Contribución al estudio de actividad antioxidante y antiinflamatoria intestinal del aceite esencial y extracto del mesocarpio de lima ácida Tahití Citrus x latifolia producida en el departamento de Nariño
| dc.contributor.advisor | Matiz Melo , Gérman Eduardo | spa |
| dc.contributor.advisor | Pantoja Guerrero, Renato | spa |
| dc.contributor.advisor | Franco, Luis Alberto | spa |
| dc.contributor.author | Zambrano Navarro, Laura Vanessa | spa |
| dc.contributor.cvlac | Zambrano Navarro, Laura [0001831621] | spa |
| dc.contributor.researchgroup | Grupo de Investigación en Tecnología de Productos Naturales Tecprona | spa |
| dc.contributor.researchgroup | Grupo Tecnologías Emergentes en Agroindustria (TEA) | spa |
| dc.contributor.researchgroup | Grupo Evaluación Biológica de Sustancias Promisorias | spa |
| dc.coverage.country | Colombia | spa |
| dc.coverage.region | Nariño | spa |
| dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000704 | |
| dc.date.accessioned | 2025-10-06T20:03:01Z | |
| dc.date.available | 2025-10-06T20:03:01Z | |
| dc.date.issued | 2025-04-21 | |
| dc.description | ilustraciones, diagramas, fotografías | spa |
| dc.description.abstract | La enfermedad inflamatoria intestinal EII, como la colitis ulcerosa CU, es una afección crónica en aumento, relacionada con factores dietéticos y del estilo de vida. La dieta influye directamente en la microbiota intestinal, modulando la inflamación. Se ha observado que el consumo de frutas, particularmente por su contenido en flavonoides, ejerce un efecto protector frente a la EII. Los cítricos, ricos en flavonoides, como la lima ácida Tahití Citrus x latifolia, poseen propiedades antioxidantes, antiinflamatorias y digestivas. Aunque se han estudiado sus beneficios antimicrobianos y antioxidantes, aún no se había evaluado su potencial preventivo en modelos de CU. El objetivo de este estudio fue evaluar la actividad antioxidante in vitro (DPPH, ABTS) y el efecto antiinflamatorio del aceite esencial AE y extracto de mesocarpio EM de lima ácida Tahití Citrus x latifolia en un modelo preventivo de colitis inducida por sulfato de sodio dextrano DSS. El AE se obtuvo por hidrodestilación y el EM por extracción hidroalcohólica. Se cuantificaron polifenoles y flavonoides mediante los métodos de Folin-Ciocalteu y tricloruro de aluminio. Se indujo colitis ulcerosa con DSS al 5% en ratones CD-1 por 20 días y se evaluó el efecto preventivo del EM (150 y 350 mg/kg) mediante análisis clínico, histología colónica, DCFH-DA y actividad de MPO. El AE evidenció una alta capacidad antioxidante en los ensayos DPPH (IC₅₀ = 3,89 mg/mL) y ABTS (IC₅₀ = 5,20 mg/mL). Sin embargo, los ensayos de toxicidad revelaron efectos adversos neurológicos a dosis agudas y repetidas, indicando la necesidad de profundizar en su evaluación toxicológica antes de proponer su uso preventivo en EII. Por su parte, EM presentó un alto contenido de fenoles (297,71 mg AG/g) y flavonoides (187,81 mg Q/g), asociado a una potente actividad antioxidante in vitro (232,09 μmol Trolox/g en DPPH y 442,9 μmol Trolox/g en ABTS). Además, no presentó toxicidad aguda ni por dosis repetidas, lo que respaldó su uso en el modelo murino de colitis inducida por DSS para evaluar su efecto preventivo. En el modelo de colitis inducida por DSS, el EM demostró un efecto antiinflamatorio al reducir el acortamiento del colon y el daño macroscópico. A nivel histológico, mejoró la arquitectura del tejido colónico y disminuyó los signos de inflamación. Además, redujo la producción de especies reactivas de oxígeno y la actividad de la enzima MPO. Estos hallazgos respaldan el potencial que tiene EM como agente preventivo frente a enfermedades inflamatorias intestinales. (Texto tomado de la fuente). | spa |
| dc.description.abstract | Inflammatory bowel disease IBD, such as ulcerative colitis UC, is a chronic condition with increasing incidence, associated with dietary and lifestyle factors. Diet directly influences the gut microbiota, modulating inflammation. It has been observed that fruit consumption, particularly due to its flavonoid content, exerts a protective effect against IBD. Citrus fruits, rich in flavonoids, such as the Tahiti lime Citrus x latifolia, possess antioxidant, anti-inflammatory, and digestive properties. Although their antimicrobial and antioxidant benefits have been studied, their preventive potential in UC models has not yet been evaluated. The aim of this study was to evaluate the in vitro antioxidant activity (DPPH, ABTS) and the anti-inflammatory effect of the essential oil EO and mesocarp extract ME from Tahiti lime (Citrus x latifolia) in a preventive model of dextran sulfate sodium DSS-induced colitis. The EO was obtained by hydrodistillation, and the ME by hydroalcoholic extraction. Polyphenols and flavonoids were quantified using the Folin–Ciocalteu and aluminum chloride methods, respectively. Ulcerative colitis was induced with 5% DSS in CD-1 mice for 20 days, and the preventive effect of ME (150 and 350 mg/kg) was assessed through The essential oil (EO) demonstrated high antioxidant capacity in the DPPH (IC₅₀ = 3.89 mg/mL) and ABTS (IC₅₀ = 5.20 mg/mL) assays. However, toxicity tests revealed neurological adverse effects following both acute and repeated dosing, indicating the need for further toxicological assessment before suggesting its preventive use in inflammatory bowel disease (IBD). In contrast, ME exhibited high levels of phenolic compounds (297.71 mg AG/g) and flavonoids (187.81 mg QE/g), associated with potent in vitro antioxidant activity (232.09 μmol Trolox/g in DPPH and 442.9 μmol Trolox/g in ABTS assays). Furthermore, ME did not show acute or repeated-dose toxicity, supporting its use in the DSS-induced murine colitis model to evaluate its preventive effects. In the DSS-induced colitis model, ME demonstrated anti-inflammatory activity by reducing colon shortening and macroscopic tissue damage. Histologically, it improved colonic tissue architecture and reduced signs of inflammation. Additionally, ME decreased the production of reactive oxygen species and MPO activity. These findings support the potential of ME as a preventive agent against inflammatory bowel diseases. | eng |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ciencias Farmacéuticas | |
| dc.description.methods | El AE se obtuvo por hidrodestilación y el EM por extracción hidroalcohólica. Se cuantificaron polifenoles y flavonoides mediante los métodos de Folin-Ciocalteu y tricloruro de aluminio. Se indujo colitis ulcerosa con DSS al 5% en ratones CD-1 por 20 días y se evaluó el efecto preventivo del EM (150 y 350 mg/kg) mediante análisis clínico, histología colónica, DCFH-DA y actividad de MPO. | |
| dc.description.researcharea | Desarrollo de alternativas de aprovechamiento farmacéutico de productos y subproductos de fuentes naturales | |
| dc.description.sponsorship | Sistema general de regalías con código BPIN 2021000100278. | |
| dc.format.extent | xiv, 120 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89015 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.department | Departamento de Farmacia | spa |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Bogotá, Colombia | |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas | |
| dc.relation.indexed | Agrosavia | |
| dc.relation.indexed | Agrovoc | |
| dc.relation.references | Apak, R., Capanoglu, E., & Shahidi, F. (2018). Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications. In Measurement of Antioxidant Activity & Capacity. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119135388.fmatter | |
| dc.relation.references | Aranda-Rivera, A. K., Cruz-Gregorio, A., Arancibia-Hernández, Y. L., Hernández-Cruz, E. Y., & Pedraza-Chaverri, J. (2022). RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen, 2(4), 437–478. https://doi.org/10.3390/oxygen2040030 | |
| dc.relation.references | Association of Official Analytical Chemists (AOAC International). (2000). Official Methods of Analysis of the Association of Official Analytical Chemists. Method 920.212 – Specific Gravity (Apparent) of Oils, Pycnometer Method (17th edn). | |
| dc.relation.references | Atti-Santos, A. C., Rossato, M., Serafini, L. A., Cassel, E., & Moyna, P. (2005). Extraction of essential oils from lime (Citrus latifolia Tanaka) by hydrodistillation and supercritical carbon dioxide. Brazilian Archives of Biology and Technology, 48(1), 155–160. https://doi.org/10.1590/S1516-89132005000100020 | |
| dc.relation.references | Bai, X., Ng, K. K.-H., Hu, J. J., Ye, S., & Yang, D. (2019). Small-Molecule-Based Fluorescent Sensors for Selective Detection of Reactive Oxygen Species in Biological Systems. Annual Review of Biochemistry, 88(1), 605–633. https://doi.org/10.1146/annurev-biochem-013118-111754 | |
| dc.relation.references | Ballistreri, G., Fabroni, S., Romeo, F. V., Timpanaro, N., Amenta, M., & Rapisarda, P. (2019). Anthocyanins and Other Polyphenols in Citrus Genus: Biosynthesis, Chemical Profile, and Biological Activity. In Polyphenols in Plants (pp. 191–215). Elsevier. https://doi.org/10.1016/B978-0-12-813768-0.00014-1 | |
| dc.relation.references | Barbosa, P. de P. M., Ruviaro, A. R., & Macedo, G. A. (2018). Comparison of different Brazilian citrus by-products as source of natural antioxidants. Food Science and Biotechnology, 27(5), 1301–1309. https://doi.org/10.1007/s10068-018-0383-4 | |
| dc.relation.references | Belščak-Cvitanović, A., Durgo, K., Huđek, A., Bačun-Družina, V., & Komes, D. (2018). Overview of polyphenols and their properties. In Polyphenols: Properties, Recovery, and Applications (pp. 3–44). Elsevier. https://doi.org/10.1016/B978-0-12-813572-3.00001-4 | |
| dc.relation.references | Benavente-García, O., Castillo, J., Marin, F. R., Ortuño, A., & Del Río, J. A. (1997). Uses and Properties of Citrus Flavonoids. Journal of Agricultural and Food Chemistry, 45(12), 4505–4515. https://doi.org/10.1021/jf970373s | |
| dc.relation.references | Benkhaira, N., Koraichi, S. I., & Fikri-Benbrahim, K. (2022). In vitro methods to study antioxidant and some biological activities of essential oils: A review. In Biointerface Research in Applied Chemistry (Vol. 12, Issue 3, pp. 3332–3347). AMG Transcend Association. https://doi.org/10.33263/BRIAC123.33323347 | |
| dc.relation.references | Benzie, I. F. F., & Choi, S.-W. (2014). Antioxidants in Food (pp. 1–53). https://doi.org/10.1016/B978-0-12-800270-4.00001-8 | |
| dc.relation.references | Biasi, F., Leonarduzzi, G., Oteiza, P. I., & Poli, G. (2013). Inflammatory Bowel Disease: Mechanisms, Redox Considerations, and Therapeutic Targets. Antioxidants & Redox Signaling, 19(14), 1711–1747. https://doi.org/10.1089/ars.2012.4530 | |
| dc.relation.references | Bombardelli, E., & Morazzoni, P. (1993). The Flavonoids: New Perspectives in Biological Activities and Therapeutics. In Chimica Oggi-Chemistry Today (Vol. 11, pp. 25–28). | |
| dc.relation.references | Bozeman, P. M., Learn, D. B., & Thomas, E. L. (1990). Assay of the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Journal of Immunological Methods, 126(1), 125–133. https://doi.org/10.1016/0022-1759(90)90020-V | |
| dc.relation.references | Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 | |
| dc.relation.references | Bradley, P. P., Priebat, D. A., Christensen, R. D., & Rothstein, G. (1982). Measurement of Cutaneous Inflammation: Estimation of Neutrophil Content with an Enzyme Marker. Journal of Investigative Dermatology, 78(3), 206–209. https://doi.org/10.1111/1523-1747.ep12506462 | |
| dc.relation.references | Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 | |
| dc.relation.references | Burdock, G. A. (2016). Fenaroli’s Handbook of Flavor Ingredients. CRC Press. https://doi.org/10.1201/9781439847503 | |
| dc.relation.references | Campbell, E. L., & Colgan, S. P. (2019). Control and dysregulation of redox signalling in the gastrointestinal tract. Nature Reviews Gastroenterology & Hepatology, 16(2), 106–120. https://doi.org/10.1038/s41575-018-0079-5 | |
| dc.relation.references | Cao, X., Li, L., Hu, J., Zhu, S., Song, S., Kong, S., Zhou, L., & Huang, Y. (2025). Neohesperidin protects against colitis-associated colorectal cancer in mice via suppression of the NF-κB/p65 and MAPK pathways. The Journal of Nutritional Biochemistry, 136, 109804. https://doi.org/10.1016/j.jnutbio.2024.109804 | |
| dc.relation.references | Casquete, R., Castro, S. M., Martín, A., Ruiz-Moyano, S., Saraiva, J. A., Córdoba, M. G., & Teixeira, P. (2015). Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innovative Food Science & Emerging Technologies, 31, 37–44. https://doi.org/10.1016/j.ifset.2015.07.005 | |
| dc.relation.references | Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay-Kumar, M. (2014). Dextran sulfate sodium (DSS)-induced colitis in mice. Current Protocols in Immunology, SUPPL.104. https://doi.org/10.1002/0471142735.im1525s104 | |
| dc.relation.references | Chen, X.-M., Tait, A. R., & Kitts, D. D. (2017). Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities. Food Chemistry, 218, 15–21. https://doi.org/10.1016/j.foodchem.2016.09.016 | |
| dc.relation.references | Choi, H.-S., Song, H. S., Ukeda, H., & Sawamura, M. (2000). Radical-Scavenging Activities of Citrus Essential Oils and Their Components: Detection Using 1,1-Diphenyl-2- picrylhydrazyl. Journal of Agricultural and Food Chemistry, 48(9), 4156–4161. https://doi.org/10.1021/jf000227d | |
| dc.relation.references | Chung, K.-S., Park, S.-E., Lee, J.-H., Kim, S.-Y., Han, H.-S., Lee, Y. S., Jung, S.-H., Jang, E., Lee, S., & Lee, K.-T. (2023). Protective effect of 7-hydroxyl-1-methylindole-3-acetonitrile on the intestinal mucosal damage response to inflammation in mice with DSS-induced colitis. Chemico-Biological Interactions, 370, 110316. https://doi.org/10.1016/j.cbi.2022.110316 | |
| dc.relation.references | Cohen, S. M., Eisenbrand, G., Fukushima, S., Gooderham, N. J., Guengerich, F. P., Hecht, S. S., Rietjens, I. M. C. M., Bastaki, M., Davidsen, J. M., Harman, C. L., McGowen, M., & Taylor, S. V. (2019). FEMA GRAS assessment of natural flavor complexes: Citrus-derived flavoring ingredients. Food and Chemical Toxicology, 124, 192–218. https://doi.org/10.1016/j.fct.2018.11.052 | |
| dc.relation.references | Costa Calmon Rodrigues, P. H., da Fonseca, S. E., de Almeida Pretti Rocha, A., de Paula Pereira, P., dos Santos, R. V., Brasil, G. A., Sertorio, M. N., & Vasconcelos, C. M. (2021). Albedo flour of Tahiti lime (Citrus latifolia Tanaka) as a strategy to control bone fragility in ovariectomized rats. Clinical Nutrition Open Science, 37, 12–24. https://doi.org/10.1016/j.nutos.2021.03.003 | |
| dc.relation.references | De Moraes Barros, H. R., De Castro Ferreira, T. A. P., & Genovese, M. I. (2012). Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chemistry, 134(4), 1892–1898. https://doi.org/10.1016/j.foodchem.2012.03.090 | |
| dc.relation.references | Desmiaty, Y., Sandhiutami, N. M. D., Mulatsari, E., Maziyah, F. A., Rahmadhani, K., Algifari, H. O. Z., & Jantuna, F. A. (2024). Antioxidant and anti-inflammatory activity through inhibition of NF-κB and sEH of some citrus peel and phytoconstituent characteristics. Saudi Pharmaceutical Journal, 32(2), 101959. https://doi.org/10.1016/j.jsps.2024.101959 | |
| dc.relation.references | Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines, 3(4), 25. https://doi.org/10.3390/medicines3040025 | |
| dc.relation.references | Dongmo, J., Tatsadjieu, N. L., Sonwa, T., Zollo, A., & Menut, C. (2008). Antiradical potential and antifungal activities of essential oils of the leaves of Citrus latifolia against Phaeoramularia angolensis. African Journal of Biotechnology, 7(22), 4045–4050. https://doi.org/10.5897/AJB08.154 | |
| dc.relation.references | Dos Santos Lima, M., da Silva Monteiro, L. I., de Brito Araújo Carvalho, A. J., Bastos, D. C., Pimentel, T. C., & Magnani, M. (2024). A robust method for quantifying 42 phenolic compounds by RP-HPLC/DAD: Columns performance and characterization of Brazilian Citrus peels. Food Chemistry, 460, 140807. https://doi.org/10.1016/j.foodchem.2024.140807 | |
| dc.relation.references | Edrisi, S., & Bakhshi, H. (2024). Separation of polyphenolic compounds from Citrus aurantium L. peel by deep eutectic solvents and their recovery using a new DES-based aqueous two-phase system. Journal of Molecular Liquids, 402, 124790. https://doi.org/10.1016/j.molliq.2024.124790 | |
| dc.relation.references | Escarpa, A., & González, M. C. (2001). Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Analytica Chimica Acta, 427(1), 119–127. https://doi.org/10.1016/S0003-2670(00)01188-0 | |
| dc.relation.references | Figueroa, C. (2019). Epidemiología de la enfermedad inflamatoria intestinal. Revista Médica Clínica Las Condes, 30(4), 257–261. https://doi.org/10.1016/j.rmclc.2019.06.003 | |
| dc.relation.references | Fiocchi, C. (1998). Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology, 115(1), 182–205. https://doi.org/10.1016/S0016-5085(98)70381-6 | |
| dc.relation.references | Floegel, A., Kim, D.-O., Chung, S.-J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24(7), 1043–1048. https://doi.org/10.1016/j.jfca.2011.01.008 | |
| dc.relation.references | Gadotti, V. M., & Zamponi, G. W. (2019). Anxiolytic effects of the flavonoid luteolin in a mouse model of acute colitis. Molecular Brain, 12(1), 114. https://doi.org/10.1186/s13041-019-0539-z | |
| dc.relation.references | Galley, H. F., & Webster, N. R. (1996). The immuno-inflammatory cascade. British Journal of Anaesthesia, 77(1), 11–16. https://doi.org/10.1093/bja/77.1.11 | |
| dc.relation.references | Gargano, A. C., Celso, •, Almeida Costa, A. R., & Mirtes Costa, # •. (2008). Essential Oils from Citrus latifolia and Citrus reticulata Reduce Anxiety and Prolong Ether Sleeping Time in Mice. Tree and Forestry Science and Biotechnology. | |
| dc.relation.references | Ghasemi, K., Ghasemi, Y., & Ali Ebrahimzadeh, M. (2009). ANTIOXIDANT ACTIVITY, PHENOL AND FLAVONOID CONTENTS OF 13 CITRUS SPECIES PEELS AND TISSUES. In Pak. J. Pharm. Sci (Vol. 22, Issue 3). | |
| dc.relation.references | Gómez-Mejía, E., Rosales-Conrado, N., León-González, M. E., & Madrid, Y. (2019). Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chemistry, 295(May), 289–299. https://doi.org/10.1016/j.foodchem.2019.05.136 | |
| dc.relation.references | González, A. S., Soto Tellini, V. H., & Benjumea Gutiérrez, D. M. (2022). Study of the dermal anti-inflammatory, antioxidant, and analgesic activity of pinostrobin. Heliyon, 8(9). https://doi.org/10.1016/j.heliyon.2022.e10413 | |
| dc.relation.references | Han, X. H., Hong, S. S., Hwang, J. S., Lee, M. K., Hwang, B. Y., & Ro, J. S. (2007). Monoamine oxidase inhibitory components fromCayratia japonica. Archives of Pharmacal Research, 30(1), 13–17. https://doi.org/10.1007/BF02977772 | |
| dc.relation.references | He, W., Liu, M., Li, Y., Yu, H., Wang, D., Chen, Q., Chen, Y., Zhang, Y., & Wang, T. (2019). Flavonoids from Citrus aurantium ameliorate TNBS-induced ulcerative colitis through protecting colonic mucus layer integrity. European Journal of Pharmacology, 857, 172456. https://doi.org/10.1016/j.ejphar.2019.172456 | |
| dc.relation.references | He, Y., Sun, Z., Bai, J., Zhang, Y., Qian, Y., Zhao, X., & Chen, S. (2023). Citrus peel polyphenols alleviate intestinal inflammation in mice with dextran sulfate sodium-induced acute colitis. Heliyon, 9(7), e18137. https://doi.org/10.1016/j.heliyon.2023.e18137 | |
| dc.relation.references | Helander, H. F., & Fändriks, L. (2014). Surface area of the digestive tract – revisited. Scandinavian Journal of Gastroenterology, 49(6), 681–689. https://doi.org/10.3109/00365521.2014.898326 | |
| dc.relation.references | Hernández-García, D., Wood, C. D., Castro-Obregón, S., & Covarrubias, L. (2010). Reactive oxygen species: A radical role in development? Free Radical Biology and Medicine, 49(2), 130–143. https://doi.org/10.1016/j.freeradbiomed.2010.03.020 | |
| dc.relation.references | Hu, Z., Chu, Z., Ling, X., Wu, Y., Qin, D., Yang, F., Yu, X., Zhou, Y., Tang, Y., & Luo, F. (2024). Sinensetin from citrus peel alleviates DSS-induced inflammation by regulating gut microbiota and serum metabolism in mice. Food Bioscience, 62, 105066. https://doi.org/10.1016/j.fbio.2024.105066 | |
| dc.relation.references | Huang, J., Milton, A., Arnold, R. D., Huang, H., Smith, F., Panizzi, J. R., & Panizzi, P. (2016). Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems. Journal of Leukocyte Biology, 99(4), 541–548. https://doi.org/10.1189/jlb.3RU0615-256R | |
| dc.relation.references | Huang, J., Wang, M., Jiang, X., Liu, Y., Ge, Y., & Zhang, C. (2024). Bletilla striata carbon dots with alleviating effect of DSS-induced ulcerative colitis. Biochemical and Biophysical Research Communications, 695, 149358. https://doi.org/10.1016/j.bbrc.2023.149358 | |
| dc.relation.references | Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C. B., & Rahu, N. (2016). Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative Medicine and Cellular Longevity, 2016, 1–9. https://doi.org/10.1155/2016/7432797 | |
| dc.relation.references | Irwin, S. (1968). Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia, 13(3), 222–257. https://doi.org/10.1007/BF00401402 | |
| dc.relation.references | Jiang, H., Zhang, W., Xu, Y., Chen, L., Cao, J., & Jiang, W. (2022). An advance on nutritional profile, phytochemical profile, nutraceutical properties, and potential industrial applications of lemon peels: A comprehensive review. Trends in Food Science & Technology, 124, 219–236. https://doi.org/10.1016/j.tifs.2022.04.019 | |
| dc.relation.references | Khan, A. A., Alsahli, M. A., & Rahmani, A. H. (2018). Myeloperoxidase as an Active Disease Biomarker: Recent Biochemical and Pathological Perspectives. Medical Sciences, 6(2), 33. https://doi.org/10.3390/medsci6020033 | |
| dc.relation.references | Kim, J. J., Shajib, Md. S., Manocha, M. M., & Khan, W. I. (2012). Investigating Intestinal Inflammation in DSS-induced Model of IBD. Journal of Visualized Experiments, 60. https://doi.org/10.3791/3678 | |
| dc.relation.references | Kim, S. H., Shin, E. J., Hur, H. J., Park, J. H., Sung, M. J., Kwon, D. Y., & Hwang, J.-T. (2014). Citrus junos Tanaka peel extract attenuates experimental colitis and inhibits tumour growth in a mouse xenograft model. Journal of Functional Foods, 8, 301–308. https://doi.org/10.1016/j.jff.2014.03.024 | |
| dc.relation.references | Kim, Y.-M., Kim, H.-Y., Jang, J.-T., & Hong, S. (2023). Preventive Effect of Ecklonia cava Extract on DSS-Induced Colitis by Elevating Intestinal Barrier Function and Improving Pathogenic Inflammation. Molecules, 28(24), 8099. https://doi.org/10.3390/molecules28248099 | |
| dc.relation.references | KITAJIMA, S., TAKUMA, S., & MORIMOTO, M. (2000). Histological Analysis of Murine Colitis Induced by Dextran Sulfate Sodium of Different Molecular Weights. Experimental Animals, 49(1), 9–15. https://doi.org/10.1538/expanim.49.9 | |
| dc.relation.references | Kobus-Cisowska, J., Flaczyk, E., Rudzińska, M., & Kmiecik, D. (2014). Antioxidant properties of extracts from Ginkgo biloba leaves in meatballs. Meat Science, 97(2), 174–180. https://doi.org/10.1016/j.meatsci.2014.01.011 | |
| dc.relation.references | Kosari-Nasab, M., Shokouhi, G., Ghorbanihaghjo, A., Mesgari-Abbasi, M., & Salari, A.-A. (2019). Quercetin mitigates anxiety-like behavior and normalizes hypothalamus–pituitary–adrenal axis function in a mouse model of mild traumatic brain injury. Behavioural Pharmacology, 30(2 and 3), 282–289. https://doi.org/10.1097/FBP.0000000000000480 | |
| dc.relation.references | Kummer, R., Fachini-Queiroz, F. C., Estevão-Silva, C. F., Grespan, R., Silva, E. L., Bersani-Amado, C. A., & Cuman, R. K. N. (2013). Evaluation of anti-inflammatory activity of citrus latifolia Tanaka essential oil and limonene in experimental mouse models. Evidence-Based Complementary and Alternative Medicine, 2013. https://doi.org/10.1155/2013/859083 | |
| dc.relation.references | Kurowska, E. M., & Manthey, J. A. (2004). Hypolipidemic Effects and Absorption of Citrus Polymethoxylated Flavones in Hamsters with Diet-Induced Hypercholesterolemia. Journal of Agricultural and Food Chemistry, 52(10), 2879–2886. https://doi.org/10.1021/jf035354z | |
| dc.relation.references | Lang, Y., Gao, N., Zang, Z., Meng, X., Lin, Y., Yang, S., Yang, Y., Jin, Z., & Li, B. (2024). Classification and antioxidant assays of polyphenols: a review. Journal of Future Foods, 4(3), 193–204. https://doi.org/10.1016/j.jfutfo.2023.07.002 | |
| dc.relation.references | Ledesma-Escobar, C. A., Priego-Capote, F., & Luque de Castro, M. D. (2019). Relevance and Analysis of Citrus Flavonoids. In Polyphenols in Plants (pp. 133–150). Elsevier. https://doi.org/10.1016/B978-0-12-813768-0.00009-8 | |
| dc.relation.references | Lee, B., Yeom, M., Shim, I., Lee, H., & Hahm, D.-H. (2020). Protective Effects of Quercetin on Anxiety‐Like Symptoms and Neuroinflammation Induced by Lipopolysaccharide in Rats. Evidence-Based Complementary and Alternative Medicine, 2020(1). https://doi.org/10.1155/2020/4892415 | |
| dc.relation.references | Lee, J. H., Kim, Y.-S., & Leem, K. H. (2023). Citri Reticulatae Pericarpium Limits TLR-4-Triggered Inflammatory Response in Raw264.7 Macrophages by Activating RasGRP3. International Journal of Molecular Sciences, 24(18), 13777. https://doi.org/10.3390/ijms241813777 | |
| dc.relation.references | Lee, J.-E., Kim, K. S., Koh, H., Lee, D.-W., & Kang, N. J. (2022). Diet-Induced Host–Microbe Interactions: Personalized Diet Strategies for Improving Inflammatory Bowel Disease. Current Developments in Nutrition, 6(8), nzac110. https://doi.org/10.1093/cdn/nzac110 | |
| dc.relation.references | Lee, K. H., Ahn, B. S., Cha, D., Jang, W. W., Choi, E., Park, S., Park, J. H., Oh, J., Jung, D. E., Park, H., Park, J. H., Suh, Y., Jin, D., Lee, S., Jang, Y.-H., Yoon, T., Park, M.-K., Seong, Y., Pyo, J., … Kronbichler, A. (2020). Understanding the immunopathogenesis of autoimmune diseases by animal studies using gene modulation: A comprehensive review. Autoimmunity Reviews, 19(3), 102469. https://doi.org/10.1016/j.autrev.2020.102469 | |
| dc.relation.references | Lee, S. H., Lee, J. A., Shin, M.-R., Park, H.-J., & Roh, S.-S. (2022). Citrus unshiu Peel Attenuates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice due to Modulation of the PI3K/Akt Signaling Pathway and MAPK and NF-κB. Evidence-Based Complementary and Alternative Medicine, 2022, 1–13. https://doi.org/10.1155/2022/4041402 | |
| dc.relation.references | Li, L., Peng, P., Ding, N., Jia, W., Huang, C., & Tang, Y. (2023). Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants, 12(4), 967. https://doi.org/10.3390/antiox12040967 | |
| dc.relation.references | Li, X., Wang, Q., Wang, M., Liu, Y., Chen, L., Wang, F., & Chen, H. (2024). Integrated metabolomics and network pharmacology revealed the key active ingredients for the treatment of ulcerative colitis in the Citrus reticulata ‘Dahongpao’ peel. Journal of Pharmaceutical and Biomedical Analysis, 239, 115887. https://doi.org/10.1016/j.jpba.2023.115887 | |
| dc.relation.references | Liu, W., Zheng, W., Cheng, L., Li, M., Huang, J., Bao, S., Xu, Q., & Ma, Z. (2022). Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Natural Products and Bioprospecting, 12(1), 4. https://doi.org/10.1007/s13659-022-00325-4 | |
| dc.relation.references | Loria, V., Dato, I., Graziani, F., & Biasucci, LuigiM. (2008). Myeloperoxidase: A New Biomarker of Inflammation in Ischemic Heart Disease and Acute Coronary Syndromes. Mediators of Inflammation, 2008(1). https://doi.org/10.1155/2008/135625 | |
| dc.relation.references | Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), 220–230. https://doi.org/10.1038/nature11550 | |
| dc.relation.references | Ma, G., Zhang, L., Sugiura, M., & Kato, M. (2020). Citrus and health. In The Genus Citrus (pp. 495–511). Elsevier. https://doi.org/10.1016/B978-0-12-812163-4.00024-3 | |
| dc.relation.references | Maheshwaran, L., Nadarajah, L., Senadeera, S. P. N. N., Ranaweera, C. B., Chandana, A. K., & Pathirana, R. N. (2024). Phytochemical Testing Methodologies and Principles for Preliminary Screening/ Qualitative Testing. Asian Plant Research Journal, 12(5), 11–38. https://doi.org/10.9734/aprj/2024/v12i5267 | |
| dc.relation.references | Manthey, J. A., Grohmann, K., Montanari, A., Ash, K., & Manthey, C. L. (1999). Polymethoxylated Flavones Derived from Citrus Suppress Tumor Necrosis Factor-α Expression by Human Monocytes. Journal of Natural Products, 62(3), 441–444. https://doi.org/10.1021/np980431j | |
| dc.relation.references | Manthey, J. A., & Guthrie, N. (2002). Antiproliferative Activities of Citrus Flavonoids against Six Human Cancer Cell Lines. Journal of Agricultural and Food Chemistry, 50(21), 5837–5843. https://doi.org/10.1021/jf020121d | |
| dc.relation.references | Matić, P., Sabljić, M., & Jakobek, L. (2017). Validation of Spectrophotometric Methods for the Determination of Total Polyphenol and Total Flavonoid Content. Journal of AOAC INTERNATIONAL, 100(6), 1795–1803. https://doi.org/10.5740/jaoacint.17-0066 | |
| dc.relation.references | Medina F, S. DE. (2006). 5 FLAVONOIDES Y ENFERMEDAD INFLAMATORIA INTESTINAL FLAVONOIDES AND INFLAMMATORY BOWEL DISEASE Flavonoides y enfermedad inflamatoria intestinal Flavonoides and Infl ammatory bowel disease. In Ars Pharm (Vol. 47, Issue 1). | |
| dc.relation.references | Medina-Torres, N., Espinosa-Andrews, H., Trombotto, S., Ayora-Talavera, T., Patrón-Vázquez, J., González-Flores, T., Sánchez-Contreras, Á., Cuevas-Bernardino, J. C., & Pacheco, N. (2019). Ultrasound-Assisted Extraction Optimization of Phenolic Compounds from Citrus latifolia Waste for Chitosan Bioactive Nanoparticles Development. Molecules, 24(19). https://doi.org/10.3390/molecules24193541 | |
| dc.relation.references | Mir, H., Krouf, D., Taleb-Senouci, D., & Taleb-Dida, N. (2015). Combined Treatment with Sardine Proteins and Citrus latifolia Extract Corrects Dyslipidemia, Prevents Lipid Peroxidation and Improves Lecithin: Cholesterol Acyltransferase and Paraoxonase 1 Activities in Hypercholesterolemic Rats. British Journal of Applied Science & Technology, 7(2), 156–167. https://doi.org/10.9734/BJAST/2015/14848 | |
| dc.relation.references | Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7). https://doi.org/10.3390/ijms22073380 | |
| dc.relation.references | Murcia Riaño, N., Martínez, M. F., Orduz-Rodríguez, J. O., Ríos-Rojas, L., López Galé, Y., Yacomelo Hernández, M. J., Carabalí Muñoz, A., Kondo, T., García Muñoz, M. C., López González, J., Pérez Artiles, L., Rodríguez Mora, D. M., Montes Rodríguez, J. M., Betancourt Vásquez, M., Rodríguez Torres, I. V., Barreto Rojas, J. A., Tarazona Velásquez, R., Mateus Cagua, D. M., Velásquez Ramírez, H. A., … Mesa, N. C. (2020). Modelo productivo de lima ácida Tahití (Citrus × latifolia Tanaka ex Q. Jiménez) para Colombia. In Modelo productivo de lima ácida Tahití (Citrus × latifolia Tanaka ex Q. Jiménez) para Colombia. https://doi.org/10.21930/agrosavia.model.7403435 | |
| dc.relation.references | Murkovic, M. (2003). PHENOLIC COMPOUNDS. In Encyclopedia of Food Sciences and Nutrition (pp. 4507–4514). Elsevier. https://doi.org/10.1016/B0-12-227055-X/00914-7 | |
| dc.relation.references | Murkovic, M. (2016). Phenolic Compounds: Occurrence, Classes, and Analysis. In Encyclopedia of Food and Health (pp. 346–351). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00539-0 | |
| dc.relation.references | Nabeela Gulbadan Dar, A. H. G. M. P. and S. A. (2015). Evaluation of Different Techniques for Extraction of Antioxidants as Bioactive Compounds from Citrus Peels (Industrial by Products). American-Eurasian J. Agric. & Environ, 676–682. https://doi.org/10.5829/idosi.aejaes.2015.15.4.12604 | |
| dc.relation.references | Nascimento, R. de P. do, Machado, A. P. da F., Galvez, J., Cazarin, C. B. B., & Maróstica Junior, M. R. (2020). Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sciences, 258, 118129. https://doi.org/10.1016/j.lfs.2020.118129 | |
| dc.relation.references | Nomura, R., Tsuzuki, S., Kojima, T., Nagasawa, M., Sato, Y., Uefune, M., Baba, Y., Hayashi, T., Nakano, H., Kato, M., & Shimizu, M. (2022). Administration of Aspergillus oryzae suppresses DSS-induced colitis. Food Chemistry: Molecular Sciences, 4, 100063. https://doi.org/10.1016/j.fochms.2021.100063 | |
| dc.relation.references | NTC 4087. (1997). Frutas frescas. Lima Tahití: Especificaciones. | |
| dc.relation.references | Oliveira, A. M. B., Viganó, J., Sanches, V. L., Rostagno, M. A., & Martínez, J. (2022). Extraction of potential bioactive compounds from industrial Tahiti lime (Citrus latifólia Tan.) by-product using pressurized liquids and ultrasound-assisted extraction. Food Research International, 157, 111381. https://doi.org/10.1016/j.foodres.2022.111381 | |
| dc.relation.references | Pan, M.-H., Lai, C.-S., & Ho, C.-T. (2010). Anti-inflammatory activity of natural dietary flavonoids. Food & Function, 1(1), 15. https://doi.org/10.1039/c0fo00103a | |
| dc.relation.references | Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41 | |
| dc.relation.references | Pasdaran, A., Hamedi, A., Shiehzadeh, S., & Hamedi, A. (2023). A review of citrus plants as functional foods and dietary supplements for human health, with an emphasis on meta-analyses, clinical trials, and their chemical composition. Clinical Nutrition ESPEN, 54, 311–336. https://doi.org/10.1016/j.clnesp.2023.02.001 | |
| dc.relation.references | Patil, K. R., Mahajan, U. B., Unger, B. S., Goyal, S. N., Belemkar, S., Surana, S. J., Ojha, S., & Patil, C. R. (2019). Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. International Journal of Molecular Sciences, 20(18), 4367. https://doi.org/10.3390/ijms20184367 | |
| dc.relation.references | Pellino, G., Keller, D. S., Sampietro, G. M., Annese, V., Carvello, M., Celentano, V., Coco, C., Colombo, F., Cracco, N., Di Candido, F., Franceschi, M., Laureti, S., Mattioli, G., Pio, L., Sciaudone, G., Sica, G., Villanacci, V., Zinicola, R., Leone, S., … Selvaggi, F. (2020). Inflammatory bowel disease (IBD) position statement of the Italian Society of Colorectal Surgery (SICCR): general principles of IBD management. Techniques in Coloproctology, 24(2), 105–126. https://doi.org/10.1007/s10151-019-02145-0 | |
| dc.relation.references | Pereira, C., Grácio, D., Teixeira, J. P., & Magro, F. (2015). Oxidative Stress and DNA Damage. Inflammatory Bowel Diseases, 1. https://doi.org/10.1097/MIB.0000000000000506 | |
| dc.relation.references | Racowski, I., Piotto, J., Procópio, V., & Freire, V. (2017). Evaluation of Antimicrobial Activity and Phytochemical Analysis of Thaiti Lemon Peels (Citrus latifolia Tanaka). Journal of Microbiology Research, 2017(2), 39–44. https://doi.org/10.5923/j.microbiology.20170702.03 | |
| dc.relation.references | Rastogi, R. P., Singh, S. P., Häder, D.-P., & Sinha, R. P. (2010). Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochemical and Biophysical Research Communications, 397(3), 603–607. https://doi.org/10.1016/j.bbrc.2010.06.006 | |
| dc.relation.references | Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). ANTIOXIDANT ACTIVITY APPLYING AN IMPROVED ABTS RADICAL CATION DECOLORIZATION ASSAY | |
| dc.relation.references | Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de los Reyes-Gavilán, C. G., & Salazar, N. (2016). Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00185 | |
| dc.relation.references | Rodrigues, E., Poerner, N., Rockenbach, I. I., Gonzaga, L. V., Mendes, C. R., & Fett, R. (2011). Phenolic compounds and antioxidant activity of blueberry cultivars grown in Brazil. Food Science and Technology (Campinas), 31(4), 911–917. https://doi.org/10.1590/S0101-20612011000400013 | |
| dc.relation.references | Ruviaro, A. R., Barbosa, P. de P. M., Martins, I. M., de Ávila, A. R. A., Nakajima, V. M., Dos Prazeres, A. R., Macedo, J. A., & Macedo, G. A. (2020). Flavanones biotransformation of citrus by-products improves antioxidant and ACE inhibitory activities in vitro. Food Bioscience, 38, 100787. https://doi.org/10.1016/j.fbio.2020.100787 | |
| dc.relation.references | Sánchez, C. R., Pinzón, M., Gupta, M., & L. Del Barrio. (1995). Manual de técnicas de investigación, programa iberoamericano de ciencia y tecnología para el desarrollo, subprograma X. Química fina Farmacéutica proyecto X-Búsqueda de principios bioactivos en plantas medicinales de la región (CYTED). | |
| dc.relation.references | Sauer, P., Luft, V. C., & Dall’Alba, V. (2024). Patients with Inflammatory Bowel Disease who regularly consume fruits and vegetables present lower prevalence of disease activation: A cross-sectional study. Clinical Nutrition ESPEN, 61, 420–426. https://doi.org/10.1016/j.clnesp.2024.04.010 | |
| dc.relation.references | Schaich, K. M., Tian, X., & Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. Journal of Functional Foods, 14, 111–125. https://doi.org/10.1016/j.jff.2015.01.043 | |
| dc.relation.references | Shan, Y. (2016). Isolation and Structural Identification of Flavonoids From Citrus. In Comprehensive Utilization of Citrus By-Products (pp. 59–64). Elsevier. https://doi.org/10.1016/B978-0-12-809785-4.00004-6 | |
| dc.relation.references | Sharma, K., Mahato, N., Cho, M. H., & Lee, Y. R. (2017). Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition, 34, 29–46. https://doi.org/10.1016/j.nut.2016.09.006 | |
| dc.relation.references | Sienes Bailo, P., Llorente Martín, E., Calmarza, P., Montolio Breva, S., Bravo Gómez, A., Pozo Giráldez, A., Sánchez-Pascuala Callau, J. J., Vaquer Santamaría, J. M., Dayaldasani Khialani, A., Cerdá Micó, C., Camps Andreu, J., Sáez Tormo, G., & Fort Gallifa, I. (2022). The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. Advances in Laboratory Medicine / Avances En Medicina de Laboratorio, 3(4), 342–350. https://doi.org/10.1515/almed-2022-0111 | |
| dc.relation.references | Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2020). Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International, 132(February), 109114. https://doi.org/10.1016/j.foodres.2020.109114 | |
| dc.relation.references | Singh, B., Singh, J. P., Kaur, A., & Yadav, M. P. (2021). Insights into the chemical composition and bioactivities of citrus peel essential oils. Food Research International, 143(July 2020), 110231. https://doi.org/10.1016/j.foodres.2021.110231 | |
| dc.relation.references | Slinkard, K., & Singleton, V. L. (1977). Total Phenol Analysis: Automation and Comparison with Manual Methods. American Journal of Enology and Viticulture, 28(1), 49–55. https://doi.org/10.5344/ajev.1977.28.1.49 | |
| dc.relation.references | Soares, C. L. R., Wilairatana, P., Silva, L. R., Moreira, P. S., Vilar Barbosa, N. M. M., da Silva, P. R., Coutinho, H. D. M., de Menezes, I. R. A., & Felipe, C. F. B. (2023). Biochemical aspects of the inflammatory process: A narrative review. Biomedicine & Pharmacotherapy, 168, 115764. https://doi.org/10.1016/j.biopha.2023.115764 | |
| dc.relation.references | Soloway, S., & Wilen, S. H. (1952). Improved Ferric Chloride Test for Phenols. Analytical Chemistry, 24(6), 979–983. https://doi.org/10.1021/ac60066a017 | |
| dc.relation.references | Stevens, Y. R. A. J. (2022). Nutritional strategies to improve gastrointestinal and metabolic health [maastricht university]. https://doi.org/10.26481/dis.20220714ys | |
| dc.relation.references | Stevens, Y., Rymenant, E. Van, Grootaert, C., Camp, J. Van, Possemiers, S., Masclee, A., & Jonkers, D. (2019). The Intestinal Fate of Citrus Flavanones and Their Effects on Gastrointestinal Health. Nutrients, 11(7), 1464. https://doi.org/10.3390/nu11071464 | |
| dc.relation.references | Tang, W., Zhang, Z., Nie, D., Li, Y., Liu, S., & Li, Y. (2023). Protective Effect of Citrus Medica limonum Essential Oil against Escherichia coli K99-Induced Intestinal Barrier Injury in Mice. Nutrients, 15(12), 2697. https://doi.org/10.3390/nu15122697 | |
| dc.relation.references | Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6–7), 669–675. https://doi.org/10.1016/j.jfca.2006.01.003 | |
| dc.relation.references | Tinh, N. T. T., Sitolo, G. C., Yamamoto, Y., & Suzuki, T. (2021). Citrus limon Peel Powder Reduces Intestinal Barrier Defects and Inflammation in a Colitic Murine Experimental Model. Foods, 10(2), 240. https://doi.org/10.3390/foods10020240 | |
| dc.relation.references | Tisserand, R., & Young, R. (2014). Essential oil profiles. In Essential Oil Safety (pp. 187–482). Elsevier. https://doi.org/10.1016/B978-0-443-06241-4.00013-8 | |
| dc.relation.references | Tran, T. K. N., Ngo, T. C. Q., Tran, T. H., Bach, L. G., Tran, T. T., & Huynh, X. P. (2021a). Comparison of volatile compounds and antibacterial activity of Citrus aurantifolia, Citrus latifolia, and Citrus hystrix shell essential oils by pilot extraction. IOP Conference Series: Materials Science and Engineering, 1092(1), 012076. https://doi.org/10.1088/1757-899X/1092/1/012076 | |
| dc.relation.references | Tran, T. K. N., Ngo, T. C. Q., Tran, T. H., Tran, T. T., Huynh, X. P., Do, V. D., Nguyen, K. T., Nguyen, M. V, & Bach, L. G. (2020). Yields and Composition of Persian Lime Essential Oils (Citrus latifolia) from Hau Giang province, Vietnam extracted by Three Different Extraction Methods. IOP Conference Series: Materials Science and Engineering, 991(1), 012130. https://doi.org/10.1088/1757-899X/991/1/012130 | |
| dc.relation.references | Tran, T. K. N., Ngo, T. C. Q., Tran, T. H., Tran, T. T., Huynh, X. P., Do, V. D., Nguyen, K. T., Nguyen, M. V, & Bach, L. G. (2020). Yields and Composition of Persian Lime Essential Oils (Citrus latifolia) from Hau Giang province, Vietnam extracted by Three Different Extraction Methods. IOP Conference Series: Materials Science and Engineering, 991(1), 012130. https://doi.org/10.1088/1757-899X/991/1/012130 | |
| dc.relation.references | van der Beek, C. M., Dejong, C. H. C., Troost, F. J., Masclee, A. A. M., & Lenaerts, K. (2017). Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutrition Reviews, 75(4), 286–305. https://doi.org/10.1093/nutrit/nuw067 | |
| dc.relation.references | Vora, L. K., Gholap, A. D., Hatvate, N. T., Naren, P., Khan, S., Chavda, V. P., Balar, P. C., Gandhi, J., & Khatri, D. K. (2024). Essential oils for clinical aromatherapy: A comprehensive review. Journal of Ethnopharmacology, 330, 118180. https://doi.org/10.1016/j.jep.2024.118180 | |
| dc.relation.references | Wang, C., Bai, J., Wang, B., Yu, L., Tian, F., Zhao, J., Zhang, H., Suo, H., Chen, W., & Zhai, Q. (2023). Stachyose modulates gut microbiota and alleviates DSS-induced ulcerative colitis in mice. Food Science and Human Wellness, 12(6), 2211–2220. https://doi.org/10.1016/j.fshw.2023.03.041 | |
| dc.relation.references | Wirtz, S., Neufert, C., Weigmann, B., & Neurath, M. F. (2007). Chemically induced mouse models of intestinal inflammation. Nature Protocols, 2(3), 541–546. https://doi.org/10.1038/nprot.2007.41 | |
| dc.relation.references | Wollenweber, E. (1983). Techniques of flavonoid identification: Phytochemistry, 22(5), 1310. https://doi.org/10.1016/0031-9422(83)80259-3 | |
| dc.relation.references | Xu, D., Liu, D., Jiang, N., Xie, Y., He, D., Cheng, J., Liu, J., Fu, S., & Hu, G. (2024). Narirutin mitigates dextrose sodium sulfate-induced colitis in mice by modulating intestinal flora. Phytomedicine, 130, 155730. https://doi.org/10.1016/j.phymed.2024.155730 | |
| dc.relation.references | Yang, J., Lee, S.-Y., Jang, S.-K., Kim, K.-J., & Park, M.-J. (2023). Anti-Inflammatory Effects of Essential Oils from the Peels of Citrus Cultivars. Pharmaceutics, 15(6), 1595. https://doi.org/10.3390/pharmaceutics15061595 | |
| dc.relation.references | Yang, J., & Park, M.-J. (2025). Antioxidant Effects of Essential Oils from the Peels of Citrus Cultivars. Molecules, 30(4), 833. https://doi.org/10.3390/molecules30040833 | |
| dc.relation.references | Yang, Y., Zhang, Y., Song, J., Li, Y., Zhou, L., Xu, H., Wu, K., Gao, J., Zhao, M., & Zheng, Y. (2023). Bergamot polysaccharides relieve DSS-induced ulcerative colitis via regulating the gut microbiota and metabolites. International Journal of Biological Macromolecules, 253, 127335. https://doi.org/10.1016/j.ijbiomac.2023.127335 | |
| dc.relation.references | Zhang, S., Ding, C., Liu, X., Zhao, Y., Li, S., Ding, Q., Zhao, T., Ma, S., Li, W., & Liu, W. (2024). New resource food-arabinogalactan improves DSS-induced acute colitis through intestinal flora and NLRP3 signaling pathway. International Journal of Biological Macromolecules, 258, 129118. https://doi.org/10.1016/j.ijbiomac.2023.129118 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.agrovoc | Citrus | |
| dc.subject.agrovoc | Citrus | |
| dc.subject.agrovoc | Propiedad antioxidante | |
| dc.subject.agrovoc | antioxidant properties | |
| dc.subject.agrovoc | Antinflamatorio | |
| dc.subject.agrovoc | antiinflammatory agents | |
| dc.subject.agrovoc | Aceite vegetal | |
| dc.subject.agrovoc | plant oils | |
| dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | |
| dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | |
| dc.subject.proposal | Actividad antioxidante | spa |
| dc.subject.proposal | Actividad antinflamatoria | spa |
| dc.subject.proposal | Enfermedad inflamatoria intestinal | spa |
| dc.subject.proposal | Colitis ulcerosa | spa |
| dc.subject.proposal | Citrus x latifolia | spa |
| dc.subject.proposal | Compuestos fenólicos | spa |
| dc.subject.proposal | Modelo murino | spa |
| dc.subject.proposal | Antioxidant activity | eng |
| dc.subject.proposal | Anti-inflamatory activity | eng |
| dc.subject.proposal | Inflammatory bowel disease | eng |
| dc.subject.proposal | Ulcerative colitis | eng |
| dc.subject.proposal | Citrus x latifolia | eng |
| dc.subject.proposal | Phenolic compounds | eng |
| dc.subject.proposal | Murine model | eng |
| dc.title | Contribución al estudio de actividad antioxidante y antiinflamatoria intestinal del aceite esencial y extracto del mesocarpio de lima ácida Tahití Citrus x latifolia producida en el departamento de Nariño | spa |
| dc.title.translated | Contribution to the Study of Antioxidant and Intestinal Anti-Inflammatory Activity of Essential Oil and Mesocarp Extract from Tahiti Lime (Citrus x latifolia) Produced in the Department of Nariño | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
| oaire.fundername | Desarrollo de microencapsulados a partir del aprovechamiento completo del limón Tahití producido en el departamento de Nariño | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1085338746_2025.pdf
- Tamaño:
- 2.8 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Farmacéuticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

