Descripción morfofuncional de la histología del miocardio
dc.contributor.advisor | Clavijo Grimaldo, Aleida Dianey | spa |
dc.contributor.author | Saavedra Torres, Nicolas Eduardo | spa |
dc.contributor.cvlac | SAAVEDRA TORRES, NICOLÁS EDUARDO [ | spa |
dc.contributor.googlescholar | NE Saavedra Torres | spa |
dc.contributor.orcid | Saavedra Torres, Nicolás Eduardo [0009-0009-2125-0547] | spa |
dc.date.accessioned | 2024-01-15T18:10:03Z | |
dc.date.available | 2024-01-15T18:10:03Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones a color, diagramas, fotografías | spa |
dc.description.abstract | La enfermedad cardiovascular, especialmente la enfermedad isquémica del corazón tiene importantes repercusiones funcionales y económicas, por lo que se busca desarrollar terapias regenerativas para restaurar el tejido dañado. La Ingeniería de Tejidos es un campo multidisciplinario que utiliza herramientas como biomateriales, células y tecnologías de fabricación para crear estructuras que promuevan la regeneración del tejido. El estudio realizado es una monografía que recopila y analiza la literatura científica de los últimos 10 años sobre la histología del miocardio, el acople electromecánico y los avances en Ingeniería de Tejidos para abordar las complicaciones derivadas del infarto al miocardio. En el caso del corazón, el estudio de la histología es esencial para entender el proceso de infarto y desarrollar estrategias de regeneración. La Ingeniería de Tejidos cardiaca ha avanzado en terapias regenerativas basadas en células y parches cardiacos, aunque aún enfrenta desafíos como el acople electromecánico. A pesar de estos desafíos, la Ingeniería de Tejidos cardiaca ofrece esperanza para mejorar la función cardíaca en pacientes con infarto al miocardio. (Texto tomado de la fuente) | spa |
dc.description.abstract | Cardiovascular disease, especially ischemic heart disease, has significant functional and economic repercussions, prompting the search for regenerative therapies to restore damaged tissue. Tissue Engineering is a multidisciplinary field that employs tools such as biomaterials, cells, and manufacturing technologies to create structures that promote tissue regeneration. The study conducted is a monograph that compiles and analyzes scientific literature from the last 10 years on myocardial histology, electromechanical coupling, and advances in Tissue Engineering to address complications arising from myocardial infarction. In the case of the heart, the study of histology is essential to understand the infarction process and develop regeneration strategies. Cardiac Tissue Engineering has made progress in cell-based regenerative therapies and cardiac patches, although it still faces challenges such as electromechanical coupling. Despite these hurdles, cardiac Tissue Engineering offers hope for improving cardiac function in patients with myocardial infarction. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Morfología Humana | spa |
dc.format.extent | xix, 67 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85285 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Morfología Humana | spa |
dc.relation.references | Abraham, K., & Laura, T. (2016). HISTOLOGÍA Y BIOLOGÍA CELULAR Introducción a la anatomía patológica (Cuarta, Vol. 1). Elsevier España. | spa |
dc.relation.references | Alhejailan, R., Garoffolo, G., Raveendran, V., & Pesce, M. (2023). Cells and Materials for Cardiac Repair and Regeneration. Journal of Clinical Medicine, 12(10), 3398. https://doi.org/10.3390/jcm12103398 | spa |
dc.relation.references | Almeida, H. V., Tenreiro, M. F., Louro, A. F., Abecasis, B., Santinha, D., Calmeiro, T., Fortunato, E., Ferreira, L., Alves, P. M., & Serra, M. (2021). Human Extracellular-Matrix Functionalization of 3D hiPSC-Based Cardiac Tissues Improves Cardiomyocyte Maturation. ACS Applied Bio Materials, 4(2), 1888–1899. https://doi.org/10.1021/acsabm.0c01490 | spa |
dc.relation.references | Barresi, M. J. F., & Gilbert, S. F. (2020). Developmental biology (12th ed.). Oxford University Press. | spa |
dc.relation.references | Bassat, E., Mutlak, Y. E., Genzelinakh, A., Shadrin, I. Y., Baruch Umansky, K., Yifa, O., Kain, D., Rajchman, D., Leach, J., Riabov Bassat, D., Udi, Y., Sarig, R., Sagi, I., Martin, J. F., Bursac, N., Cohen, S., & Tzahor, E. (2017). The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547(7662), 179–184. https://doi.org/10.1038/nature22978 | spa |
dc.relation.references | Beleño Acosta, B., Advincula, R. C., & Grande-Tovar, C. D. (2023). Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review. Molecules, 28(4), 1920. https://doi.org/10.3390/molecules28041920 | spa |
dc.relation.references | Brandenburg, S., Arakel, E. C., Schwappach, B., & Lehnart, S. E. (2016). The molecular and functional identities of atrial cardiomyocytes in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(7), 1882–1893. https://doi.org/10.1016/j.bbamcr.2015.11.025 | spa |
dc.relation.references | Braz, J. K. F. S., Freitas, M. L., Magalhães, M. S., Oliveira, M. F., Costa, M. S. M. O., Resende, N. S., Clebis, N. K., Silva, N. B., & Moura, C. E. B. (2016). Histology and Immunohistochemistry of the Cardiac Ventricular Structure in the Green Turtle (Chelonia mydas). Anatomia, Histologia, Embryologia, 45(4), 277–284. https://doi.org/10.1111/ahe.12195 | spa |
dc.relation.references | Caro, L. (2013). La biología del desarrollo, heredera de la embriología clásica. Morfolia. Portal de Revistas UN, 5. | spa |
dc.relation.references | Dai, G., Aman, T. K., DiMaio, F., & Zagotta, W. N. (2021). Electromechanical coupling mechanism for activation and inactivation of an HCN channel. Nature Communications, 12(1), 2802. https://doi.org/10.1038/s41467-021-23062-7 | spa |
dc.relation.references | DANE. (2022). Estadísticas Vitales (EEVV) Boletín Técnico. Boletín Técnico. | spa |
dc.relation.references | De Almeida, M. C., Spicer, D. E., & Anderson, R. H. (2019). Why do we break one of the first rules of anatomy when describing the components of the heart? Clinical Anatomy, 32(4), 585–596. https://doi.org/10.1002/ca.23356 | spa |
dc.relation.references | De Boer, J. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7 | spa |
dc.relation.references | De Pieri, A., Rochev, Y., & Zeugolis, D. I. (2021). Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. Npj Regenerative Medicine, 6(1), 18. https://doi.org/10.1038/s41536-021-00133-3 | spa |
dc.relation.references | Drake, R. L. (Richard L., Vogl, W., Mitchell, A. W. M., & Gray, H. (2021). Gray’s anatomy for students. | spa |
dc.relation.references | Escobar Díaz, G. L., Orozco Molina, A. M., Núñez Montes, J. R., & Muñoz, F. L. (2022). Mortality from Cardiovascular Diseases in Colombia. An analysis of public policies. Salud Uninorte, 36(3), 558–570. https://doi.org/10.14482/sun.36.3.616.12 | spa |
dc.relation.references | Fawcett, D. W., & McNutt, N. S. (1969). THE ULTRASTRUCTURE OF THE CAT MYOCARDIUM. The Journal of Cell Biology, 42(1), 1–45. https://doi.org/10.1083/jcb.42.1.1 | spa |
dc.relation.references | Fernández-Avilés, F., Sanz-Ruiz, R., Climent, A. M., Badimon, L., Bolli, R., Charron, D., Fuster, V., Janssens, S., Kastrup, J., Kim, H.-S., Lüscher, T. F., Martin, J. F., Menasché, P., Simari, R. D., Stone, G. W., Terzic, A., Willerson, J. T., Wu, J. C., Fernández-Avilés, F., … Ylä-Herttuala, S. (2017). Global position paper on cardiovascular regenerative medicine. European Heart Journal, 38(33), 2532–2546. https://doi.org/10.1093/eurheartj/ehx248 | spa |
dc.relation.references | Frangogiannis, N. G. (2017). The extracellular matrix in myocardial injury, repair, and remodeling. Journal of Clinical Investigation, 127(5), 1600–1612. https://doi.org/10.1172/JCI87491 | spa |
dc.relation.references | Gartner, L., & Hiatt, J. (2018). Histologia básica (7th ed.). WOLTERS KLUWER. | spa |
dc.relation.references | Georgiadis, V., Knight, R. A., Jayasinghe, S. N., & Stephanou, A. (2014). Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integr. Biol., 6(2), 111–126. https://doi.org/10.1039/C3IB40097B | spa |
dc.relation.references | GODBEY, W. T., & ATALA, A. (2002). In Vitro Systems for Tissue Engineering. Annals of the New York Academy of Sciences, 961(1), 10–26. https://doi.org/10.1111/j.1749-6632.2002.tb03041.x | spa |
dc.relation.references | Gómez-Torres, F. A., Sebastian, R., & Ruíz-Sauri, A. (2020). Morphometry and comparative histology of sinus and atrioventricular nodes in humans and pigs and their relevance in the prevention of nodal arrhythmias. Research in Veterinary Science, 128, 275–285. https://doi.org/10.1016/j.rvsc.2019.12.008 | spa |
dc.relation.references | Harrison, T., & Petersdorf, R. (2015). Harrison: Principios de medicina interna (17th ed., Vol. 2). McGraw Hill. | spa |
dc.relation.references | Hashimoto, H., Olson, E. N., & Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 15(10), 585–600. https://doi.org/10.1038/s41569-018-0036-6 | spa |
dc.relation.references | Hollister, S. J. (2009). Scaffold Design and Manufacturing: From Concept to Clinic. Advanced Materials, 21(32–33), 3330–3342. https://doi.org/10.1002/adma.200802977 | spa |
dc.relation.references | Hu, S., Mi, L., Fu, J., Ma, W., Ni, J., Zhang, Z., Li, B., Guan, G., Wang, J., & Zhao, N. (2022). Model Embraced Electromechanical Coupling Time for Estimation of Heart Failure in Patients With Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.895035 | spa |
dc.relation.references | Inamdar, N. K., & Borenstein, J. T. (2011). Microfluidic cell culture models for tissue engineering. Current Opinion in Biotechnology, 22(5), 681–689. https://doi.org/10.1016/j.copbio.2011.05.512 | spa |
dc.relation.references | International Organization for Standardization. (2020). General requirements of tissue-engineered medical product. | spa |
dc.relation.references | Kalkhoran, S. B., Munro, P., Qiao, F., Ong, S.-B., Hall, A. R., Cabrera-Fuentes, H., Chakraborty, B., Boisvert, W. A., Yellon, D. M., & Hausenloy, D. J. (2017). Unique morphological characteristics of mitochondrial subtypes in the heart: the effect of ischemia and ischemic preconditioning. Discoveries, 5(1), e71. https://doi.org/10.15190/d.2017.1 | spa |
dc.relation.references | Kane, C., & Terracciano, C. M. N. (2017). Concise Review: Criteria for Chamber-Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells. Stem Cells, 35(8), 1881–1897. https://doi.org/10.1002/stem.2649 | spa |
dc.relation.references | Kesharwani, R. (2022). Tissue Engineering Applications and Advancements (1st ed., Vol. 1). | spa |
dc.relation.references | Kupfer, M. E., Lin, W.-H., Ravikumar, V., Qiu, K., Wang, L., Gao, L., Bhuiyan, D. B., Lenz, M., Ai, J., Mahutga, R. R., Townsend, D., Zhang, J., McAlpine, M. C., Tolkacheva, E. G., & Ogle, B. M. (2020). In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid. Circulation Research, 127(2), 207–224. https://doi.org/10.1161/CIRCRESAHA.119.316155 | spa |
dc.relation.references | Lavery, D. L., Martin, J., Turnbull, Y. D., & Hoppler, S. (2008). Wnt6 signaling regulates heart muscle development during organogenesis. Developmental Biology, 323(2), 177–188. https://doi.org/10.1016/j.ydbio.2008.08.032 | spa |
dc.relation.references | Loukas, M., Youssef, P., Gielecki, J., Walocha, J., Natsis, K., & Tubbs, R. S. (2016). History of cardiac anatomy: A comprehensive review from the egyptians to today. Clinical Anatomy, 29(3), 270–284. https://doi.org/10.1002/ca.22705 | spa |
dc.relation.references | Lynch, C. R., Kondiah, P. P. D., & Choonara, Y. E. (2021). Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules, 26(9), 2518. https://doi.org/10.3390/molecules26092518 | spa |
dc.relation.references | Maitra, M., Schluterman, M. K., Nichols, H. A., Richardson, J. A., Lo, C. W., Srivastava, D., & Garg, V. (2009). Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Developmental Biology, 326(2), 368–377. https://doi.org/10.1016/j.ydbio.2008.11.004 | spa |
dc.relation.references | Maji, S., & Lee, H. (2022). Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences, 23(5), 2662. https://doi.org/10.3390/ijms23052662 | spa |
dc.relation.references | Marchianò, S., Bertero, A., & Murry, C. E. (2019). Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatric Cardiology, 40(7), 1367–1387. https://doi.org/10.1007/s00246-019-02165-5 | spa |
dc.relation.references | Marunouchi, T., & Tanonaka, K. (2015). Cell Death in the Cardiac Myocyte. Biological & Pharmaceutical Bulletin, 38(8), 1094–1097. https://doi.org/10.1248/bpb.b15-00288 | spa |
dc.relation.references | Mattes, W. B. (2020). In vitro to in vivo translation. Current Opinion in Toxicology, 23–24, 114–118. https://doi.org/10.1016/j.cotox.2020.09.001 | spa |
dc.relation.references | Méndez-Muñoz, P. C., Martínez-Espitia, E., Paba-Rojas, C. E., Rodríguez-Perdomo, J., & Silva-Hernández, L. M. (2020). Mortalidad por enfermedad isquémica cardiaca según variables sociodemográficas en Bogotá, Colombia. Revista Salud Bosque, 10(1). https://doi.org/10.18270/rsb.v10i1.2828 | spa |
dc.relation.references | Mori, S., Spicer, D. E., & Anderson, R. H. (2016). Revisiting the Anatomy of the Living Heart. Circulation Journal, 80(1), 24–33. https://doi.org/10.1253/circj.CJ-15-1147 | spa |
dc.relation.references | Mori, S., Tretter, J. T., Spicer, D. E., Bolender, D. L., & Anderson, R. H. (2019). What is the real cardiac anatomy? Clinical Anatomy, 32(3), 288–309. https://doi.org/10.1002/ca.23340 | spa |
dc.relation.references | Mouthuy, P.-A., Groszkowski, L., & Ye, H. (2015). Performances of a portable electrospinning apparatus. Biotechnology Letters, 37(5), 1107–1116. https://doi.org/10.1007/s10529-014-1760-6 | spa |
dc.relation.references | O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X | spa |
dc.relation.references | Olaopa, M., Zhou, H., Snider, P., Wang, J., Schwartz, R. J., Moon, A. M., & Conway, S. J. (2011). Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Developmental Biology, 356(2), 308–322. https://doi.org/10.1016/j.ydbio.2011.05.583 | spa |
dc.relation.references | OPS. (2021). La carga de las enfermedades cardiovasculares en la Región de las Américas, 2000-2019. Portal de Datos de NMH. Organización Panamericana de La Salud. | spa |
dc.relation.references | Patel, P., & Karch, J. (2020). Regulation of cell death in the cardiovascular system (pp. 153–209). https://doi.org/10.1016/bs.ircmb.2019.11.005 | spa |
dc.relation.references | Payne, S., Burney, M. J., McCue, K., Popal, N., Davidson, S. M., Anderson, R. H., & Scambler, P. J. (2015). A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development. Developmental Biology, 405(1), 82–95. https://doi.org/10.1016/j.ydbio.2015.06.017 | spa |
dc.relation.references | Pfeiffer, E. R., Tangney, J. R., Omens, J. H., & McCulloch, A. D. (2014). Biomechanics of Cardiac Electromechanical Coupling and Mechanoelectric Feedback. Journal of Biomechanical Engineering, 136(2). https://doi.org/10.1115/1.4026221 | spa |
dc.relation.references | Pina, S., Ribeiro, V. P., Marques, C. F., Maia, F. R., Silva, T. H., Reis, R. L., & Oliveira, J. M. (2019). Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 12(11), 1824. https://doi.org/10.3390/ma12111824 | spa |
dc.relation.references | Quijada, P., Trembley, M. A., & Small, E. M. (2020). The Role of the Epicardium During Heart Development and Repair. Circulation Research, 126(3), 377–394. https://doi.org/10.1161/CIRCRESAHA.119.315857 | spa |
dc.relation.references | Radisic, M., & Christman, K. L. (2013). Materials Science and Tissue Engineering: Repairing the Heart. Mayo Clinic Proceedings, 88(8), 884–898. https://doi.org/10.1016/j.mayocp.2013.05.003 | spa |
dc.relation.references | Rey, C., García-Cendón, C., Martínez-Camblor, P., López-Herce, J., Concha-Torre, A., Medina, A., Vivanco-Allende, A., & Mayordomo-Colunga, J. (2016). Asociación de valores elevados de péptido natriurético auricular y copeptina con riesgo de mortalidad. Anales de Pediatría, 85(6), 284–290. https://doi.org/10.1016/j.anpedi.2016.02.002 | spa |
dc.relation.references | Roa, D., & Quitian, R. (2016). SITUACIÓN ACTUAL DE LA INGENIERIA DE TEJIDOS Y MEDICINA REGENERATIVA EN COLOMBIA [Tesis]. UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES U.D.C.A | spa |
dc.relation.references | Robert, L. (2014). Principles of Tissue Engineering. Elsevier. https://doi.org/10.1016/C2011-0-07193-4 | spa |
dc.relation.references | Robison, P., & Prosser, B. L. (2017). Microtubule mechanics in the working myocyte. The Journal of Physiology, 595(12), 3931–3937. https://doi.org/10.1113/JP273046 | spa |
dc.relation.references | Ross, M., & Pawlina, W. (2016). Histology: A Text and Atlas. With Correlated Cell and Molecular Biology (Septima, Vol. 1). Wolters Kluwer. | spa |
dc.relation.references | Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., & Badylak, S. F. (2017). Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia, 49, 1–15. https://doi.org/10.1016/j.actbio.2016.11.068 | spa |
dc.relation.references | Salem, T., Frankman, Z., & Churko, J. M. (2022). Tissue Engineering Techniques for Induced Pluripotent Stem Cell Derived Three-Dimensional Cardiac Constructs. Tissue Engineering Part B: Reviews, 28(4), 891–911. https://doi.org/10.1089/ten.teb.2021.0088 | spa |
dc.relation.references | Savova, K., Yordanova, P., Dimitrov, D., Tsenov, S., Trendafilov, D., & Georgieva, B. (2017). Light Microscopic Morphological Characteristics and Data on the Ultrastructure of the Cardiomyocytes. Academia Anatomica International, 3(2). https://doi.org/10.21276/aanat.2017.3.2.2 | spa |
dc.relation.references | Scott, J. (2021). Publisher: Jeremy Bowes Senior Content Development Specialist: Trinity Hutton Deputy Content Development Manager. https://doi.org/10.1016/B978-0-7020-7705-0.09001-7 | spa |
dc.relation.references | Sharma, V., Dash, S. K., Govarthanan, K., Gahtori, R., Negi, N., Barani, M., Tomar, R., Chakraborty, S., Mathapati, S., Bishi, D. K., Negi, P., Dua, K., Singh, S. K., Gundamaraju, R., Dey, A., Ruokolainen, J., Thakur, V. K., Kesari, K. K., Jha, N. K., … Ojha, S. (2021). Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells, 10(10), 2538. https://doi.org/10.3390/cells10102538 | spa |
dc.relation.references | Simon, C. G., Yaszemski, M. J., Ratcliffe, A., Tomlins, P., Luginbuehl, R., & Tesk, J. A. (2015). ASTM international workshop on standards and measurements for tissue engineering scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(5), 949–959. https://doi.org/10.1002/jbm.b.33286 | spa |
dc.relation.references | Sun, J., Vijayavenkataraman, S., & Liu, H. (2017). An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus. Materials, 10(1), 29. https://doi.org/10.3390/ma10010029 | spa |
dc.relation.references | Szczepanek, E., Jasińska, K. A., Godula, D., Kucharska, E., Walocha, J., & Mazur, M. (2020). Correct human cardiac nomenclature. Folia Medica Cracoviensia, 60(1), 103–113. https://doi.org/10.24425/fmc.2020.133491 | spa |
dc.relation.references | Tzahor, E., & Poss, K. D. (2017). Cardiac regeneration strategies: Staying young at heart. Science, 356(6342), 1035–1039. https://doi.org/10.1126/science.aam5894 | spa |
dc.relation.references | Uquillas, J., & Malik, N. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7 | spa |
dc.relation.references | Valdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To Scaffold, or Not to Scaffold, That Is the Question. International Journal of Molecular Sciences, 22(23), 12690. https://doi.org/10.3390/ijms222312690 | spa |
dc.relation.references | Wang, F., & Guan, J. (2010). Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy☆. Advanced Drug Delivery Reviews, 62(7–8), 784–797. https://doi.org/10.1016/j.addr.2010.03.001 | spa |
dc.relation.references | Wang, Z., Lee, S. J., Cheng, H.-J., Yoo, J. J., & Atala, A. (2018). 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomaterialia, 70, 48–56. https://doi.org/10.1016/j.actbio.2018.02.007 | spa |
dc.relation.references | Yu, D., Wang, X., & Ye, L. (2021). Cardiac Tissue Engineering for the Treatment of Myocardial Infarction. Journal of Cardiovascular Development and Disease, 8(11), 153. https://doi.org/10.3390/jcdd8110153 | spa |
dc.relation.references | Yuan, H. (2019). Introducing the Language of “Relativity” for New Scaffold Categorization. Bioengineering, 6(1), 20. https://doi.org/10.3390/bioengineering6010020 | spa |
dc.relation.references | Zhao, Z., Vizetto-Duarte, C., Moay, Z. K., Setyawati, M. I., Rakshit, M., Kathawala, M. H., & Ng, K. W. (2020). Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00611 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::612 - Fisiología humana | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.decs | Infarto del miocardio | spa |
dc.subject.decs | Myocardial infarction | eng |
dc.subject.decs | Medicina regenerativa | spa |
dc.subject.decs | Regenerative medicine | eng |
dc.subject.decs | Ingeniería de tejidos | spa |
dc.subject.decs | Tissue engineering | eng |
dc.subject.decs | Materiales biocompatibles | spa |
dc.subject.decs | Biocompatible materials | eng |
dc.subject.decs | Electrofisiología cardíaca | spa |
dc.subject.decs | Cardiac electrophysiology | eng |
dc.subject.lemb | Dispositivos electromecánicos-Aplicaciones médicas | spa |
dc.subject.lemb | Electromechanical devices-Medical applications | eng |
dc.subject.proposal | Infarto al miocardio | spa |
dc.subject.proposal | Medicina regenerativa | spa |
dc.subject.proposal | Materiales biocompatibles | spa |
dc.subject.proposal | Miocardio | spa |
dc.subject.proposal | Anatomía cardíaca | spa |
dc.subject.proposal | Ingeniería de tejidos | spa |
dc.subject.proposal | Histología cardiaca | spa |
dc.subject.proposal | Electrofisiología | spa |
dc.subject.proposal | Myocardial infraction | eng |
dc.subject.proposal | Regenerative medicine | eng |
dc.subject.proposal | Tissue engineering | eng |
dc.subject.proposal | Biocompatible materials | eng |
dc.subject.proposal | Myocardium | eng |
dc.subject.proposal | Cardiac anatomy | eng |
dc.subject.proposal | Cardiac histology | eng |
dc.subject.proposal | Electrophysiology | eng |
dc.title | Descripción morfofuncional de la histología del miocardio | spa |
dc.title.translated | Morpho-functional description of myocardial histology | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1014255978.2024.pdf
- Tamaño:
- 2.13 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Morfología Humana
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: