, C., Aldon, D., Galaud, J. P., & Ranty, B. (2013). Calcium/calmodulin-mediated regulation of plant immunity. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(7), 1766–1771. https://doi.org/10.1016/J.BBAMCR.2013.01.031spa
dc.relation.referencesChowdhury, D., Rahman, A., Hu, H., Jensen, S. O., Deva, A. K., & Vickery, K. (2019). Effect of disinfectant formulation and organic soil on the efficacy of oxidizing disinfectants against biofilms. Journal of Hospital Infection, 103(1), e33–e41. https://doi.org/10.1016/j.jhin.2018.10.019spa
dc.relation.referencesCobrado, J. S., & Fernandez, A. M. (2016). Common fungi contamination affecting tissue-cultured Abaca (Musa textiles Nee) during initial stage of micropropagation. Asian Research Journal of Agriculture, 1(2), 1–7. https://doi.org/10.9734/ARJA/2016/28353spa
dc.relation.referencesCobrado, J. S., & Fernandez, A. M. (2017). Bioefficacy test of different chemotherapeutic substances against Aspergillus sp. and Chrysosporium sp. contaminants of tissue-cultured Abaca (Musa textiles NEE.) during initial stage of micropropagation. Journal of Advances in Microbiology, 4(1), 1–12. https://doi.org/10.9734/JAMB/2017/33289spa
dc.relation.referencesCompant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/J.JARE.2019.03.004spa
dc.relation.referencesCordovez, V., Dini-Andreote, F., Carrión, V. J., & Raaijmakers, J. M. (2019). Ecology and Evolution of Plant Microbiomes. Https://Doi.Org/10.1146/Annurev-Micro-090817-062524, 73, 69–88. https://doi.org/10.1146/ANNUREV-MICRO-090817-062524spa
dc.relation.referencesDag, O., Dolgun, A., & Konar, N. M. (2018). Onewaytests: An R package for one-way tests in independent groups designs. R Journal, 10(1), 175–199. https://doi.org/10.32614/RJ-2018-022spa
dc.relation.referencesDeb, C. R., & Imchen, T. (2010). An efficient in vitro hardening technique of tissue culture raised plants. Biotechnology, 9(1), 79–83. https://doi.org/10.3923/BIOTECH.2010.79.83spa
dc.relation.referencesDelgado-Paredes, G. E., Idrogo, C. R., Chanamé-Céspedes, J., Floh, E. I., & Walter, H. (2016). In vitro direct organogenesis in roots of Ipomoea batatas. Asian Journal of Plant Science and Research, 6(3), 17–27.spa
dc.relation.referencesDonado-Pestana, C. M., Salgado, J. M., de Oliveira Rios, A., dos Santos, P. R., & Jablonski, A. (2012). Stability of Carotenoids, Total Phenolics and In Vitro Antioxidant Capacity in the Thermal Processing of Orange-Fleshed Sweet Potato (Ipomoea batatas Lam.) Cultivars Grown in Brazil. Plant Foods for Human Nutrition, 67(3), 262–270. https://doi.org/10.1007/S11130-012-0298-9/FIGURES/2spa
dc.relation.referencesDrake, P. L., Froend, R. H., & Franks, P. J. (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64(2), 495–505. https://doi.org/10.1093/JXB/ERS347spa
dc.relation.referencesDugan, F. M. (2017). The Identification of Fungi: An Illustrated Introduction with Keys, Glossary, and Guide to Literature. In The Identification of Fungi: An Illustrated Introduction with Keys, Glossary, and Guide to Literature (3rd ed.). The American Phytopathological Society. https://doi.org/10.1094/9780890545041spa
dc.relation.referencesEdgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340spa
dc.relation.referencesEgamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd_Allah, E. F. (2017). Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress. Frontiers in Microbiology, 0(SEP), 1887. https://doi.org/10.3389/FMICB.2017.01887spa
dc.relation.referencesEkman, J., & Lovatt, J. (2015). Pests, Diseases and Disorders of Sweetpotato: A Field Identification Guide (Applied Horticultural Research, Queensland Department of Agriculture, and Fisheries, & University of Queensland. (eds.)). https://www.soilwealth.com.au/imagesDB/news/Sweet-Potato-Pest-and-Disease-Guide.pdfspa
dc.relation.referencesEl Nagy M, M. M., Abou El-Salehein, E. H., Fekry, W. A., & Wahdan, H. (2020). EFFECT OF FOLIAR SPRAY WITH DIFFERENT POTASSIUM SOURCES AND ZINC RATES ON GROWTH AND YIELD OF SWEET POTATO (Ipomoea batatas L.). Journal of Productivity and Development, 25(2), 231–246. https://doi.org/10.21608/JPD.2020.120782spa
dc.relation.referencesEstrela, C., Estrela, C. R. A., Barbin, E. L., Spanó, J. C. E., Marchesan, M. A., & Pécora, J. D. (2002). Mechanism of action of sodium hypochlorite. Brazilian Dental Journal, 13(2), 113–117. https://doi.org/10.1590/S0103-64402002000200007spa
dc.relation.referencesFelsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368–376. https://doi.org/10.1007/BF01734359spa
dc.relation.referencesFelsenstein, J. (1985). Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution, 39(4), 783. https://doi.org/10.2307/2408678spa
dc.relation.referencesFerreira, T. R., Pires, L. F., Wildenschild, D., Brinatti, A. M., Borges, J. A. R., Auler, A. C., & dos Reis, A. M. H. (2019). Lime application effects on soil aggregate properties: Use of the mean weight diameter and synchrotron-based X-ray μCT techniques. Geoderma, 338, 585–596. https://doi.org/10.1016/j.geoderma.2018.10.035spa
dc.relation.referencesFrisvad, J. C., Petersen, L. M., Lyhne, E. K., & Larsen, T. O. (2014). Formation of Sclerotia and Production of Indoloterpenes by Aspergillus niger and Other Species in Section Nigri. PLoS ONE, 9(4), e94857. https://doi.org/10.1371/journal.pone.0094857spa
dc.relation.referencesGardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.xspa
dc.relation.referencesGermain, G. S., & Summerbell, R. (2010). Identifyng fungi - A Clinical Laboratory Handbook. Star Publishing Company. http://www.identifyingfungi.com/actual-pages-from-the-book.htmlspa
dc.relation.referencesGhezzehei, T. A. (2012). Soil structure. In P. Ming Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of Soil Sciences: Properties and Processes. (2nd ed., Vol. 2, pp. 1–17). Routledge Handbooks. Taylor & Francis Group. https://doi.org/https://doi.org/10.1201/b11267spa
dc.relation.referencesGholipoor, M., Prasad, P. V. V., Mutava, R. N., & Sinclair, T. R. (2010). Genetic variability of transpiration response to vapor pressure deficit among sorghum genotypes. Field Crops Research, 119(1), 85–90. https://doi.org/10.1016/j.fcr.2010.06.018spa
dc.relation.referencesGiraldo, A., Gené, J., Sutton, D. A., Madrid, H., de Hoog, G. S., Cano, J., Decock, C., Crous, P. W., & Guarro, J. (2015). Phylogeny of Sarocladium (Hypocreales). Persoonia: Molecular Phylogeny and Evolution of Fungi, 34, 10–24. https://doi.org/10.3767/003158515X685364spa
dc.relation.referencesGonzález-Teuber, M., Jiménez-Alemán, G. H., & Boland, W. (2014). Foliar endophytic fungi as potential protectors from pathogens in myrmecophytic Acacia plants. Communicative & Integrative Biology, 7(5), e970500. https://doi.org/10.4161/19420889.2014.970500spa
dc.relation.referencesGrace, M. H., Truong, A. N., Truong, V. Den, Raskin, I., & Lila, M. A. (2015). Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients. Food Science and Nutrition, 3(5), 415–424. https://doi.org/10.1002/fsn3.234spa
dc.relation.referencesGrossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. In New Phytologist (Vol. 226, Issue 6, pp. 1550–1566). Blackwell Publishing Ltd. https://doi.org/10.1111/nph.16485spa
dc.relation.referencesGrzebisz, W., Gransee, A., Szczepaniak, W., & Diatta, J. (2013). The effects of potassium fertilization on water-use efficiency in crop plants. Journal of Plant Nutrition and Soil Science, 176(3), 355–374. https://doi.org/10.1002/JPLN.201200287spa
dc.relation.referencesGu, J., Li, Z., Mao, Y., Struik, P. C., Zhang, H., Liu, L., Wang, Z., & Yang, J. (2018). Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science, 274, 320–331. https://doi.org/10.1016/J.PLANTSCI.2018.06.010spa
dc.relation.referencesGutiérrez, D. L., Fuentes, S., & Salazar, L. F. (2007). Sweetpotato Virus Disease (SPVD): Distribution, Incidence, and Effect on Sweetpotato Yield in Peru. Https://Doi.Org/10.1094/PDIS.2003.87.3.297, 87(3), 297–302. https://doi.org/10.1094/PDIS.2003.87.3.297spa
dc.relation.referencesHa, S., & Tran, L. S. (2014). Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Https://Doi.Org/10.3109/07388551.2013.783549, 34(1), 16–30. https://doi.org/10.3109/07388551.2013.783549spa
dc.relation.referencesHainzer, K., O’Mullan, C., Bugajim, C., & Brown, P. H. (2021). Exploring the design and adoption of a clean seed system for sweet potato in Papua New Guinea. Journal of Crop Improvement, 1–25. https://doi.org/10.1080/15427528.2021.1960456spa
dc.relation.referencesHammond, R., Buah, J. N., Asare, P. A., & Acheampong, S. (2014). Optimizing Sterilization Condition for the Initiation of Sweet Potato (Ipomoea batatas) Culture in vitro. Asian Journal of Biotechnology, 6(2), 25–37. https://doi.org/10.3923/ajbkr.2014.25.37spa
dc.relation.referencesHang, V. T. T., Thu, H. T. A., & Hoa, V. D. (2016). Developing an efficient regeneration protocol for sweetpotato, Ipomoea batatas (L.) Lam., using nodal explant. Vietnam Journal of Agricultural Sciences, 14(10), 1491–1501.spa
dc.relation.referencesHasanuzzaman, M., Shahadat Hossain, M., M Borhannuddin Bhuyan, M. H., Al Mahmud, J., Nahar, K., Fujita, M., Hasanuzzaman, M., Hossain, M. S., Fujita, M., Al Mahmud, J., & Nahar, K. (2018). The Role of Sulfur in Plant Abiotic Stress Tolerance: Molecular Interactions and Defense Mechanisms. Plant Nutrients and Abiotic Stress Tolerance, 221–252. https://doi.org/10.1007/978-981-10-9044-8_10spa
dc.relation.referencesHay, F. R., Whitehouse, K. J., Ellis, R. H., Sackville Hamilton, N. R., Lusty, C., Ndjiondjop, M. N., Tia, D., Wenzl, P., Santos, L. G., Yazbek, M., Azevedo, V. C. R., Peerzada, O. H., Abberton, M., Oyatomi, O., de Guzman, F., Capilit, G., Muchugi, A., & Kinyanjui, Z. (2021). CGIAR genebank viability data reveal inconsistencies in seed collection management. Global Food Security, 30, 100557. https://doi.org/10.1016/J.GFS.2021.100557spa
dc.relation.referencesHunt, R. (2017). Growth Analysis, Individual Plants. In B. Thomas, B. G. Murray, & D. J. Murphy (Eds.), Encyclopedia of Applied Plant Sciences (Vol. 1, pp. 421–429). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394807-6.00226-4spa
dc.relation.referencesHunt, R., Causton, D. R., Shipley, B., & Askew, A. P. (2002). A modern tool for classical plant growth analysis. Annals of Botany, 90, 485–488. https://doi.org/10.1093/aob/mcf214spa
dc.relation.referencesHussain, A., Qarshi, I. A., Nazir, H., & Ullah, I. (2012). Plant Tissue Culture: Current Status and Opportunities. In A. Leva & L. M. R. Rinaldi (Eds.), Recent Advances in Plant in vitro Culture (Vol. 1). IntechOpen. https://doi.org/10.5772/50568spa
dc.relation.referencesHussein, N., Abdel-Hafez, S. I. ., Abdel-Sater, M. ., Ismail, M. ., & Al-Amrey, E. (2017). Aspergillus homomorphus, a first global record from millet grains. Current Research in Environmental & Applied Mycology, 7(2), 82–89. https://www.cabdirect.org/cabdirect/abstract/20198658144spa
dc.relation.referencesIcontec. (2011). Norma técnica colombiana 5167. Productos para la industria agrícola. productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).spa
dc.relation.referencesIkeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant Callus: Mechanisms of Induction and Repression. The Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/TPC.113.116053spa
dc.relation.referencesImazaki, I., & Kadota, I. (2015). Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiology Ecology, 91(9), 98. https://doi.org/10.1093/femsec/fiv098spa
dc.relation.referencesInto, P., Pontes, A., Sampaio, J. P., & Limtong, S. (2020). Yeast Diversity Associated with the Phylloplane of Corn Plants Cultivated in Thailand. Microorganisms, 8(1), 80. https://doi.org/10.3390/microorganisms8010080spa
dc.relation.referencesIsrael, A. U., Ogali, R. E., Akaranta, O., & Obot, I. B. (2011). Extraction and characterization of coconut (Cocos nucifera L.) coir dust. Songklanakarin Journal of Science and Technology , 33(6), 717–724. http://www.sjst.psu.ac.thspa
dc.relation.referencesJena, R. chandra, & Samal, K. C. (2011). Endogenous microbial contamination during in vitro culture of sweet potato [Ipomoea batatas (L.) Lam]: identification and prevention. Journal of Agricultural Technology, 7(6), 1725–1731.spa
dc.relation.referencesKačániová, M., Kunová, S., Sabo, J., Ivanišová, E., Žiarovská, J., Felsöciová, S., & Terentjeva, M. (2020). Identification of Yeasts with Mass Spectrometry during Wine Production. Fermentation 2020, Vol. 6, Page 5, 6(1), 5. https://doi.org/10.3390/FERMENTATION6010005spa
dc.relation.referencesKarhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agriculture, Ecosystems and Environment, 140(1–2), 309–313. https://doi.org/10.1016/j.agee.2010.12.005spa
dc.relation.referencesKemper, W. D., & Chepil, W. S. (1965). Size Distribution of Aggregates. In C. A. Black (Ed.), Methods of Soil Analysis (pp. 499–510). American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.1.c39spa
dc.relation.referencesKhan, N., Bano, A. M. D., & Babar, A. (2020). Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLOS ONE, 15(4), e0231426. https://doi.org/10.1371/journal.pone.0231426spa
dc.relation.referencesKhumaida, N., Ardie, S. W., Setiadi, A., & Artiningsih, L. N. (2019). In vitro multiplication and acclimatization of black galingale (Curcuma Aeruginosa Roxb.). Journal of Applied Pharmaceutical Science, 9(4), 110–116. https://doi.org/10.7324/JAPS.2019.90414spa
dc.relation.referencesKim, J., Kil, E.-J., Kim, S., Seo, H., Byun, H.-S., Park, J., Chung, M.-N., Kwak, H.-R., Kim, M.-K., Kim, C.-S., Yang, J.-W., Lee, K.-Y., Choi, H.-S., & Lee, S. (2015). Seed transmission of Sweet potato leaf curl virus in sweet potato (Ipomoea batatas). Plant Pathology, 64(6), 1284–1291. https://doi.org/10.1111/PPA.12366spa
dc.relation.referencesKim, J., Yang, J. wook, Kwak, H.-R., Kim, M.-K., Seo, J.-K., Chung, M.-N., Lee, H., Lee, K.-B., Nam, S. S., Kim, C.-S., Lee, G.-S., Kim, J.-S., Lee, S., & Choi, H.-S. (2017). Virus Incidence of Sweet Potato in Korea from 2011 to 2014. The Plant Pathology Journal, 33(5), 467. https://doi.org/10.5423/PPJ.OA.08.2016.0167spa
dc.relation.referencesKimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581spa
dc.relation.referencesKoike, I., Watanabe, S., Okazaki, K., Hayashi, K. ichiro, Kasahara, H., Shimomura, K., & Umehara, M. (2020). Endogenous auxin determines the pattern of adventitious shoot formation on internodal segments of ipecac. Planta, 251(3), 73. https://doi.org/10.1007/s00425-020-03367-5spa
dc.relation.referencesKrochmal-Marczak, B., Sawicka, B., Słupski, J., Cybulak, T., & Paradowska, K. (2014). Nutrition value of the sweet potato (Ipomoea batatas (L.) Lam) cultivated in south – eastern Polish condition. Nutrition Value International Journal of Agronomy and Agricultural Research, 4(4), 169–178. http://www.innspub.netspa
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096spa
dc.relation.referencesKumar, S., Yadav, A. K., & Prabha, C. (2019). Microbial contamination in tissue culture of Chlorophytum borivilianum, a rare medicinal herb: identification and prevention. Journal of Plant Pathology, 101(4), 991–995. https://doi.org/10.1007/s42161-019-00327-1spa
dc.relation.referencesKwak, H. R., Kim, M. K., Shin, J. C., Lee, Y. J., Seo, J. K., Lee, H. U., Jung, M. N., Kim, S. H., & Choi, H. S. (2014). The current incidence of viral disease in Korean sweet potatoes and development of multiplex RT-PCR assays for simultaneous detection of eight sweet potato viruses. Plant Pathology Journal, 30(4), 416–424. https://doi.org/10.5423/PPJ.OA.04.2014.0029spa
dc.relation.referencesKwaśniewska, D., Chen, Y. L., & Wieczorek, D. (2020). Biological activity of quaternary ammonium salts and their derivatives. Pathogens, 9(6), 1–12. https://doi.org/10.3390/pathogens9060459spa
dc.relation.referencesLazo-Javalera, M. F., Troncoso-Rojas, R., Tiznado-Hernández, M. E., Martínez-Tellez, M. A., Vargas-Arispuro, I., Islas-Osuna, M. A., & Rivera-Domínguez, M. (2016). Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds. SpringerPlus, 5(1), 453. https://doi.org/10.1186/s40064-016-2081-0spa
dc.relation.referencesLe Bissonnais, Y. (2016). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 67(1), 11–21. https://doi.org/10.1111/ejss.4_12311spa
dc.relation.referencesLeón, R., Rosero, A., García, J. L., Morelo, J., Orozco, A., Silva, G., De la Ossa, V., Correa, E., Cordero, C., Villalba, L., Belalcazar, J., & Ceballos, H. (2021). Multi-Trait Selection Indices for Identifying New Cassava Varieties Adapted to the Caribbean Region of Colombia. Agronomy 2021, Vol. 11, Page 1694, 11(9), 1694. https://doi.org/10.3390/AGRONOMY11091694spa
dc.relation.referencesLepelletier, D., Maillard, J. Y., Pozzetto, B., & Simon, A. (2020). Povidone iodine: Properties, mechanisms of action, and role in infection control and staphylococcus aureus decolonization. Antimicrobial Agents and Chemotherapy, 64(9). https://doi.org/10.1128/AAC.00682-20/ASSET/C2A75034-4D9F-4196-8FD1-811395212C12/ASSETS/GRAPHIC/AAC.00682-20-F0002.JPEGspa
dc.relation.referencesLepengue, A. N., Nzengue, E., Mombo, S., Essougou, C. Y., Ontod, D. S. T.-T., Mokea-Niaty, A., & Mbatchi, B. (2019). Effet du Manganèse sur la Croissance de la Patate Douce (Ipomoea batatas L.) au Gabon. European Scientific Journal, ESJ, 15(24), 281–281. https://doi.org/10.19044/ESJ.2019.V15N24P281spa
dc.relation.referencesLi, F., Zuo, R., Abad, J., Xu, D., Bao, G., & Li, R. (2012). Simultaneous detection and differentiation of four closely related sweet potato potyviruses by a multiplex one-step RT-PCR. Journal of Virological Methods, 186(1–2), 161–166. https://doi.org/10.1016/j.jviromet.2012.07.021spa
dc.relation.referencesLi, T., Heuvelink, E., & Marcelis, L. F. M. (2015). Quantifying the source-sink balance and carbohydrate content in three tomato cultivars. Frontiers in Plant Science, 6(June), 416. https://doi.org/10.3389/fpls.2015.00416spa
dc.relation.referencesLinington, S. H., & Pritchard, H. W. (2001). Gene Banks. In S. A. Levin (Ed.), Encyclopedia of Biodiversity: Second Edition (Vol. 7, pp. 641–653). Academic Press. https://doi.org/10.1016/B978-0-12-384719-5.00064-2spa
dc.relation.referencesLiu, Y., Zou, Z., Hu, Z., Wang, W., & Xiong, J. (2019). Morphology and Molecular Analysis of Moesziomyces antarcticus Isolated From the Blood Samples of a Chinese Patient. Frontiers in Microbiology, 10(FEB), 254. https://doi.org/10.3389/fmicb.2019.00254spa
dc.relation.referencesLiu, Z., Chen, X., Jing, Y., Li, Q., Zhang, J., & Huang, Q. (2014). Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. CATENA, 123, 45–51. https://doi.org/10.1016/J.CATENA.2014.07.005spa
dc.relation.referencesLoyola-Vargas, V. M., & Ochoa-Alejo, N. (2018). An Introduction to Plant Tissue Culture: Advances and Perspectives. Methods in Molecular Biology, 1815, 3–13. https://doi.org/10.1007/978-1-4939-8594-4_1/COVERspa
dc.relation.referencesLuis, G., Rubio, C., Gutiérrez, Á. J., González-Weller, D., Revert, C., & Hardisson, A. (2014). Evaluation of metals in several varieties of sweet potatoes (Ipomoea batatas L.): Comparative study. Environmental Monitoring and Assessment, 186(1), 433–440. https://doi.org/10.1007/S10661-013-3388-8/TABLES/7spa
dc.relation.referencesMa, L., Wang, Q., & Shen, S. (2020). Response of soil aggregate stability and distribution of organic carbon to alpine grassland degradation in Northwest Sichuan. Geoderma Regional, 22, e00309. https://doi.org/10.1016/J.GEODRS.2020.E00309spa
dc.relation.referencesMakokha, P., Matasyoh, L. G., Ssali, R. T., Kiplagat, O. K., Wanjala, B. W., & Low, J. (2018). Optimization of nutrient media for sweetpotato (Ipomoea batatas L.) vine multiplication in sandponics: Unlocking the adoption and utilization of improved varieties. Gates Open Research, 2. https://doi.org/10.12688/GATESOPENRES.12879.1spa
dc.relation.referencesMakokha, P., Ssali, R. T., Wanjala, B. W., Rajendran, S., McEwan, M. A., & Low, J. W. (2020). Yield potential of sandponically produced sweetpotato (Ipomoea batatas (L.) Lam) pre-basic seed for selected genotypes. Open Agriculture, 5(1), 236–242. https://doi.org/10.1515/opag-2020-0025spa
dc.relation.referencesManh, V. H., & Wang, C. H. (2014). Vermicompost as an Important Component in Substrate: Effects on Seedling Quality and Growth of Muskmelon (Cucumis Melo L.). APCBEE Procedia, 8, 32–40. https://doi.org/10.1016/j.apcbee.2014.01.076spa
dc.relation.referencesManns, H. R., & Martin, R. C. (2018). Cropping system yield stability in response to plant diversity and soil organic carbon in temperate ecosystems. Agroecology and Sustainable Food Systems, 42(7), 724–750. https://doi.org/10.1080/21683565.2017.1423529spa
dc.relation.referencesMbah, E. U., & Eke-Okoro, O. (2015). Relationship between some growth parameters, dry matter content and yield of some sweet potato genotypes grown under rainfed weathered ultisols in the humid tropics. Journal of Agronomy, 14(3), 121–129. https://doi.org/10.3923/ja.2015.121.129spa
dc.relation.referencesMbewe, W., Mtonga, A., Chiipanthenga, M., Masamba, K., Chitedze, G., Pamkomera, P., Gondwe, E., Mwenye, O., & Chipungu, F. (2021). Incidence and distribution of Sweetpotato viruses and their implication on sweetpotato seed system in Malawi. Journal of Plant Pathology 2021 103:3, 103(3), 961–968. https://doi.org/10.1007/S42161-021-00830-4spa
dc.relation.referencesMcDonnell, G. E. (2017). Antisepsis, Disinfection, and Sterilization: Types, Action, and Resistance. (Gerald E. McDonnell (ed.); 2nd ed.). ASM Press. https://www.wiley.com/en-us/Antisepsis%2C+Disinfection%2C+and+Sterilization%3A+Types%2C+Action%2C+and+Resistance%2C+2nd+Edition-p-9781555819675spa
dc.relation.referencesMcKeen, L. (2012). Introduction to Food Irradiation and Medical Sterilization. In L. McKeen (Ed.), The Effect of Sterilization on Plastics and Elastomers (1st ed., pp. 1–40). William Andrew Publishing. https://doi.org/10.1016/B978-1-4557-2598-4.00001-0spa
dc.relation.referencesMonteith, J., & Unsworth, M. (2013). Principles of Environmental Physics: Plants, Animals, and the Atmosphere - John Monteith, Mike Unsworth - Google Libros (J. Monteith & M. Unsworth (eds.); Fourth edi). Elsevier Ltd. https://doi.org/https://doi.org/10.1016/B978-0-12-386910-4.00023-8.spa
dc.relation.referencesMontoya-Martínez, A. C., Rodríguez-Alvarado, G., Fernández-Pavía, S. P., Proctor, R. H., Kim, H. S., & O’Donnell, K. (2019). Design and validation of a robust multiplex polymerase chain reaction assay for MAT idiomorph within the Fusarium fujikuroi species complex. Mycologia, 111(5), 772–781. https://doi.org/10.1080/00275514.2019.1649956spa
dc.relation.referencesMoussa, T. A. A., Al-Zahrani, H. S., Kadasa, N. M. S., Ahmed, S. A., Hoog, G. S. de, & Al-Hatmi, A. M. S. (2017). Two new species of the Fusarium fujikuroi species complex isolated from the natural environment. Antonie van Leeuwenhoek 2017 110:6, 110(6), 819–832. https://doi.org/10.1007/S10482-017-0855-1spa
dc.relation.referencesMu, T. H., & Singh, J. (2019). Sweet potato: Chemistry, processing and nutrition. In T. H. Mu & J. Singh (Eds.), Sweet Potato: Chemistry, Processing and Nutrition. Elsevier. https://doi.org/10.1016/C2016-0-05204-Xspa
dc.relation.referencesMuhamad, S. N. S., Ling, A. P. K., & Wong, C. L. (2018). Effect of plant growth regulators on direct regeneration and callus induction from Sargassum polycystum C. Agardh. Journal of Applied Phycology, 30(6), 3299–3310. https://doi.org/10.1007/s10811-018-1649-1spa
dc.relation.referencesMulabisana, M. J., Cloete, M., Mabasa, K. G., Laurie, S. M., Oelofse, D., Esterhuizen, L. L., & Rey, M. E. C. (2018). Surveys in the Gauteng, Limpopo and Mpumalanga provinces of South Africa reveal novel isolates of sweet potato viruses. South African Journal of Botany, 114, 280–294. https://doi.org/10.1016/j.sajb.2017.11.022spa
dc.relation.referencesMurashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.xspa
dc.relation.referencesMwanga, R. O. M., Andrade, M. I., Carey, E. E., Low, J. W., Yencho, G. C., & Grüneberg, W. J. (2017). Sweetpotato (Ipomoea batatas L.). In Genetic Improvement of Tropical Crops (1st ed., pp. 181–218). Springer, Cham. https://doi.org/10.1007/978-3-319-59819-2_6spa
dc.relation.referencesNam, Y. J., Tran, L. S. P., Kojima, M., Sakakibara, H., Nishiyama, R., & Shin, R. (2012). Regulatory Roles of Cytokinins and Cytokinin Signaling in Response to Potassium Deficiency in Arabidopsis. PLOS ONE, 7(10), e47797. https://doi.org/10.1371/JOURNAL.PONE.0047797spa
dc.relation.referencesNedunchezhiyan, M., & Raya, R. C. (2010). Sweet potato growth, development, production and utilization: Overview. In R. C. Ray & K. I. Tomlins (Eds.), Sweet potato : post harvest aspects in food, feed and industry (Vol. 1, pp. 1–316). Nova Science Publishers. https://books.google.com/books/about/Sweet_Potato.html?hl=es&id=oKkYQAAACAAJspa
dc.relation.referencesNicoletti, R. (2019). Endophytic Fungi of Citrus Plants. Agriculture, 9(12), 247. https://doi.org/10.3390/agriculture9120247spa
dc.relation.referencesNiewczas, J., & Witkowska-Walczak, B. (2005). The soil aggregates stability index (ASI) and its extreme values. Soil and Tillage Research, 80(1–2), 69–78. https://doi.org/10.1016/j.still.2004.02.023spa
dc.relation.referencesNimmo, J. R., & Perkins, K. S. (2002). Aggregate stability and size distribution. In J. H. Dane & C. G. Topp (Eds.), Methods of Soil Analysis: Part 4–Physical Methods (pp. 317–328). Soil Science of America Book Series. https://doi.org/https://doi.org/10.2136/sssabookser5.4.c14spa
dc.relation.referencesObłąk, E., Piecuch, A., Rewak-Soroczyńska, J., & Paluch, E. (2019). Activity of gemini quaternary ammonium salts against microorganisms. Applied Microbiology and Biotechnology, 103(2), 625–632. https://doi.org/10.1007/s00253-018-9523-2spa
dc.relation.referencesOliveira, R., Souza, R., Lima, T., & Cavalcanti, M. (2014). Endophytic fungal diversity in coffee leaves (Coffea arabica) cultivated using organic and conventional crop management systems. Mycosphere, 5(4), 523–530. https://doi.org/10.5943/mycosphere/5/4/4spa
dc.relation.referencesOza, K., Jain, B., & Maitreya, B. (2020). Isolation and identification of fungi from Kalipati variety of Sapota fruits. International Journal of Botany Studies, 5(5), 264–266.spa
dc.relation.referencesPark, S. chul, Yu, Y. cheng, Kou, M., Yan, H., Tsng, W., Wang, X., Liu, Y. ju, Zhang, Y. gang, Kwak, S. soo, Ma, D. fu, Sun, J., & Li, Q. (2017). Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae. Journal of Integrative Agriculture, 16(10), 2168–2176. https://doi.org/10.1016/S2095-3119(16)61570-8spa
dc.relation.referencesPatel, R. M., & Shah, R. R. (2009). Regeneration of stevia plant through callus culture. Indian Journal of Pharmaceutical Sciences, 71(1), 46–50. https://doi.org/10.4103/0250-474X.51954spa
dc.relation.referencesPaul, N. C., Hwang, E. J., Nam, S. S., Lee, H. U., Lee, J. S., Yu, G. D., Kang, Y. G., Lee, K. B., Go, S., & Yang, J. W. (2017). Phylogenetic placement and morphological characterization of Sclerotium rolfsii (Teleomorph: Athelia rolfsii) associated with blight disease of Ipomoea batatas in Korea. Mycobiology, 45(3), 129–138. https://doi.org/10.5941/MYCO.2017.45.3.129spa
dc.relation.referencesPérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., … C Cornelissen, J. H. (2016). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64(3), 715–716. https://doi.org/10.1071/BT12225_COspa
dc.relation.referencesPérez-Pazos, J. V., Rosero, A., Martínez, R., Pérez, J., Morelo, J., Araujo, H., & Burbano-Erazo, E. (2021). Influence of morpho-physiological traits on root yield in sweet potato (Ipomoea batatas Lam.) genotypes and its adaptation in a sub-humid environment. Scientia Horticulturae, 275, 109703. https://doi.org/10.1016/J.SCIENTA.2020.109703spa
dc.relation.referencesPérez, M. B., Pérez, M. B., Vega, V. M., Jova, M. C., Pino, A. S., Delgado, M. T., Gálvez, E. O., Ortiz, A. O., Torres, J. L., Cabrera, A. R., García, Y. B., & Chávez, E. P. (2008). Multiplicación de <em>Ipomoea batatas clon ‘INIVITB2-2005’ en Sistema de Inmersión Temporal. Biotecnología Vegetal, 8(2). https://revista.ibp.co.cu/index.php/BV/article/view/343spa
dc.relation.referencesPernisová, M., Klíma, P., Horák, J., Válková, M., Malbeck, J., Souček, P., Reichman, P., Hoyerová, K., Dubová, J., Friml, J., Zažímalová, E., & Hejátko, J. (2009). Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3609–3614. https://doi.org/10.1073/pnas.0811539106spa
dc.relation.referencesPiccolo, A., Pietramellara, G., & Mbagwu, J. S. C. (1997). Use of humic substances as soil conditioners to increase aggregate stability. Geoderma, 75(3–4), 267–277. https://doi.org/10.1016/S0016-7061(96)00092-4spa
dc.relation.referencesPinto-Stelle, M. A., Garcia, L. C., Gomes, J. A., Farias, A., Weirich, P. H., Rocha, C. H., & De Souza, N. M. (2021). Seed sweet potato production in aeroponics. International Journal of Development Research (IJDR), 11, 51256–51261. https://www.journalijdr.com/seed-sweet-potato-production-aeroponicsspa
dc.relation.referencesPoorter, H., & Nagel, O. (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 27(6), 595–607. https://doi.org/10.1071/PP99173spa
dc.relation.referencesPoorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.xspa
dc.relation.referencesPrintz, B., Lutts, S., Hausman, J. F., & Sergeant, K. (2016). Copper trafficking in plants and its implication on cell wall dynamics. Frontiers in Plant Science, 7, 601. https://doi.org/10.3389/FPLS.2016.00601/BIBTEXspa
dc.relation.referencesQiao, Q., Zhang, Z., Zhao, X., Wang, Y., Wang, S., Qin, Y., Zhang, D., Tian, Y., & Zhao, F. (2019). Evidence for seed transmission of sweet potato symptomless virus 1 in sweet potato (Ipomoea batatas). Journal of Plant Pathology 2019 102:2, 102(2), 299–303. https://doi.org/10.1007/S42161-019-00427-Yspa
dc.relation.referencesRahayu, R. S., Ramadhani, I., Masrukhin, M., Riastiwi, I., Prawestri, A. D., & Yuliani, Y. (2021). CONFIRMATION OF ENDOPHYTIC MICROBES CAUSING CONTAMINATION IN WATER SPINACH (Ipomoea aquatica Forssk.) TISSUE CULTURE. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(2), 234–249. https://doi.org/10.29122/jbbi.v7i2.4381spa
dc.relation.referencesRajendran, S., Kimenye, L. N., & McEwan, M. (2017). Strategies for the development of the sweetpotato early generation seed sector in eastern and southern Africa. Open Agriculture, 2(1), 236–243. https://doi.org/10.1515/OPAG-2017-0025spa
dc.relation.referencesRamazan, M., Daraz Khan, G., Hanif, M., & Ali, S. (2012). Impact of Soil Compaction on Root Length and Yield of Corn (Zea mays) under Irrigated Condition. Middle-East Journal of Scientific Research, 11(3), 382–385.spa
dc.relation.referencesRan, Y., Ma, M., Liu, Y., Zhu, K., Yi, X., Wang, X., Wu, S., & Huang, P. (2020). Physicochemical determinants in stabilizing soil aggregates along a hydrological stress gradient on reservoir riparian habitats: Implications to soil restoration. Ecological Engineering, 143, 105664. https://doi.org/10.1016/j.ecoleng.2019.105664spa
dc.relation.referencesRavi, V., Naskar, S. ., Makeshkumar, T., Babu, B., & Prakash Krishnan, B. S. (2009). Molecular Physiology of Storage Root Formation and Development in Sweet Potato (Ipomoea batatas (L.) Lam.). Journal of Root Crops, 35(1), 1–27.spa
dc.relation.referencesRicke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82(4), 632–639. https://doi.org/10.1093/PS/82.4.632spa
dc.relation.referencesRosero, A., Pastrana Vargas, I. J., García Peña, J. A., Espitia Montes, A. A., Sierra Naranjo, C. M., Sierra Monroy, J. A., Martínez Botello, D. H., Santana Rodríguez, M. O., Pérez Gamero, J. L., Regino Hernández, S. M., Espitia Negrete, L. B., Araújo Vásquez, H. A., Martínez, R., & García Herazo, J. L. (2019). AGROSAVIA Aurora. Variedad de batata de pulpa anaranjada para el Caribe colombiano. In AGROSAVIA Aurora. Variedad de batata de pulpa anaranjada para el Caribe colombiano (No. 1). Corporación Colombiana de Investigación Agropecuaria (Agrosavia). https://doi.org/10.21930/AGROSAVIA.BROCHURE.7403107spa
dc.relation.referencesRosero, A., Sierra, C., Pastrana, I., Granda, L., Pérez, J. L., Martínez, R., Morelo, J., Espitia, L., Araujo, H., & De Paula, C. (2020). Genotypic and environmental factors influence the proximate composition and quality attributes of sweetpotato (Ipomoea batatas L.). Agriculture and Food Security, 9(1), 1–17. https://doi.org/10.1186/S40066-020-00268-4/TABLES/8spa
dc.relation.referencesRTeam. (2020). R: The R Project for Statistical Computing. https://www.r-project.org/spa
dc.relation.referencesSadeghi, F., Samsampour, D., Seyahooei, M. A., Bagheri, A., & Soltani, J. (2019). Diversity and Spatiotemporal Distribution of Fungal Endophytes Associated with Citrus reticulata cv. Siyahoo. Current Microbiology, 76(3), 279–289. https://doi.org/10.1007/s00284-019-01632-9spa
dc.relation.referencesSadok, W., & Sinclair, T. R. (2009). Genetic variability of transpiration response to vapor pressure deficit among soybean (Glycine max [L.] Merr.) genotypes selected from a recombinant inbred line population. Field Crops Research, 113(2), 156–160. https://doi.org/10.1016/j.fcr.2009.05.002spa
dc.relation.referencesSaidi, A., & Hajibarat, Z. (2021). Phytohormones: plant switchers in developmental and growth stages in potato. Journal of Genetic Engineering and Biotechnology 2021 19:1, 19(1), 1–17. https://doi.org/10.1186/S43141-021-00192-5spa
dc.relation.referencesSalawu, S. O., Udi, E., Akindahunsi, A. A., Boligon, A. A., & Athayde, M. L. (2015). Antioxidant potential, phenolic profile and nutrient composition of flesh and peels from Nigerian white and purple skinned sweet potato (Ipomea batatas L.). Pelagia Research Library Asian Journal of Plant Science and Research, 5(5), 14–23.spa
dc.relation.referencesSamiyarsih, S., Juwarno, J., & Muljowati, J. S. (2018). The Structural Resistance’s Anatomy of Sweet Potato Leaves to Fungal Pathogen Sphaceloma batatas. Biosaintifika: Journal of Biology & Biology Education, 10(1), 131–137. https://doi.org/10.15294/biosaintifika.v10i1.12116spa
dc.relation.referencesSandoval-Denis, M., Gené, J., Sutton, D. A., Wiederhold, N. P., Cano-Lira, J. F., & Guarro, J. (2016). New species of Cladosporium associated with human and animal infections. Persoonia: Molecular Phylogeny and Evolution of Fungi, 36(JUNE), 281–298. https://doi.org/10.3767/003158516X691951spa
dc.relation.referencesSantiago-Rosario, L. Y., Harms, K. E., Elderd, B. D., Hart, P. B., & Dassanayake, M. (2021). No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecology and Evolution, 11(20), 14231–14249. https://doi.org/10.1002/ECE3.8138spa
dc.relation.referencesSantos, L. F., & Olivares, F. L. (2021). Plant microbiome structure and benefits for sustainable agriculture. Current Plant Biology, 26, 100198. https://doi.org/10.1016/J.CPB.2021.100198spa
dc.relation.referencesSastry, K. S. (2013). Seed-borne plant virus diseases. In Seed-borne plant virus diseases (1st ed.). Springer India. https://doi.org/10.1007/978-81-322-0813-6spa
dc.relation.referencesSchindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019spa
dc.relation.referencesSeydi, S., Negahdar, N., Andevari, R. T., Ansari, M. H., & Kaviani, B. (2016). Effect of BAP and NAA on Micropropagation of Caladium bicolor (Aiton) Vent., an Ornamental Plant. Journal of Ornamental Plants, 6(1), 59–66.spa
dc.relation.referencesShamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., & Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. International Agrophysics, 32(2), 287–302. https://doi.org/10.1515/intag-2017-0005spa
dc.relation.referencesShirdel, M., Motallebi-Azar, A. R., Matloobi, M., Mokhtarzadeh, S., & Ozdemir, F. A. (2017). In Vitro establishment procedures of dog rose (Rosa canina). Journal of Applied Biological Sciences, 11(2), 06–09. http://jabsonline.org/index.php/jabs/article/view/530spa
dc.relation.referencesSingh, A. (2015). Micropropagation of Plants. In Bir Bahadur, Manchikatla Venkat Rajam, Leela Sahijram, & K. V. Krishnamurthy (Eds.), Plant Biology and Biotechnology: Volume II: Plant Genomics and Biotechnology (1st ed., pp. 329–346). Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_16spa
dc.relation.referencesSingh, C. R. (2018). Review on problems and its remedy in plant tissue culture. Asian Journal of Biological Sciences, 11(4), 165–172. https://doi.org/10.3923/ajbs.2018.165.172spa
dc.relation.referencesSingh, P., Aravindakshan, K., Maurya, I. B., Singh, J., Singh, B., & Sharma, M. K. (2017). Effect of potassium and zinc on growth, yield and economics of sweet potato (Ipomoea batatas L.) cv. CO-34. Journal of Applied and Natural Science, 9(1), 291–297. https://doi.org/10.31018/JANS.V9I1.1186spa
dc.relation.referencesSiose, T., Kader, M., & Tulin, A. (2017). Determination of limiting nutrient to Sweetpotato (L.) growth on Samoa Oxisol using a Ipomoea batatas Nutrient Omission Technique. Annals of Tropical Research, 105–119. https://doi.org/10.32945/ATR3917.2017spa
dc.relation.referencesSivparsad, B. ., & Gubba, A. (2012). Development of an efficient plant regeneration protocol for sweet potato (Ipomoea batatas L.) cv. Blesbok. African Journal of Biotechnology, 11(84), 14982–14987. https://doi.org/10.4314/ajb.v11i84.spa
dc.relation.referencesSix, J., Feller, C., Denef, K., Ogle, S., Carlos De Moraes Sa, J., Albrecht, A., Carlos, J., & Ogle, S. M. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage. Agronomie, EDP Sciences, 22(7–8), 755–775. https://doi.org/10.1051/agro:2002043ïspa
dc.relation.referencesSpielman, D. J., Gatto, M., Wossen, T., McEwan, M., Abdoulaye, T., Maredia, M. K., & Hareau, G. (2021). Regulatory options to improve seed systems for vegetatively propagated crops in developing countries. https://doi.org/10.2499/P15738COLL2.134441spa
dc.relation.referencesSpinoso-Castillo, J. L., Pérez-Sato, J. A., Schettino-Salomón, S. S., & Bello-Bello, J. J. (2022). An alternative method for medium-term in vitro conservation of different plant species through gibberellin inhibitors. In Vitro Cellular and Developmental Biology - Plant, 1–9. https://doi.org/10.1007/S11627-022-10263-Y/FIGURES/4spa
dc.relation.referencesSsamula, A., Okiror, A., Avrahami-Moyal, L., Tam, Y., Gaba, V., Gibson, R. W., Gal-On, A., Mukasa, S. B., & Wasswa, P. (2020). Factors influencing reversion from virus infection in sweetpotato. Annals of Applied Biology, 176(2), 109–121. https://doi.org/10.1111/AAB.12551spa
dc.relation.referencesSu, Y. H., Liu, Y. B., & Zhang, X. S. (2011). Auxin-cytokinin interaction regulates meristem development. In Molecular Plant (Vol. 4, Issue 4, pp. 616–625). Oxford University Press. https://doi.org/10.1093/mp/ssr007spa
dc.relation.referencesTaiyun, W., & Viliam, S. (2021). R package “corrplot”: Visualization of a Correlation Matrix (Version 0.92). . https://github.com/taiyun/corrplot/blob/master/corrplot.Rprojspa
dc.relation.referencesTalukdar, R., Wary, S., Mili, C., Roy, S., & Tayung, K. (2020). Antimicrobial secondary metabolites obtained from endophytic fungi inhabiting healthy leaf tissues of Houttuynia cordata Thunb., an ethnomedicinal plant of Northeast India. Journal of Applied Pharmaceutical Science, 10(9), 99–106. https://doi.org/10.7324/JAPS.2020.10912spa
dc.relation.referencesTekielska, D., Peňázová, E., Kovács, T., Křižan, B., Čechová, J., & Eichmeier, A. (2019). Bacterial Contamination of Plant in vitro Cultures in Commercial Production Detected by High‑Throughput Amplicon Sequencing. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(4), 1005–1014. https://doi.org/10.11118/actaun201967041005spa
dc.relation.referencesThompson, W. B., Schultheis, J. R., Chaudhari, S., Monks, D. W., Jennings, K. M., & Grabow, G. L. (2017). Sweetpotato Transplant Holding Duration Effects on Plant Survival and Yield. HortTechnology, 27(6), 818–823. https://doi.org/10.21273/HORTTECH03808-17spa
dc.relation.referencesTirez, K., Vanhoof, C., Hofman, S., Deproost, P., Swerts, M., & Salomez, J. (2014). Estimating the contribution of sampling, sample pretreatment, and analysis in the total uncertainty budget of agricultural soil pH and organic carbon monitoring. Communications in Soil Science and Plant Analysis, 45(7), 984–1002. https://doi.org/10.1080/00103624.2013.867056spa
dc.relation.referencesTivet, F., de Moraes Sá, J. C., Lal, R., Briedis, C., Borszowskei, P. R., dos Santos, J. B., Farias, A., Eurich, G., Hartman, D. da C., Nadolny Junior, M., Bouzinac, S., & Séguy, L. (2013). Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil. Soil and Tillage Research, 126, 203–218. https://doi.org/10.1016/j.still.2012.09.004spa
dc.relation.referencesTorres-Silva, G., Schnadelbach, A. S., Bezerra, H. B., Lima-Brito, A., & Resende, S. V. (2021). In vitro conservation and genetic diversity of threatened species of Melocactus (Cactaceae). Biodiversity and Conservation, 30(4), 1067–1080. https://doi.org/10.1007/S10531-021-02132-8/TABLES/2spa
dc.relation.referencesTripathi, N., & Sapra, A. (2021). Gram Staining. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK562156/spa
dc.relation.referencesTsakaldimi, M. (2006). Kenaf (Hibiscus cannabinus L.) core and rice hulls as components of container media for growing Pinus halepensis M. seedlings. Bioresource Technology, 97(14), 1631–1639. https://doi.org/10.1016/j.biortech.2005.07.027spa
dc.relation.referencesTumbarski, Y., Georgiev, V., Nikolova, R., & Pavlov, A. (2018). Isolation, identification and antibiotic susceptibility of Curtobacterium Flaccumfaciens strain Pm_Yt from sea daffodil (Pancratium Maritimum L.) shoot cultures. Journal of Microbiology, Biotechnology and Food Sciences, 7(6), 623–627. https://doi.org/10.15414/jmbfs.2018.7.6.623-627spa
dc.relation.referencesTyagi, B., Tewari, S., & Dubey, A. (2017). Biochemical characterization of fungus isolated during in vitro Propagation of Bambusa balcooa. Pharmacognosy Magazine, 13(52), S775–S779. https://doi.org/10.4103/pm.pm_20_17spa
dc.relation.referencesUmaru, M. A., Adam, P., Zaharah, S. S., & Daljit, S. K. (2021). Impact of Soil Compaction on Soil Physical Properties and Physiological Performance of Sweet Potato (Ipomea batatas L.). Malaysian Journal of Soil Science, 25, 15–28.spa
dc.relation.referencesVarga, J., Frisvad, J. C., Kocsubé, S., Brankovics, B., Tóth, B., Szigeti, G., & Samson, R. A. (2011). New and revisited species in Aspergillus section Nigri. Studies in Mycology, 69, 1–17. https://doi.org/10.3114/sim.2011.69.01spa
dc.relation.referencesVenables, W. N., & Ripley, B. D. (2002). Exploratory Multivariate Analysis. In W. N. Venables & B. D. Ripley (Eds.), Modern Applied Statistics with S (4th ed., pp. 301–330). Springer, New York, NY. https://doi.org/10.1007/978-0-387-21706-2_11spa
dc.relation.referencesVillordon, A., & Gregorie, J. C. (2021). Variation in boron availability alters root architecture attributes at the onset of storage root formation in three sweetpotato cultivars. HortScience, 56(11), 1423–1429. https://doi.org/10.21273/HORTSCI16134-21/-/DCSUPPLEMENTALspa
dc.relation.referencesVillordon, A., LaBonte, D., Solis, J., & Firon, N. (2012). Characterization of Lateral Root Development at the Onset of Storage Root Initiation in ‘Beauregard’ Sweetpotato Adventitious Roots. HortScience, 47(7), 961–968. https://doi.org/10.21273/HORTSCI.47.7.961spa
dc.relation.referencesWang, J., Lei, Y., Yu, Y., Yin, L., & Zhang, Y. (2021). Use of acetic acid to partially replace lactic acid for decontamination against Escherichia coli O157:H7 in fresh produce and mechanism of action. Foods, 10(10), 2406. https://doi.org/10.3390/FOODS10102406/S1spa
dc.relation.referencesWang, M. R., Lambardi, M., Engelmann, F., Pathirana, R., Panis, B., Volk, G. M., & Wang, Q. C. (2021). Advances in cryopreservation of in vitro-derived propagules: technologies and explant sources. Plant Cell, Tissue and Organ Culture, 144(1), 7–20. https://doi.org/10.1007/S11240-020-01770-0/FIGURES/3spa
dc.relation.referencesWang, Q.-M., Jia, J.-H., Bai, F.-Y., & Bai, Y. (2016). Pseudozyma hubeiensis sp. nov. and Pseudozyma shanxiensis sp. nov.,novel ustilaginomycetous anamorphic yeast species from plant leaves. International Journal of Systematic and Evolutionary Microbiology, 56, 289–293. https://doi.org/10.1099/ijs.0.63827-0spa
dc.relation.referencesWang, Q., Zhang, L. ming, Guan, Y. an, & Wang, Z. lin. (2006). Endogenous Hormone Concentration in Developing Tuberous Roots of Different Sweet Potato Genotypes. Agricultural Sciences in China, 5(12), 919–927. https://doi.org/10.1016/S1671-2927(07)60005-4spa
dc.relation.referencesWanger, A., Chavez, V., Huang, R. S. P., Wahed, A., Actor, J. K., & Dasgupta, A. (2017). Biochemical Tests and Staining Techniques for Microbial Identification. In A. Wanger, R. S. P. Huang, J. K. Actor, V. Chavez, A. Wahed, & A. Dasgupta (Eds.), Microbiology and Molecular Diagnosis in Pathology (pp. 61–73). Elsevier. https://doi.org/10.1016/b978-0-12-805351-5.00005-3spa
dc.relation.referencesWanjala, B. W., Srinivasulu, R., Makokha, P., Ssali, R. T., McEwan, M., Kreuze, J. F., & Low, J. W. (2020). Improving rapid multiplication of sweetpotato (Ipomoea batatas L. (Lam) pre-basic seed using sandponics technology in East Africa. Experimental Agriculture, 56(3), 347–354. https://doi.org/10.1017/S0014479719000413spa
dc.relation.referencesWidaryanto, E., & Saitama, A. (2017). Analysis of plant growth of ten varieties of sweet potato (ipomoea batatas L.) cultivated in rainy season. Asian Journal of Plant Sciences, 16(4), 193–199. https://doi.org/10.3923/ajps.2017.193.199spa
dc.relation.referencesWondimu, T., Feyissa, T., & Bedada, G. (2012). Meristem culture of selected sweet potato (Ipomoea batatas L. Lam.) cultivars to produce virus-free planting material. Journal of Horticultural Science and Biotechnology, 87(3), 255–260. https://doi.org/10.1080/14620316.2012.11512861spa
dc.relation.referencesWu, H. X. (2018). Benefits and risks of using clones in forestry – a review. Scandinavian Journal of Forest Research, 34(5), 352–359. https://doi.org/10.1080/02827581.2018.1487579spa
dc.relation.referencesYadav, A. N. (2020). Plant Microbiomes for Sustainable Agriculture: Current Research and Future Challenges. 475–482. https://doi.org/10.1007/978-3-030-38453-1_16spa
dc.relation.referencesYang, X. (2010). Rapid production of virus-free plantlets by shoot tip culture in vitro of purple-coloured sweet potato (Ipomoea batatas (L.) Lam.). Pakistan Journal of Botany, 42(3), 2069–2075.spa
dc.relation.referencesYeasmin, S., Samiul Islam, M., Sujon, T., Sultana, R., Shah Alam, M., Sikdar, B., Asadul Islam, M., & Khalekuzzaman, M. (2018). Molecular and microscopic identification of fungi in micropropagation of nodal and shoot tip culture of orange. International Journal of Pure and Applied Bioscience, 6(6), 6–19. https://doi.org/10.18782/2320-7051.7081spa
dc.relation.referencesYzarra, W. J., & López, F. M. (2011). Manual de observaciones fenológicas. https://www.senamhi.gob.pe/load/file/01401SENA-11.pdfspa
dc.relation.referencesZamecnik, J., Faltus, M., Bilavcik, A., Benelli, C., Carillo, P., & Amoo, S. O. (2021). Vitrification Solutions for Plant Cryopreservation: Modification and Properties. Plants 2021, Vol. 10, Page 2623, 10(12), 2623. https://doi.org/10.3390/PLANTS10122623spa
dc.relation.referencesZhang, H., Tang, J., Liu, X. P., Wang, Y., Yu, W., Peng, W. Y., Fang, F., Ma, D. F., Wei, Z. J., & Hu, L. Y. (2009). Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. Journal of Integrative Plant Biology, 51(12), 1086–1094. https://doi.org/10.1111/J.1744-7909.2009.00885.Xspa
dc.relation.referencesZhang, K., Lu, H., Wan, C., Tang, D., Zhao, Y., Luo, K., Li, S., & Wang, J. (2020). The Spread and Transmission of Sweet Potato Virus Disease (SPVD) and Its Effect on the Gene Expression Profile in Sweet Potato. Plants, 9(4), 492. https://doi.org/10.3390/plants9040492spa
dc.relation.referencesZhang, Y., Jiang, G., Ding, Y., & Loria, R. (2018). Genetic background affects pathogenicity island function and pathogen emergence in Streptomyces. Molecular Plant Pathology, 19(7), 1733–1741. https://doi.org/10.1111/mpp.12656spa
dc.relation.referencesZhao, F., Wang, L., Zhang, Z., Qiao, Q., Qin, Y., Wang, Y., Wang, S., Tian, Y., Zhang, D., & Zhao, X. (2020). Seed transmission of sweet potato pakakuy virus in sweet potato (Ipomoea batatas). Journal of General Plant Pathology, 86(3), 205–210. https://doi.org/10.1007/S10327-020-00915-5spa
dc.relation.referencesZhou, X., Ren, X., Luo, H., Huang, L., Liu, N., Chen, W., Lei, Y., Liao, B., & Jiang, H. (2022). Safe conservation and utilization of peanut germplasm resources in the Oil Crops Middle-term Genebank of China. Oil Crop Science, 7(1), 9–13. https://doi.org/10.1016/J.OCSCI.2021.12.001spa
dc.relation.referencesZiv, M. (1995). In vitro acclimatization. In Jenny Aitken-Christie, T. Kozai, & M.A.L Smith (Eds.), Automation and environmental control in plant tissue culture (1st ed., Vol. 41, Issue 3, pp. 493–516). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8461-6_20spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biologíaspa
dc.subject.ddc580 - Plantasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembBatata - Propagación in vitro
dc.subject.lembCompost
dc.subject.lembPlant micropropagation
dc.subject.lembMicropropagación vegetal
dc.subject.proposalCultivo de tejidosspa
dc.subject.proposalAclimataciónspa
dc.subject.proposalMedio de cultivospa
dc.subject.proposalSustratosspa
dc.subject.proposalSuper elitespa
dc.subject.proposalMini-raíces tuberosasspa
dc.subject.proposalPropagaciónspa
dc.subject.proposalTissue cultureeng
dc.subject.proposalAcclimatizationeng
dc.subject.proposalCulture mediumeng
dc.subject.proposalSubstrateseng
dc.subject.proposalSuper eliteeng
dc.subject.proposalTuberous mini-rootseng
dc.subject.proposalPropagationeng
dc.titleEstandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)spa
dc.title.translatedStandardization of in vitro and ex vitro production conditions for the propagation and scaling of sweet potato (Ipomoea batatas L.) planting materialeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de estrategias de manejo integrado del cultivo, postcosecha y aprovechamiento integral del cultivo de batata en Colombia.spa
oaire.fundernameMinisterio de Agricultura y Desarrollo Ruralspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085282821.2022.pdf
Tamaño:
5.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: