Caracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mama

dc.contributor.advisorUmaña Pérez, Yadi Adriana
dc.contributor.authorMolina Bejarano, Jorge Luis
dc.contributor.researchgroupGrupo de Investigación en Hormonasspa
dc.date.accessioned2024-07-03T14:13:06Z
dc.date.available2024-07-03T14:13:06Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractLos exosomas, un tipo de vesícula extracelular, emergen en condiciones fisiológicas y patológicas como en el cáncer de mama, desempeñando un papel clave en la comunicación intercelular dentro y fuera del microambiente tumoral. Para comprender su función es esencial realizar la caracterización física y molecular de su composición, así como establecer sus interacciones en contextos biológicos. En este trabajo, se obtuvieron exosomas provenientes del cultivo in vitro de la línea celular de cáncer de mama MCF7. En condiciones de normoxia, se evaluaron dos métodos comerciales, uno basado en cromatografía de exclusión por tamaño y otro en filtración dirigida. Los exosomas purificados se compararon con los obtenidos mediante el método tradicional de ultracentrifugación diferencial, y la cromatografía de exclusión por tamaño se seleccionó como el método con mayor rendimiento, economía y accesibilidad para la purificación de exosomas. Posteriormente, se obtuvieron exosomas de la misma línea celular en condiciones de hipoxia mimética inducida por cloruro de cobalto, observando una disminución tanto en la producción como en el tamaño de los exosomas comparados a la condición de normoxia, sumado a una mayor producción de VEGF, aunque no estuvo asociado directamente a los exosomas. Finalmente, se observó que los exosomas producidos en hipoxia mimética favorecen la migración en células MCF7 y promueven características específicas en la formación de tubos en la angiogénesis inducida sobre células HUVEC (Texto tomado de la fuente).spa
dc.description.abstractExosomes, a type of extracellular vesicle, arise in physiological and pathological conditions, such as breast cancer. They play a crucial role in intercellular communication within and outside the tumor microenvironment. To comprehend their function, it is essential to conduct a physical and molecular characterization of their composition and establish their interactions in biological contexts. In this work, exosomes were obtained from in vitro culture of the MCF7 breast cancer cell line. Under normoxic conditions, two commercial methods were evaluated, one based on size exclusion chromatography and the other on targeted filtration. Purified exosomes were compared with those obtained through the traditional method of differential ultracentrifugation, and size exclusion chromatography was chosen as the most economical and accessible method for exosome purification. Subsequently, exosomes were produced by the same cell line under conditions of mimetic hypoxia induced by cobalt chloride, showing a decrease in the production and size of exosomes compared to normoxia. Additionally, it was identified that VEGF was produced in higher concentrations under hypoxic conditions, although it was not associated with exosomes. Finally, it was observed that exosomes produced under mimetic hypoxia promote migration in MCF7 cells and promote specific characteristics in tube formation in angiogenesis induced in HUVEC cells.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaFactores de crecimiento, diferenciación y cáncerspa
dc.format.extentxvii, 89 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86369
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesCancer IAfRo. Global Cancer Observatory Lyon, France: IARC; 2023 [cited 2023. Available from: https://gco.iarc.fr/spa
dc.relation.references(INC) INdC. Anuario Estadístico 2021. Instituto Nacional de Cancerología (INC); 2022spa
dc.relation.referencesLötvall J, Hill, A. F., Hochberg, F., Buzás, E. I., Di Vizio, D., Gardiner, C., Gho, Y. S., Kurochkin, I. V., Mathivanan, S., Quesenberry, P., Sahoo, S., Tahara, H., Wauben, M. H., Witwer, K. W., & Théry, C. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles Co-Action Publishing. 2014;3spa
dc.relation.referencesCouch Y, Buzàs, E. I., Di Vizio, D., Gho, Y. S., Harrison, P., Hill, A. F., Lötvall, J., Raposo, G., Stahl, P. D., Théry, C., Witwer, K. W., & Carter, D. R. F. A brief history of nearly EV-erything - The rise and rise of extracellular vesicles. J Extracell Vesicles. 2021;10(14)spa
dc.relation.referencesPoupardin R, Wolf, M., & Strunk, D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions. Adv Drug Deliv Rev. 2021;176spa
dc.relation.referencesWitwer KW, Goberdhan, D. C., O'Driscoll, L., Théry, C., Welsh, J. A., Blenkiron, C., Buzás, E. I., Di Vizio, D., Erdbrügger, U., Falcón-Pérez, J. M., Fu, Q. L., Hill, A. F., Lenassi, M., Lötvall, J., Nieuwland, R., Ochiya, T., Rome, S., Sahoo, S., & Zheng, L. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. Journal of Extracellular Vesicles. 2017;6spa
dc.relation.referencesNovoa-Herrán S. Challenges and opportunities in the study of extracellular vesicles: global institutional context and national state of the art. Biomedica. 2021;41(4):2-69spa
dc.relation.referencesWitwer KW, Goberdhan, D. C., O'Driscoll, L., Théry, C., Welsh, J. A., Blenkiron, C., Buzás, E. I., Di Vizio, D., Erdbrügger, U., Falcón-Pérez, J. M., Fu, Q. L., Hill, A. F., Lenassi, M., Lötvall, J., Nieuwland, R., Ochiya, T., Rome, S., Sahoo, S., & Zheng, L. Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. J Extracell Vesicles. 2021;10spa
dc.relation.referencesAhmadi M, & Rezaie, J. Tumor cells derived-exosomes as angiogenenic agents: Possible therapeutic implications. 2020spa
dc.relation.referencesLi I, Nabet, B.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Molecular Cancer. 2019;18(32)spa
dc.relation.referencesPei-pei H, Hang-zi, Chen. Extracellular vesicles in the tumor immune microenvironment. Cancer Letters. 2021;516:48-56spa
dc.relation.referencesXie QH, Zheng, J. Q., Ding, J. Y., Wu, Y. F., Liu, L., Yu, Z. L., & Chen, G. Exosome-Mediated Immunosuppression in Tumor Microenvironments. Cells. 2022;11(12)spa
dc.relation.referencesRincón-Riveros A, Lopez, L., Villegas, E. V., & Antonia Rodriguez, J. . Regulation of antitumor immune responses by exosomes derived from tumor and immune cells. Cancers. 2021;13(4):1-22spa
dc.relation.referencesLi SJ, Chen, J. X., & Sun, Z. J. Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges. Cancer Communications. 2021;41(9):830-50spa
dc.relation.referencesLudwig N, & Whiteside, T. L. Potential roles of tumor-derived exosomes in angiogenesis. Expert Opinion on Therapeutic Targets. 2018;22(5):409-17spa
dc.relation.referencesGurunathan S, Kang, M. H., Jeyaraj, M., Qasim, M., & Kim, J. H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells. 2019;8(4)spa
dc.relation.referencesAbhange K, Makler, A., Wen, Y., Ramnauth, N., Mao, W., Asghar, W., & Wan, Y. Small extracellular vesicles in cancer. Bioactive materials. 2021;6(11):3705-43spa
dc.relation.referencesHerrmann IK, Wood, M.J.A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16:748-59spa
dc.relation.referencesNguyen SL, Ahn, S. H., Greenberg, J. W., Collaer, B. W., Agnew, D. W., Arora, R., & Petroff, M. G. Integrins mediate placental extracellular vesicle trafficking to lung and liver in vivo. Scientific Reports. 2021;11(1)spa
dc.relation.referencesPachane BC, Nunes, A. C. C., Cataldi, T. R., Micocci, K. C., Moreira, B. C., Labate, C. A., Selistre-de-Araujo, H. S., & Altei, W. F. . Small Extracellular Vesicles from Hypoxic Triple-Negative Breast Cancer Cells Induce Oxygen-Dependent Cell Invasion. Int J Mol Sci. 2022;23(20)spa
dc.relation.referencesGrisard E, Lescure, A., Nevo, N., Corbé, M., Jouve, M., Lavieu, G., Joliot, A., Nery, E. D., Martin-Jaular, L., & Théry, C. Homosalate boosts the release of tumor-derived Extracellular Vesicles with anti-anoikis properties. bioRxiv. 2021spa
dc.relation.referencesVardaki I, Ceder, S., Rutishauser, D., Baltatzis, G., Foukakis, T., & Panaretakis, T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7(46):74966-78spa
dc.relation.referencesNgo NH, Chang, Y. H., Vuong, C. K., Yamashita, T., Obata-Yasuoka, M., Hamada, H., Osaka, M., Hiramatsu, Y., & Ohneda, O. Transformed extracellular vesicles with high angiogenic ability as therapeutics of distal ischemic tissues. Front Cell Dev Biol. 2022;10spa
dc.relation.referencesOlejarz W, Kubiak-Tomaszewska, G., Chrzanowska, A., & Lorenc, T. Exosomes in angiogenesis and anti-angiogenic therapy in cancers. International Journal of Molecular Sciences. 2020;21(16):1-25spa
dc.relation.referencesHosaka K, Yang, Y., Seki, T. et al. Therapeutic paradigm of dual targeting VEGF and PDGF for effectively treating FGF-2 off-target tumors. Nature Communications. 2020;11spa
dc.relation.referencesKut C, Mac Gabhann, F., & Popel, A. S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. British Journal of Cancer. 2007;97(7):978-85spa
dc.relation.referencesItatani Y, Kawada, K., Yamamoto, T., & Sakai, Y. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway. International Journal of Molecular Sciences. 2018;19(4)spa
dc.relation.referencesKo SY, Lee, W., Kenny, H. A., Dang, L. H., Ellis, L. M., Jonasch, E., Lengyel, E., & Naora, H. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Communications Biology. 2019;2(386)spa
dc.relation.referencesTirpe A, Gulei, D., Tirpe, G. R., Nutu, A., Irimie, A., Campomenosi, P., Pop, L. A., & Berindan-Neagoe, I. Beyond conventional: The new horizon of anti-angiogenic micrornas in non-small cell lung cancer therapy. International Journal of Molecular Sciences. 2020;21(21):1-22spa
dc.relation.referencesRosenberger L, Ezquer, M., Lillo-Vera, F., Pedraza, P. L., Ortúzar, M. I., González, P. L., Figueroa-Valdés, A. I., Cuenca, J., Ezquer, F., Khoury, M., & Alcayaga-Miranda, F. Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma. Scientific Reports. 2019;9(1)spa
dc.relation.referencesKase Y, Uzawa, K., Wagai, S., Yoshimura, S., Yamamoto, J. I., Toeda, Y., Okubo, M., Eizuka, K., Ando, T., Nobuchi, T., Kawasaki, K., Saito, T., Iyoda, M., Nakashima, D., Kasamatsu, A., & Tanzawa, H. Engineered exosomes delivering specific tumor-suppressive RNAi attenuate oral cancer progression. Scientific Reports. 2021;11(1)spa
dc.relation.referencesGarcía E, Luengo-Gil, G., de la Morena Barrios, P., Ayala de la Peña, F. Microvesículas en cáncer de mama. Rev Senol Patol Mamar. 2016;29(3):125-31spa
dc.relation.referencesGupta D ZA, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev. 2021;178spa
dc.relation.referencesRichter M, Vader, P., & Fuhrmann, G. Approaches to surface engineering of extracellular vesicles. Adv Drug Deliv Rev. 2021;173:416-26spa
dc.relation.referencesMathieu M, Martin-Jaular, L., Lavieu, G., & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9-17spa
dc.relation.referencesAkers JC, Gonda, D., Kim, R., Carter, B. S., & Chen, C. C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1-11spa
dc.relation.referencesLatifkar A, Hur, Y. H., Sanchez, J. C., Cerione, R. A., & Antonyak, M. A. New insights into extracellular vesicle biogenesis and function. J Cell Sci. 2019;132(13)spa
dc.relation.referencesPegtel D, Gould, S. Exosomes. Annual Review of Biochemistry 2019;88(1):487-514spa
dc.relation.referencesGhossoub R, Lembo, F., Rubio, A. et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5spa
dc.relation.referencesVidal M. Exosomes: Revisiting their role as “garbage bags.” Traffic. 2019;20(11):815-28spa
dc.relation.referencesRecord M, Silvente-Poirot, S., Poirot, M., & Wakelam, M. J. O. Extracellular vesicles: lipids as key components of their biogenesis and functions. Journal of lipid research. 2018;59(8):1316-24spa
dc.relation.referencesKobayashi T, Beuchat, M. H., Chevallier, J., Makino, A., Mayran, N., Escola, J. M., Lebrand, C., Cosson, P., Kobayashi, T., & Gruenberg, J. Separation and Characterization of Late Endosomal Membrane Domains. The Journal of biological chemistry. 2002;277(35):32157-64spa
dc.relation.referencesPerrin P, Janssen, L., Janssen, H., van den Broek, B., Voortman, L. M., van Elsland, D., Berlin, I., & Neefjes, J. Retrofusion of intralumenal MVB membranes parallels viral infection and coexists with exosome release. Current biology. 2021;31(17):3884-93spa
dc.relation.referencesKalluri R, & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science. 2020;367spa
dc.relation.referencesCocozza F, Grisard, E., Martin-Jaular, L., Mathieu, M., Théry, C. SnapShot: Extracellular vesicles. Cell 2020;182(1):262spa
dc.relation.referencesDoyle LM, & Wang, M. Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells. 2019;8(7)spa
dc.relation.referencesCoumans FAW, Brisson, A. R., Buzas, E. I., Dignat-George, F., Drees, E. E. E., El-Andaloussi, S., Emanueli, C., Gasecka, A., Hendrix, A., Hill, A. F., Lacroix, R., Lee, Y., van Leeuwen, T. G., Mackman, N., Mäger, I., Nolan, J. P., van der Pol, E., Pegtel, D. M., Sahoo, S., Siljander, P. R. M., … Nieuwland, R. Methodological Guidelines to Study Extracellular Vesicles. Circulation research. 2017;120(10)spa
dc.relation.referencesPatel GK, Khan, M.A., Zubair, H. et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9spa
dc.relation.referencesMartínez-Greene JA, Hernández-Ortega, K., Quiroz-Baez, R., Resendis-Antonio, O., Pichardo-Casas, I., Sinclair, D. A., Budnik, B., Hidalgo-Miranda, A., Uribe-Querol, E., Ramos-Godínez, M. D. P., & Martínez-Martínez, E. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography. J Extracell Vesicles. 2021;10(6)spa
dc.relation.referencesKeerthikumar S, Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Pathan, M., Jois, M., Chilamkurti, N., Gangoda, L., & Mathivanan, S. ExoCarta: A web-based compendium of exosomal cargo. Journal of Molecular Biology. 2016;428(4)spa
dc.relation.referencesPoupardin R, Wolf, M., & Strunk, D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions: a systematic review. bioRxiv. 2021spa
dc.relation.referencesLai J, Chau, Z., Chen, SY., Hill, J, Korpany, K., Liang, NW., Lin, LH., Lin, YH., Liu, J., Liu, YC., Lunde, R., Shen, WT. Exosome Processing and Characterization Approaches for Research and Technology Development. Adv Sci (Weinh). 2022;9(15)spa
dc.relation.referencesBio-Rad. Bio-Dot® SF Microfiltration Apparatus Instruction Manual, Rev D https://www.bio-rad.com/sites/default/files/webroot/web/pdf/lsr/literature/M1706542.pdf: Bio-Rad;spa
dc.relation.referencesCao Y, Yu, X., Zeng, T., Fu, Z., Zhao, Y., Nie, B., Zhao, Y., Yin, Y., Li, G. Molecular Characterization of Exosomes for Subtype-Based Diagnosis of Breast Cancer. Journal of the American Chemical Society. 2022;144(30):13475-86spa
dc.relation.referencesDe Maio A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: A form of communication during injury, infection, and cell damage. Cell Stress and Chaperones. 2011;16(3):235-49spa
dc.relation.referencesWelsh JA, Goberdhan, D. C. I., O'Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D., Driedonks, T. A. P., Erdbrügger, U., Falcon-Perez, J. M., Fu, Q.-L., Hill, A. F., Lenassi, M., Lim, S. K., Mahoney, M. G., Mohanty, S., Möller, A., Nieuwland, R., … Witwer, K. W. . Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. Journal of Extracellular Vesicles. 2024;13spa
dc.relation.referencesHoshino A, Kim, H. S., Bojmar, L., Gyan, K. E., Cioffi, M., Hernandez, J., Zambirinis, C. P., Rodrigues, G., Molina, H., Heissel, S., Mark, M. T., Steiner, L., Benito-Martin, A., Lucotti, S., Di Giannatale, A., Offer, K., Nakajima, M., Williams, C., Nogués, L., Pelissier Vatter, F. A., … Lyden, D. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell. 2020;182(4):1044-61spa
dc.relation.referencesKruger S, Abd Elmageed, Z. Y., Hawke, D. H., Wörner, P. M., Jansen, D. A., Abdel-Mageed, A. B., Alt, E. U., & Izadpanah, R. Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer. 2014;14(44)spa
dc.relation.referencesWen SW, Lima, L. G., Lobb, R. J., Norris, E. L., Hastie, M. L., Krumeich, S., & Möller, A. Breast Cancer-Derived Exosomes Reflect the Cell-of-Origin Phenotype. Proteomics. 2019;19(8)spa
dc.relation.referencesMuz B, de la Puente, P., Azab, F., & Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83-92spa
dc.relation.referencesJiang H, Zhao, H., Zhang, M., He, Y., Li, X., Xu, Y., & Liu, X. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front Immunol. 2022;13spa
dc.relation.referencesKing HW, Michael, M.Z. & Gleadle, J.M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12(421)spa
dc.relation.referencesMeng W, Hao, Y., He, C. et al. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18(57)spa
dc.relation.referencesSemenza G. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721-32spa
dc.relation.referencesPugh CW, & Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature medicine. 2003;9(6):677-84spa
dc.relation.referencesMalda J, Klein, T. J., & Upton, Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 2007;13(9):2153-62spa
dc.relation.referencesGodet I, Doctorman, S., Wu, F., & Gilkes, D. M. Detection of Hypoxia in Cancer Models: Significance, Challenges, and Advances. Cells. 2022;11(4):686spa
dc.relation.referencesRay SK, & Mukherjee, S. Imitating Hypoxia and Tumor Microenvironment with Immune Evasion by Employing Three Dimensional In vitro Cellular Models: Impressive Tool in Drug Discovery. Recent Pat Anticancer Drug Discov. 2022;17(1):80-91spa
dc.relation.referencesMuñoz J, Chánez-Cárdenas, M. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2019;39(4):556-70spa
dc.relation.referencesGao XX, Liu, C. H., Hu, Z. L., Li, H. Y., Chang, X., Li, Y. Y., Zhang, Y. Y., Zhai, Y., & Li, C. Q. The biological effect of cobalt chloride mimetic-hypoxia on nucleus pulposus cells and the comparability with physical hypoxia in vitro. Front Biosci (Landmark Ed). 2021;26(10):799-812spa
dc.relation.referencesKaczmarek M, Cachau, R. E., Topol, I. A., Kasprzak, K. S., Ghio, A., & Salnikow, K. Metal ions-stimulated iron oxidation in hydroxylases facilitates stabilization of HIF-1 alpha protein. Toxicol Sci. 2009;107(2):394-403spa
dc.relation.referencesTechnology CS. Angiogenesis. Angiogenesis Pathways. https://www.cellsignal.com/pathways/angiogenesis-pathway2018spa
dc.relation.referencesApte RS, Chen, D. S., & Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248-64spa
dc.relation.referencesMelincovici CS, Boşca, A. B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., Moldovan, I. M., Roman, A. L., & Mihu, C. M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59(2)spa
dc.relation.referencesSchubert A, & Boutros, M. Extracellular vesicles and oncogenic signaling. Mol Oncol. 2021;15(1):3-26spa
dc.relation.referencesSia D, Alsinet, C., Newell, P., & Villanueva, A. VEGF Signaling in Cancer Treatment, Current Pharmaceutical Design. Current Pharmaceutical Design. 2014;20(17):2834-42spa
dc.relation.referencesRen W, Hou, J., Yang, C., Wang, H., Wu, S., Wu, Y., Zhao, X., & Lu, C. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res. 2019;38(1)spa
dc.relation.referencesConley A, Minciacchi, V. R., Lee, D. H., Knudsen, B. S., Karlan, B. Y., Citrigno, L., Viglietto, G., Tewari, M., Freeman, M. R., Demichelis, F., & Di Vizio, D. High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biology. 2017;14(3):305-16spa
dc.relation.referencesVera N, Acuña-Gallardo, S., Grünenwald, F., Caceres-Verschae, A., Realini, O., Acuña, R., Lladser, A., Illanes, S. E., & Varas-Godoy, M. Small extracellular vesicles released from ovarian cancer spheroids in response to cisplatin promote the pro-tumorigenic activity of mesenchymal stem cells. International Journal of Molecular Sciences. 2019;20(20)spa
dc.relation.referencesWang CA, Chang, I. H., Hou, P. C., Tai, Y. J., Li, W. N., Hsu, P. L., Wu, S. R., Chiu, W. T., Li, C. F., Shan, Y. S., & Tsai, S. J. DUSP2 regulates extracellular vesicle-VEGF-C secretion and pancreatic cancer early dissemination. Journal of Extracellular Vesicles. 2020;9(1)spa
dc.relation.referencesRana NK, Singh, P., & Koch, B. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biological research. 2019;52(1)spa
dc.relation.referencesLi Q, Ma, R., & Zhang, M. CoCl2 increases the expression of hypoxic markers HIF-1α, VEGF and CXCR4 in breast cancer MCF-7 cells. Oncology letters. 2018;15(1):1119-24spa
dc.relation.referencesHe G, Peng, X., Wei, S. et al. Exosomes in the hypoxic TME: from release, uptake and biofunctions to clinical applications. Mol Cancer. 2022;21(19)spa
dc.relation.referencesTo KKW, & Cho, W. C. S. Exosome secretion from hypoxic cancer cells reshapes the tumor microenvironment and mediates drug resistance. Cancer Drug Resist. 2022;5(3):577-94spa
dc.relation.referencesTan S, Yang, Y., Yang, W. et al. Exosomal cargos-mediated metabolic reprogramming in tumor microenvironment. J Exp Clin Cancer Res. 2023;42(59)spa
dc.relation.referencesKo SY, Lee, W., Kenny, H.A. et al. Cancer-derived small extracellular vesicles promote angiogenesis by heparin-bound, bevacizumab-insensitive VEGF, independent of vesicle uptake. Commun Biol. 2019;2spa
dc.relation.referencesFan Y, Pionneau, C., Cocozza, F., Boëlle, P. Y., Chardonnet, S., Charrin, S., Théry, C., Zimmermann, P., & Rubinstein, E. Differential proteomics argues against a general role for CD9, CD81 or CD63 in the sorting of proteins into extracellular vesicles. Journal of Extracellular Vesicles. 2023;12(8)spa
dc.relation.referencesTreps L, Perret, R., Edmond, S., Ricard, D., Gavard, J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. Journal of Extracellular Vesicles. 2017;6(1)spa
dc.relation.referencesRoucourt B, Meeussen, S., Bao, J., Zimmermann, P., & David, G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 2015;25(4):412-28spa
dc.relation.referencesChristianson HC, Svensson, K. J., van Kuppevelt, T. H., Li, J. P., & Belting, M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013;110(43)spa
dc.relation.referencesMulcahy L, Pink, R., Carter, D. Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles. 2014;3spa
dc.relation.referencesNajafi M, Goradel, N. H., Farhood, B., Salehi, E., Solhjoo, S., Toolee, H., Kharazinejad, E., & Mortezaee, K. Tumor microenvironment: Interactions and therapy. J Cell Physiol. 2019;234(5):5700–21spa
dc.relation.referencesPaskeh MDA, Entezari, M., Mirzaei, S., Zabolian, A., Saleki, H., Naghdi, M. J., Sabet, S., Khoshbakht, M. A., Hashemi, M., Hushmandi, K., Sethi, G., Zarrabi, A., Kumar, A. P., Tan, S. C., Papadakis, M., Alexiou, A., Islam, M. A., Mostafavi, E., & Ashrafizadeh, M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol. 2022;15(1)spa
dc.relation.referencesLiu Q, Peng, F., & Chen, J. The Role of Exosomal MicroRNAs in the Tumor Microenvironment of Breast Cancer. Int J Mol Ciencia. 2019;20(16)spa
dc.relation.referencesYang E, Wang, X., Gong, Z., Yu, M., Wu, H., & Zhang, D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1)spa
dc.relation.referencesLiu T, Hooda, J., Atkinson, J. M., Whiteside, T. L., Oesterreich, S., & Lee, A. V. Exosomes in Breast Cancer - Mechanisms of Action and Clinical Potential. Mol Cancer Res. 2021;19(6):935-45spa
dc.relation.referencesFridrichova I, & Zmetakova, I. MicroRNAs Contribute to Breast Cancer Invasiveness. Cells. 2019;8(11)spa
dc.relation.referencesHuang S, Dong, M., & Chen, Q. Tumor-Derived Exosomes and Their Role in Breast Cancer Metastasis. International journal of molecular sciences. 2022;23(22)spa
dc.relation.referencesGhalehbandi S, Yuzugulen, J., Pranjol, M. Z. I., & Pourgholami, M. H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol. 2023;949spa
dc.relation.referencesJakobsson L, Franco, C., Bentley, K. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 2010;12:943–53spa
dc.relation.referencesMartín LC. Modelos celulares de interés biomédico para el estudio de la angiogénesis. España: Universidad de León; 2020spa
dc.relation.referencesBirbrair A, Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 2014;307(1)spa
dc.relation.referencesMashouri L, Yousefi, H., Aref, A. R., Ahadi, A. M., Molaei, F., & Alahari, S. K. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18(1)spa
dc.relation.referencesRasband WS. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA1997-2018spa
dc.relation.referencesZhang J, Li, S., Li, L., Li, M., Guo, C., Yao, J., & Mi, S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):17-24spa
dc.relation.referencesShao C, Yang, F., Miao, S., Liu, W., Wang, C., Shu, Y., & Shen, H. Role of hypoxia-induced exosomes in tumor biology. Mol Cancer. 2018;17(1)spa
dc.relation.referencesZhang C, Ji, Q., Yang, Y., Li, Q., & Wang, Z. Exosome: Function and Role in Cancer Metastasis and Drug Resistance. Technol Cancer Res Treat. 2018spa
dc.relation.referencesTang Q, Xiao, X., Li, R., He, H., Li, S., & Ma, C. Recent Advances in Detection for Breast-Cancer-Derived Exosomes. Molecules 2022;27(19)spa
dc.relation.referencesYan W, Wu, X., Zhou, W., Fong, M. Y., Cao, M., Liu, J., Liu, X., Chen, C. H., Fadare, O., Pizzo, D. P., Wu, J., Liu, L., Liu, X., Chin, A. R., Ren, X., Chen, Y., Locasale, J. W., & Wang, S. E. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 2018;20(5)spa
dc.relation.referencesLuga V, Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., Chiu, E., Buchanan, M., Hosein, A. N., Basik, M., & Wrana, J. L. Exosomes Mediate Stromal Mobilization of Autocrine Wnt-PCP Signaling in Breast Cancer Cell Migration. Cell. 2012;151(7):1542–56spa
dc.relation.referencesLi XJ, Ren, Z. J., Tang, J. H., & Yu, Q. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer. Cellular Physiology and Biochemistry. 2017;44(5):1741–8spa
dc.relation.referencesSueta A, Yamamoto, Y., Tomiguchi, M., Takeshita, T., Yamamoto-Ibusuki, M., & Iwase, H. Differential expression of exosomal miRNAs between breast cancer patients with and without recurrence. Oncotarget. 2017;8(41):69934-44spa
dc.relation.referencesDonoso J A, S., González, J. The role of lipids in exosome biology and intercellular communication: Function, analytics and applications. Traffic. 2021;22(7):204-20spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsNeoplasias de la Mamaspa
dc.subject.decsBreast Neoplasmseng
dc.subject.decsVesículas Extracelularesspa
dc.subject.decsExtracellular Vesicleseng
dc.subject.decsExosomasspa
dc.subject.decsExosomeseng
dc.subject.proposalCromatografía de exclusión por tamañospa
dc.subject.proposalHipoxiaspa
dc.subject.proposalUltracentrifugación diferencialspa
dc.subject.proposalAngiogénesisspa
dc.subject.proposalFactor de crecimiento vascular endotelialspa
dc.subject.proposalSize exclusion chromatographyeng
dc.subject.proposalDifferential ultracentrifugationeng
dc.subject.proposalHypoxiaeng
dc.subject.proposalAngiogenesiseng
dc.subject.proposalVascular endotelial growth factoreng
dc.titleCaracterización de vesículas extracelulares tipo exosomas con marcador VEGF en un modelo de cáncer de mamaspa
dc.title.translatedCharacterization of exosome-like extracellular vesicles with VEGF marker in a breast cancer modeleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018453231.2024.pdf
Tamaño:
6.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: