Descripción morfofuncional de la histología del miocardio

dc.contributor.advisorClavijo Grimaldo, Aleida Dianeyspa
dc.contributor.authorSaavedra Torres, Nicolas Eduardospa
dc.contributor.cvlacSAAVEDRA TORRES, NICOLÁS EDUARDO [spa
dc.contributor.googlescholarNE Saavedra Torresspa
dc.contributor.orcidSaavedra Torres, Nicolás Eduardo [0009-0009-2125-0547]spa
dc.date.accessioned2024-01-15T18:10:03Z
dc.date.available2024-01-15T18:10:03Z
dc.date.issued2023
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractLa enfermedad cardiovascular, especialmente la enfermedad isquémica del corazón tiene importantes repercusiones funcionales y económicas, por lo que se busca desarrollar terapias regenerativas para restaurar el tejido dañado. La Ingeniería de Tejidos es un campo multidisciplinario que utiliza herramientas como biomateriales, células y tecnologías de fabricación para crear estructuras que promuevan la regeneración del tejido. El estudio realizado es una monografía que recopila y analiza la literatura científica de los últimos 10 años sobre la histología del miocardio, el acople electromecánico y los avances en Ingeniería de Tejidos para abordar las complicaciones derivadas del infarto al miocardio. En el caso del corazón, el estudio de la histología es esencial para entender el proceso de infarto y desarrollar estrategias de regeneración. La Ingeniería de Tejidos cardiaca ha avanzado en terapias regenerativas basadas en células y parches cardiacos, aunque aún enfrenta desafíos como el acople electromecánico. A pesar de estos desafíos, la Ingeniería de Tejidos cardiaca ofrece esperanza para mejorar la función cardíaca en pacientes con infarto al miocardio. (Texto tomado de la fuente)spa
dc.description.abstractCardiovascular disease, especially ischemic heart disease, has significant functional and economic repercussions, prompting the search for regenerative therapies to restore damaged tissue. Tissue Engineering is a multidisciplinary field that employs tools such as biomaterials, cells, and manufacturing technologies to create structures that promote tissue regeneration. The study conducted is a monograph that compiles and analyzes scientific literature from the last 10 years on myocardial histology, electromechanical coupling, and advances in Tissue Engineering to address complications arising from myocardial infarction. In the case of the heart, the study of histology is essential to understand the infarction process and develop regeneration strategies. Cardiac Tissue Engineering has made progress in cell-based regenerative therapies and cardiac patches, although it still faces challenges such as electromechanical coupling. Despite these hurdles, cardiac Tissue Engineering offers hope for improving cardiac function in patients with myocardial infarction.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Morfología Humanaspa
dc.format.extentxix, 67 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85285
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Morfología Humanaspa
dc.relation.referencesAbraham, K., & Laura, T. (2016). HISTOLOGÍA Y BIOLOGÍA CELULAR Introducción a la anatomía patológica (Cuarta, Vol. 1). Elsevier España.spa
dc.relation.referencesAlhejailan, R., Garoffolo, G., Raveendran, V., & Pesce, M. (2023). Cells and Materials for Cardiac Repair and Regeneration. Journal of Clinical Medicine, 12(10), 3398. https://doi.org/10.3390/jcm12103398spa
dc.relation.referencesAlmeida, H. V., Tenreiro, M. F., Louro, A. F., Abecasis, B., Santinha, D., Calmeiro, T., Fortunato, E., Ferreira, L., Alves, P. M., & Serra, M. (2021). Human Extracellular-Matrix Functionalization of 3D hiPSC-Based Cardiac Tissues Improves Cardiomyocyte Maturation. ACS Applied Bio Materials, 4(2), 1888–1899. https://doi.org/10.1021/acsabm.0c01490spa
dc.relation.referencesBarresi, M. J. F., & Gilbert, S. F. (2020). Developmental biology (12th ed.). Oxford University Press.spa
dc.relation.referencesBassat, E., Mutlak, Y. E., Genzelinakh, A., Shadrin, I. Y., Baruch Umansky, K., Yifa, O., Kain, D., Rajchman, D., Leach, J., Riabov Bassat, D., Udi, Y., Sarig, R., Sagi, I., Martin, J. F., Bursac, N., Cohen, S., & Tzahor, E. (2017). The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547(7662), 179–184. https://doi.org/10.1038/nature22978spa
dc.relation.referencesBeleño Acosta, B., Advincula, R. C., & Grande-Tovar, C. D. (2023). Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review. Molecules, 28(4), 1920. https://doi.org/10.3390/molecules28041920spa
dc.relation.referencesBrandenburg, S., Arakel, E. C., Schwappach, B., & Lehnart, S. E. (2016). The molecular and functional identities of atrial cardiomyocytes in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(7), 1882–1893. https://doi.org/10.1016/j.bbamcr.2015.11.025spa
dc.relation.referencesBraz, J. K. F. S., Freitas, M. L., Magalhães, M. S., Oliveira, M. F., Costa, M. S. M. O., Resende, N. S., Clebis, N. K., Silva, N. B., & Moura, C. E. B. (2016). Histology and Immunohistochemistry of the Cardiac Ventricular Structure in the Green Turtle (Chelonia mydas). Anatomia, Histologia, Embryologia, 45(4), 277–284. https://doi.org/10.1111/ahe.12195spa
dc.relation.referencesCaro, L. (2013). La biología del desarrollo, heredera de la embriología clásica. Morfolia. Portal de Revistas UN, 5.spa
dc.relation.referencesDai, G., Aman, T. K., DiMaio, F., & Zagotta, W. N. (2021). Electromechanical coupling mechanism for activation and inactivation of an HCN channel. Nature Communications, 12(1), 2802. https://doi.org/10.1038/s41467-021-23062-7spa
dc.relation.referencesDANE. (2022). Estadísticas Vitales (EEVV) Boletín Técnico. Boletín Técnico.spa
dc.relation.referencesDe Almeida, M. C., Spicer, D. E., & Anderson, R. H. (2019). Why do we break one of the first rules of anatomy when describing the components of the heart? Clinical Anatomy, 32(4), 585–596. https://doi.org/10.1002/ca.23356spa
dc.relation.referencesDe Boer, J. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7spa
dc.relation.referencesDe Pieri, A., Rochev, Y., & Zeugolis, D. I. (2021). Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. Npj Regenerative Medicine, 6(1), 18. https://doi.org/10.1038/s41536-021-00133-3spa
dc.relation.referencesDrake, R. L. (Richard L., Vogl, W., Mitchell, A. W. M., & Gray, H. (2021). Gray’s anatomy for students.spa
dc.relation.referencesEscobar Díaz, G. L., Orozco Molina, A. M., Núñez Montes, J. R., & Muñoz, F. L. (2022). Mortality from Cardiovascular Diseases in Colombia. An analysis of public policies. Salud Uninorte, 36(3), 558–570. https://doi.org/10.14482/sun.36.3.616.12spa
dc.relation.referencesFawcett, D. W., & McNutt, N. S. (1969). THE ULTRASTRUCTURE OF THE CAT MYOCARDIUM. The Journal of Cell Biology, 42(1), 1–45. https://doi.org/10.1083/jcb.42.1.1spa
dc.relation.referencesFernández-Avilés, F., Sanz-Ruiz, R., Climent, A. M., Badimon, L., Bolli, R., Charron, D., Fuster, V., Janssens, S., Kastrup, J., Kim, H.-S., Lüscher, T. F., Martin, J. F., Menasché, P., Simari, R. D., Stone, G. W., Terzic, A., Willerson, J. T., Wu, J. C., Fernández-Avilés, F., … Ylä-Herttuala, S. (2017). Global position paper on cardiovascular regenerative medicine. European Heart Journal, 38(33), 2532–2546. https://doi.org/10.1093/eurheartj/ehx248spa
dc.relation.referencesFrangogiannis, N. G. (2017). The extracellular matrix in myocardial injury, repair, and remodeling. Journal of Clinical Investigation, 127(5), 1600–1612. https://doi.org/10.1172/JCI87491spa
dc.relation.referencesGartner, L., & Hiatt, J. (2018). Histologia básica (7th ed.). WOLTERS KLUWER.spa
dc.relation.referencesGeorgiadis, V., Knight, R. A., Jayasinghe, S. N., & Stephanou, A. (2014). Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integr. Biol., 6(2), 111–126. https://doi.org/10.1039/C3IB40097Bspa
dc.relation.referencesGODBEY, W. T., & ATALA, A. (2002). In Vitro Systems for Tissue Engineering. Annals of the New York Academy of Sciences, 961(1), 10–26. https://doi.org/10.1111/j.1749-6632.2002.tb03041.xspa
dc.relation.referencesGómez-Torres, F. A., Sebastian, R., & Ruíz-Sauri, A. (2020). Morphometry and comparative histology of sinus and atrioventricular nodes in humans and pigs and their relevance in the prevention of nodal arrhythmias. Research in Veterinary Science, 128, 275–285. https://doi.org/10.1016/j.rvsc.2019.12.008spa
dc.relation.referencesHarrison, T., & Petersdorf, R. (2015). Harrison: Principios de medicina interna (17th ed., Vol. 2). McGraw Hill.spa
dc.relation.referencesHashimoto, H., Olson, E. N., & Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 15(10), 585–600. https://doi.org/10.1038/s41569-018-0036-6spa
dc.relation.referencesHollister, S. J. (2009). Scaffold Design and Manufacturing: From Concept to Clinic. Advanced Materials, 21(32–33), 3330–3342. https://doi.org/10.1002/adma.200802977spa
dc.relation.referencesHu, S., Mi, L., Fu, J., Ma, W., Ni, J., Zhang, Z., Li, B., Guan, G., Wang, J., & Zhao, N. (2022). Model Embraced Electromechanical Coupling Time for Estimation of Heart Failure in Patients With Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.895035spa
dc.relation.referencesInamdar, N. K., & Borenstein, J. T. (2011). Microfluidic cell culture models for tissue engineering. Current Opinion in Biotechnology, 22(5), 681–689. https://doi.org/10.1016/j.copbio.2011.05.512spa
dc.relation.referencesInternational Organization for Standardization. (2020). General requirements of tissue-engineered medical product.spa
dc.relation.referencesKalkhoran, S. B., Munro, P., Qiao, F., Ong, S.-B., Hall, A. R., Cabrera-Fuentes, H., Chakraborty, B., Boisvert, W. A., Yellon, D. M., & Hausenloy, D. J. (2017). Unique morphological characteristics of mitochondrial subtypes in the heart: the effect of ischemia and ischemic preconditioning. Discoveries, 5(1), e71. https://doi.org/10.15190/d.2017.1spa
dc.relation.referencesKane, C., & Terracciano, C. M. N. (2017). Concise Review: Criteria for Chamber-Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells. Stem Cells, 35(8), 1881–1897. https://doi.org/10.1002/stem.2649spa
dc.relation.referencesKesharwani, R. (2022). Tissue Engineering Applications and Advancements (1st ed., Vol. 1).spa
dc.relation.referencesKupfer, M. E., Lin, W.-H., Ravikumar, V., Qiu, K., Wang, L., Gao, L., Bhuiyan, D. B., Lenz, M., Ai, J., Mahutga, R. R., Townsend, D., Zhang, J., McAlpine, M. C., Tolkacheva, E. G., & Ogle, B. M. (2020). In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid. Circulation Research, 127(2), 207–224. https://doi.org/10.1161/CIRCRESAHA.119.316155spa
dc.relation.referencesLavery, D. L., Martin, J., Turnbull, Y. D., & Hoppler, S. (2008). Wnt6 signaling regulates heart muscle development during organogenesis. Developmental Biology, 323(2), 177–188. https://doi.org/10.1016/j.ydbio.2008.08.032spa
dc.relation.referencesLoukas, M., Youssef, P., Gielecki, J., Walocha, J., Natsis, K., & Tubbs, R. S. (2016). History of cardiac anatomy: A comprehensive review from the egyptians to today. Clinical Anatomy, 29(3), 270–284. https://doi.org/10.1002/ca.22705spa
dc.relation.referencesLynch, C. R., Kondiah, P. P. D., & Choonara, Y. E. (2021). Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules, 26(9), 2518. https://doi.org/10.3390/molecules26092518spa
dc.relation.referencesMaitra, M., Schluterman, M. K., Nichols, H. A., Richardson, J. A., Lo, C. W., Srivastava, D., & Garg, V. (2009). Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Developmental Biology, 326(2), 368–377. https://doi.org/10.1016/j.ydbio.2008.11.004spa
dc.relation.referencesMaji, S., & Lee, H. (2022). Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences, 23(5), 2662. https://doi.org/10.3390/ijms23052662spa
dc.relation.referencesMarchianò, S., Bertero, A., & Murry, C. E. (2019). Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatric Cardiology, 40(7), 1367–1387. https://doi.org/10.1007/s00246-019-02165-5spa
dc.relation.referencesMarunouchi, T., & Tanonaka, K. (2015). Cell Death in the Cardiac Myocyte. Biological & Pharmaceutical Bulletin, 38(8), 1094–1097. https://doi.org/10.1248/bpb.b15-00288spa
dc.relation.referencesMattes, W. B. (2020). In vitro to in vivo translation. Current Opinion in Toxicology, 23–24, 114–118. https://doi.org/10.1016/j.cotox.2020.09.001spa
dc.relation.referencesMéndez-Muñoz, P. C., Martínez-Espitia, E., Paba-Rojas, C. E., Rodríguez-Perdomo, J., & Silva-Hernández, L. M. (2020). Mortalidad por enfermedad isquémica cardiaca según variables sociodemográficas en Bogotá, Colombia. Revista Salud Bosque, 10(1). https://doi.org/10.18270/rsb.v10i1.2828spa
dc.relation.referencesMori, S., Spicer, D. E., & Anderson, R. H. (2016). Revisiting the Anatomy of the Living Heart. Circulation Journal, 80(1), 24–33. https://doi.org/10.1253/circj.CJ-15-1147spa
dc.relation.referencesMori, S., Tretter, J. T., Spicer, D. E., Bolender, D. L., & Anderson, R. H. (2019). What is the real cardiac anatomy? Clinical Anatomy, 32(3), 288–309. https://doi.org/10.1002/ca.23340spa
dc.relation.referencesMouthuy, P.-A., Groszkowski, L., & Ye, H. (2015). Performances of a portable electrospinning apparatus. Biotechnology Letters, 37(5), 1107–1116. https://doi.org/10.1007/s10529-014-1760-6spa
dc.relation.referencesO’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-Xspa
dc.relation.referencesOlaopa, M., Zhou, H., Snider, P., Wang, J., Schwartz, R. J., Moon, A. M., & Conway, S. J. (2011). Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Developmental Biology, 356(2), 308–322. https://doi.org/10.1016/j.ydbio.2011.05.583spa
dc.relation.referencesOPS. (2021). La carga de las enfermedades cardiovasculares en la Región de las Américas, 2000-2019. Portal de Datos de NMH. Organización Panamericana de La Salud.spa
dc.relation.referencesPatel, P., & Karch, J. (2020). Regulation of cell death in the cardiovascular system (pp. 153–209). https://doi.org/10.1016/bs.ircmb.2019.11.005spa
dc.relation.referencesPayne, S., Burney, M. J., McCue, K., Popal, N., Davidson, S. M., Anderson, R. H., & Scambler, P. J. (2015). A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development. Developmental Biology, 405(1), 82–95. https://doi.org/10.1016/j.ydbio.2015.06.017spa
dc.relation.referencesPfeiffer, E. R., Tangney, J. R., Omens, J. H., & McCulloch, A. D. (2014). Biomechanics of Cardiac Electromechanical Coupling and Mechanoelectric Feedback. Journal of Biomechanical Engineering, 136(2). https://doi.org/10.1115/1.4026221spa
dc.relation.referencesPina, S., Ribeiro, V. P., Marques, C. F., Maia, F. R., Silva, T. H., Reis, R. L., & Oliveira, J. M. (2019). Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 12(11), 1824. https://doi.org/10.3390/ma12111824spa
dc.relation.referencesQuijada, P., Trembley, M. A., & Small, E. M. (2020). The Role of the Epicardium During Heart Development and Repair. Circulation Research, 126(3), 377–394. https://doi.org/10.1161/CIRCRESAHA.119.315857spa
dc.relation.referencesRadisic, M., & Christman, K. L. (2013). Materials Science and Tissue Engineering: Repairing the Heart. Mayo Clinic Proceedings, 88(8), 884–898. https://doi.org/10.1016/j.mayocp.2013.05.003spa
dc.relation.referencesRey, C., García-Cendón, C., Martínez-Camblor, P., López-Herce, J., Concha-Torre, A., Medina, A., Vivanco-Allende, A., & Mayordomo-Colunga, J. (2016). Asociación de valores elevados de péptido natriurético auricular y copeptina con riesgo de mortalidad. Anales de Pediatría, 85(6), 284–290. https://doi.org/10.1016/j.anpedi.2016.02.002spa
dc.relation.referencesRoa, D., & Quitian, R. (2016). SITUACIÓN ACTUAL DE LA INGENIERIA DE TEJIDOS Y MEDICINA REGENERATIVA EN COLOMBIA [Tesis]. UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES U.D.C.Aspa
dc.relation.referencesRobert, L. (2014). Principles of Tissue Engineering. Elsevier. https://doi.org/10.1016/C2011-0-07193-4spa
dc.relation.referencesRobison, P., & Prosser, B. L. (2017). Microtubule mechanics in the working myocyte. The Journal of Physiology, 595(12), 3931–3937. https://doi.org/10.1113/JP273046spa
dc.relation.referencesRoss, M., & Pawlina, W. (2016). Histology: A Text and Atlas. With Correlated Cell and Molecular Biology (Septima, Vol. 1). Wolters Kluwer.spa
dc.relation.referencesSaldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., & Badylak, S. F. (2017). Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia, 49, 1–15. https://doi.org/10.1016/j.actbio.2016.11.068spa
dc.relation.referencesSalem, T., Frankman, Z., & Churko, J. M. (2022). Tissue Engineering Techniques for Induced Pluripotent Stem Cell Derived Three-Dimensional Cardiac Constructs. Tissue Engineering Part B: Reviews, 28(4), 891–911. https://doi.org/10.1089/ten.teb.2021.0088spa
dc.relation.referencesSavova, K., Yordanova, P., Dimitrov, D., Tsenov, S., Trendafilov, D., & Georgieva, B. (2017). Light Microscopic Morphological Characteristics and Data on the Ultrastructure of the Cardiomyocytes. Academia Anatomica International, 3(2). https://doi.org/10.21276/aanat.2017.3.2.2spa
dc.relation.referencesScott, J. (2021). Publisher: Jeremy Bowes Senior Content Development Specialist: Trinity Hutton Deputy Content Development Manager. https://doi.org/10.1016/B978-0-7020-7705-0.09001-7spa
dc.relation.referencesSharma, V., Dash, S. K., Govarthanan, K., Gahtori, R., Negi, N., Barani, M., Tomar, R., Chakraborty, S., Mathapati, S., Bishi, D. K., Negi, P., Dua, K., Singh, S. K., Gundamaraju, R., Dey, A., Ruokolainen, J., Thakur, V. K., Kesari, K. K., Jha, N. K., … Ojha, S. (2021). Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells, 10(10), 2538. https://doi.org/10.3390/cells10102538spa
dc.relation.referencesSimon, C. G., Yaszemski, M. J., Ratcliffe, A., Tomlins, P., Luginbuehl, R., & Tesk, J. A. (2015). ASTM international workshop on standards and measurements for tissue engineering scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(5), 949–959. https://doi.org/10.1002/jbm.b.33286spa
dc.relation.referencesSun, J., Vijayavenkataraman, S., & Liu, H. (2017). An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus. Materials, 10(1), 29. https://doi.org/10.3390/ma10010029spa
dc.relation.referencesSzczepanek, E., Jasińska, K. A., Godula, D., Kucharska, E., Walocha, J., & Mazur, M. (2020). Correct human cardiac nomenclature. Folia Medica Cracoviensia, 60(1), 103–113. https://doi.org/10.24425/fmc.2020.133491spa
dc.relation.referencesTzahor, E., & Poss, K. D. (2017). Cardiac regeneration strategies: Staying young at heart. Science, 356(6342), 1035–1039. https://doi.org/10.1126/science.aam5894spa
dc.relation.referencesUquillas, J., & Malik, N. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7spa
dc.relation.referencesValdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To Scaffold, or Not to Scaffold, That Is the Question. International Journal of Molecular Sciences, 22(23), 12690. https://doi.org/10.3390/ijms222312690spa
dc.relation.referencesWang, F., & Guan, J. (2010). Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy☆. Advanced Drug Delivery Reviews, 62(7–8), 784–797. https://doi.org/10.1016/j.addr.2010.03.001spa
dc.relation.referencesWang, Z., Lee, S. J., Cheng, H.-J., Yoo, J. J., & Atala, A. (2018). 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomaterialia, 70, 48–56. https://doi.org/10.1016/j.actbio.2018.02.007spa
dc.relation.referencesYu, D., Wang, X., & Ye, L. (2021). Cardiac Tissue Engineering for the Treatment of Myocardial Infarction. Journal of Cardiovascular Development and Disease, 8(11), 153. https://doi.org/10.3390/jcdd8110153spa
dc.relation.referencesYuan, H. (2019). Introducing the Language of “Relativity” for New Scaffold Categorization. Bioengineering, 6(1), 20. https://doi.org/10.3390/bioengineering6010020spa
dc.relation.referencesZhao, Z., Vizetto-Duarte, C., Moay, Z. K., Setyawati, M. I., Rakshit, M., Kathawala, M. H., & Ng, K. W. (2020). Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00611spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsInfarto del miocardiospa
dc.subject.decsMyocardial infarctioneng
dc.subject.decsMedicina regenerativaspa
dc.subject.decsRegenerative medicineeng
dc.subject.decsIngeniería de tejidosspa
dc.subject.decsTissue engineeringeng
dc.subject.decsMateriales biocompatiblesspa
dc.subject.decsBiocompatible materialseng
dc.subject.decsElectrofisiología cardíacaspa
dc.subject.decsCardiac electrophysiologyeng
dc.subject.lembDispositivos electromecánicos-Aplicaciones médicasspa
dc.subject.lembElectromechanical devices-Medical applicationseng
dc.subject.proposalInfarto al miocardiospa
dc.subject.proposalMedicina regenerativaspa
dc.subject.proposalMateriales biocompatiblesspa
dc.subject.proposalMiocardiospa
dc.subject.proposalAnatomía cardíacaspa
dc.subject.proposalIngeniería de tejidosspa
dc.subject.proposalHistología cardiacaspa
dc.subject.proposalElectrofisiologíaspa
dc.subject.proposalMyocardial infractioneng
dc.subject.proposalRegenerative medicineeng
dc.subject.proposalTissue engineeringeng
dc.subject.proposalBiocompatible materialseng
dc.subject.proposalMyocardiumeng
dc.subject.proposalCardiac anatomyeng
dc.subject.proposalCardiac histologyeng
dc.subject.proposalElectrophysiologyeng
dc.titleDescripción morfofuncional de la histología del miocardiospa
dc.title.translatedMorpho-functional description of myocardial histologyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014255978.2024.pdf
Tamaño:
2.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Morfología Humana

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: