Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB

dc.contributor.advisorVarón Durán, Gloria Margarita
dc.contributor.authorChamorro Ceron, Jhonatan Camilo
dc.contributor.researchgroupGrupo de Investigación: Grupo de Investigación en Electrónica de Altas frecuencias y Telecomunicaciones (CMUN)spa
dc.date.accessioned2024-01-24T19:59:34Z
dc.date.available2024-01-24T19:59:34Z
dc.date.issued2024-01-24
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEste documento compila y presenta los resultados producto del trabajo de investigación titulado “Generación Fotónica de Señales Microondas Sintonizables Usando Tecnología VCSEL y DFB”, en el cual se investigan y exploran experimentalmente diferentes esquemas fotónicos de generación de señales microondas de baja complejidad que posibiliten la generación de señales microondas sintonizables en frecuencia. Para ello, se realizó una revisión del estado del arte de diferentes esquemas fotónicos de generación de señales microondas, donde un análisis comparativo entre cada una de ellas permitió elegir las técnicas de generación más apropiadas, de acuerdo con los objetivos de este proyecto, que posteriormente se implementaron experimentalmente. Se encontró que la implementación experimental para la generación fotónica de señales microondas basada en el esquema de heterodinación óptica y el esquema de inyección óptica – OIL, posibilita la generación de señales microondas continuamente sintonizables desde 5 hasta 20 GHz. Además, La implementación de osciladores optoelectrónicos OEO a 5,75 GHz y 2,25 GHz, mostró la capacidad de generar señales microondas a 5,75 GHz con un ruido de fase de -131,1 dBc/Hz a 10 kHz de la portadora, y señales microondas a 2,25 GHz con un ruido de fase de -110,7 dBc/Hz a 10 kHz de la portadora, posibilitando generar varias señales microondas en un ancho de banda más amplio, con una frecuencia de sintonización discreta, gracias la configuración del OEO para generar armónicos. (Texto tomado de la fuente)spa
dc.description.abstractThis paper presents the results of the research work entitled "Photonic Generation of Tunable Microwave Signals Using VCSEL and DFB Technology", in this document different low complexity photonic schemes for the generation of frequency tunable microwave signals are investigated and explored. To this end, a review of the state of the art of different photonic schemes of microwave signal generation was carried out, where a comparative analysis between each of them allowed to choose the most appropriate generation techniques, according to the objectives of this project, which were subsequently implemented experimentally. It was found that the experimental implementation for the photonic generation of microwave signals based on the optical heterodyning scheme and the optical injection scheme – OIL, enables the generation of continuously tunable microwave signals from 5 to 20 GHz. In addition, the implementation of OEO optoelectronic oscillators at 5.75 GHz and 2.25 GHz, showed the ability to generate microwave signals at 5.75 GHz with a phase noise of -131.1 dBc/Hz at 10 kHz of the carrier, and microwave signals at 2.25 GHz with a phase noise of -110.7 dBc/Hz at 10 kHz of the carrier, making it possible to generate several microwave signals in a wider bandwidth, with a discrete tuning frequency, thanks to the configuration of the OEO to generate harmonics.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaGeneración de Señales Microondasspa
dc.format.extentcv, 61 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85424
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónicaspa
dc.relation.referencesX. S. Yao y L. Maleki, «Optoelectronic Oscillator for Photonic Systems,» IEEE journal of Quantum, vol. 32, nº 7, 1996spa
dc.relation.referencesA. J. Seeds, «Microwave Photonics,» IEEE Trans. Microwave Theory Tech, pp. 877-887, 2002spa
dc.relation.referencesB. Romeira y J. Figuereido, «Optoelectronic Oscillators for Communication Systems,» Centro de Optoelectrónica e Telecomunicações, Departamento de Física, Universidade do Algarve, 2010spa
dc.relation.referencesG. P. Agrawal, Fiber-Optic Communications System, Third Edition, 2002spa
dc.relation.referencesJ. Yao, «Microwave photonics,» J. Lightw. Technol., vol. 27, nº 3, pp. 314-335, Feb. 2009spa
dc.relation.referencesA. J. Seeds y K. Williams, «Microwave photonics,» J. Lightw. Technol., vol. 24, nº 12, pp. 4628-4641, Dec. 2006spa
dc.relation.references4G Américas, «Recomendaciones Sobre el espectro para 5G,» Ago. 2015spa
dc.relation.referencesS. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily y &. H. Ahmad, «Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,» Scientific Reports, vol. 6, 2016spa
dc.relation.referencesJ. Yao, «A Tutorial on Microwave Photonics,» Photonics Society Newsletter, vol. 26, nº 3, p. 4–12, 2012spa
dc.relation.referencesA. Hirata, M. Harada y T. Nagatsuma, «120-GHz Wireless Link using Photonic Techniques for Generation, Modulation, and Emission of Millimeter-wave Signals,» IEEE J. Lightwave Technology, vol. 21, p. 2145–215, 2003spa
dc.relation.referencesA. U. T. Y. S. A. Y. S. S. Takano, T. Noguchi, M. Ishiguro, H. Takara, S. Kawanishi, H. Ito, A. Hirata y T. Nagatsuma, «he First Radioastronomical Observation with Photonic Local Oscillator,» Publ. Astron. Soc. Japan, vol. 55, p. L53–L56, 2003spa
dc.relation.referencesT. Nagatsuma, «Photonic Measurement Technologies for High-speed Electronics,» Meas. Sci. and Technol., vol. 13, nº 11, p. 1655–1663, 2002spa
dc.relation.referencesJ. A. Nanzer, P. T. Callahan, M. L. Dennis y T. R. Clark, «Photonic Signal Generation for Millimeter-Wave Communications,» Johns Hopkins Apl Techincal Digest, vol. 30, nº 4, pp. 299-308, 2012spa
dc.relation.referencesN. Tadao, I. Hiroshi y I. Katsumi, «Photonic Generation of Millimeter/Terahertz Waves and Its Applications,» NTT Technical Review, vol. 5, nº 2, pp. 55-61, 2007spa
dc.relation.referencesJ. Yao y J. Company, «Microwave photonics,» Sci China Inf Sci, vol. 65, nº 12, Dec 2022spa
dc.relation.referencesA. Stöhr, «Pushing the boundaries,» IEEE Microwave Magazine, vol. 10, nº 4, pp. 106-115, Jun. 2009spa
dc.relation.referencesU. Gliese, T. N. Nielsen, S. Nørskov y K. E. Stubkjaer, «Multifunctional FiberOptic Microwave Links Based on Remote Heterodyne Detection,» IEEE Transactions on Microwave Theory and Techniques, vol. 46, nº 5, p. 458–468, 1998spa
dc.relation.referencesA. Stöhr, «Photonic Technologies for Broadband Microwave Wireless Systems, Instrumentation and Sensig,» PhD thesis, Universität Duisburg-Essen, 2013spa
dc.relation.referencesA. Stöhr, M. Weiß, A. Malcoci, A. G. Steffan, D. Trommer, A. Umbach y D. Jäger, «Wideband photonic millimeter-wave synthesizer using a high-power pin waveguide,» de European Microwave Conference, 2007spa
dc.relation.referencesS. Fedderwitz, V. Rymanov, M. Weiß, A. Stöhr, D. Jäger, A. G. Steffan y A. Umbach, «Ultra-broadband and low phase noise photonic millimeter-wave generation,» de International Topical Meeting on Microwave Photonics. Jointly held with the 2008 AsiaPacific Microwave Photonics Conference, MWP/APMP, 2008spa
dc.relation.referencesM. Weiß, A. Stöhr, A. Malcoc, A. G. Steffan, D. Trommer, A. Umbach y D. Jäge, «Ultra-wideband photonic millimeter-wave synthesizers with coaxial (DC-110GHz) and rectangular waveguide (69-112GHz) output ports,» de European Conference on Optical Communication, Berlin , 2007spa
dc.relation.referencesJ. Yao, «Microwave Photonic Systems,» Journ of Lightwave Technology, vol. 40, nº 20, pp. 6595-6607, Oct. 2022spa
dc.relation.referencesA. Stöhr, R. Heinzelmann, C. Kaczmarek y D. Jäger, «Ultra-broadband Ka to W-band 1.55 µm travelling-wave photomixer,» Electronics Letters, vol. 36, pp. 970-972, 2000spa
dc.relation.referencesM. Weiß, «60 GHz photonic millimeter-wave communication systems,» PhD thesis, Universität Duisburg-Essen, 2010spa
dc.relation.referencesT. Nagatsuma, N. Kukutsu y Y. Kado, «Photonic Generation of Millimeter and TerahertzWaves and Its Applications,» Automatika, vol. 49, nº 1, p. 51–59, 2008spa
dc.relation.referencesA. Hirata, M. Harada, K. Sato y T. Nagatsuma, «Low-cost millimeter-wave photonic techniques for Gigabit/s wireless link,» IEICE Transactions on Electronics, vol. 86, nº 7, p. 1123–1128, 2003spa
dc.relation.referencesS. Fedderwitz, «Generation of Frequency Tunable and Low Phase Noise Micro- and MillimeterWave Signals using Photonic Technologies,» PhD thesis, Universität Duisburg-Essen, 2015spa
dc.relation.referencesK. Sato, «100 GHz optical pulse generation using Fabry-Perot laser under continuous wave operation,» Electron Letters, vol. 37, pp. 763-764, 2001spa
dc.relation.referencesK. Sato, «Active mode locking at 50 GHz repetition frequency by half‐ frequency modulation of monolithic semiconductor lasers integrated with electro absorption modulators,» Appl. Phys. Lett., vol. 69, pp. 2626-2628, 1996spa
dc.relation.referencesS. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu y Y. Ogawa, «Repetition frequency multiplication of mode-locked pulses using fiber dispersion,» IEEE Journal of Lightwave Technolog, vol. 16, nº 3, p. 405–410, 1998spa
dc.relation.referencesB. A. Khawaja y M. J. Cryan, «Wireless hybrid mode locked lasers for next generation radio-over-fiber system,» IEEE/OSA Journal of Lightwave Technology, vol. 28, pp. 2268-227, 2010spa
dc.relation.referencesT. Ohno, F. Nakajima, T. Furuta y H. Ito, «240 GHz active mode locked laser diode,» Electronics Letters, vol. 41, nº 19, p. 1057–1059, 2005spa
dc.relation.referencesO. P. Gough, C. F. C. Silva y A. J. Seeds, «Exact millimetre wave frequency synthesis by injection locked laser comb line selection,» de International Topical Meeting on Microwave Photonics, 1999spa
dc.relation.referencesA. Coldren, S. Parker, A. Sivananthan, M. Lu y L. Johansson, «Integrated Phase-locked Multi THz Comb for Broadband Offset Locking,» University of California , Santa Barbara, 2012spa
dc.relation.referencesL. Goldberg, A. Yurek, H. F. Taylor y J. F. Weller, «35 GHz microwave signal generation with an injection-locked laser diode,» Electron Lett., vol. 21, nº 18, pp. 714-715, 1985spa
dc.relation.referencesS. Fukushima, C. F. C. Silva, Y. Muramoto y A. J. Seeds, «Optoelectronic millimeter-wave synthesis using an optical frequency comb Generator, optically injection locked lasers, and a unitraveling-carrier photodiode,» J. Lightw. Technol., vol. 21, nº 12, pp. 3043-3051, 2003spa
dc.relation.referencesA. Ngoma, «Radio-over-Fibre Technology for Broadband Wireless Communication Systems,» PhD thesis, Technische Universiteit Eindhoven, Netherlands, 2005spa
dc.relation.referencesE. K. Lau, «High-speed modulation of optical injection-locked semiconductor lasers,» PhD Thesis, EECS Department, University of California, Berkeley, 2006spa
dc.relation.referencesL. Enloe y J. Rodda, «Laser phase-locked loop,» Proceedings of the IEEE, vol. 53, pp. 165-166, 1965spa
dc.relation.referencesL. Langley, M. Elkin, C. Edge, M. Wale, U. Gliese, X. Huang y A. Seeds, «Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,» IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 1257-126, 1999spa
dc.relation.referencesJ. E. Bowers, A. Ramaswamy, L. A. Johansson, J. Klamkin, M. Sysak, D. Zibar, L. Coldren, M. Rodwell, L. Lembo, R. Yoshimitsu, D. Scott, R. Davis y P. Ly, «Linear coherent receiver based on a broadband and sampling optical phase-locked loop,» International Topical Meeting on Microwave Photonics, pp. 225-228, 2007spa
dc.relation.referencesP. Shen, Davies, Shillue, D'Addario y Payne, «Millimetre wave generation using an optical comb generator with optical phase-locked loops,» International Topical Meeting on Microwave Photonics, p. 101–104, 2002spa
dc.relation.referencesM. Bhattacharya, A. Saw y T. Chattopadhyay, «Millimeter-wave generation through phase-locking of two modulation sidebands of a pair of laser diodes,» IEEE Photonics Technol. Lett, vol. 16, nº 2, p. 596–598, 2004spa
dc.relation.referencesH. Shams, K. Balakier, M. J. Fice, L. Ponnampalam, C. S. Graham, C. C. Renaud, A. J. Seeds y F. V. Dijk, «Coherent frequency tuneable thz wireless signal generation using an optical phase lock loop system,» International Topical Meeting on Microwave Photonics (MWP), pp. 1-4, 2017spa
dc.relation.referencesA. B. Dar y F. Ahmad, «Optical millimeter-wave generation techniques: An overview,» Optik, vol. 258, nº 168858, 2022spa
dc.relation.referencesC. Walton, A. C. Bordonalli y A. J. Seeds, «High-performance heterodyne optical injection phase-lock loop using wide linewidth semiconductor lasers,» IEEE Photonics Technology Letter, vol. 10, pp. 427-429, 1998spa
dc.relation.referencesA. C. Bordonalli, C. Walton y A. J. Seeds, «High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical,» IEEE/OSA Journal of Lightwave Technology, vol. 17, nº 2, p. 328–342, 1999spa
dc.relation.referencesL. Kazovsky, «Balanced phase-locked loops for optical homodyne receivers: Performance analysis, design considerations, and laser linewidth requirements,» IEEE/OSA Journal of Lightwave Technology, vol. 4, pp. 182-195, 1986spa
dc.relation.referencesK. J. Williams, «6–34 GHz offset phase locking of Nd: YAG 1319 nm nonplanar ring laser,» Electron. Lett, vol. 25, nº 18, p. 1242–1243, 1989spa
dc.relation.referencesIPHOBAC, «Publishable final IPHOBAC activity report,» Duisburg, 2010spa
dc.relation.referencesR. T. Ramos, P. Gallion, D. Erasme, A. J. Seeds y A. Bordonalli, «Optical injection locking and phase-lock loop combined systems,» Optics Letters, vol. 19, nº 1, pp. 4-6, 1994spa
dc.relation.referencesL. Johansson y A. Seeds, «Fibre-integrated heterodyne optical injection phase-lock loop for optical generation of millimetre-wave carriers,» IEEE MTT-S International Microwave Symposium Diges, vol. 3, p. 1737–1740, 2000spa
dc.relation.referencesL. Johansson, D. Wake y A. Seeds, «Millimetre-wave over fibre transmission using a BPSK reference-modulated optical injection phase-lock loop,» Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition, pp. WV3-WV3, 2001spa
dc.relation.referencesD. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang y Y. Shi, «Demonstration of 110 GHz electro-optic polymer modulators,» pplied Physics, vol. 70, p. 3335–3337, 1997spa
dc.relation.referencesG. Qi, J. Yao, J. Seregelyi, S. Paquet y C. Belisle, «Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,» IEEE Transactions on Microwave Theory and Techniques, vol. 53, nº 10, pp. 3090 - 3097, 2005spa
dc.relation.referencesW. Li y J. Yao, «Investigation of photonically assisted microwave frequency multiplication based on external modulation,» IEEE Transactions on Microwave Theory and Techniques, vol. 58, nº 11, pp. 3259 - 3268, 2010spa
dc.relation.referencesG. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu y R. Kashyap, «Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques,» Journal of Lightwave Technology, vol. 24, nº 12, pp. 4861 - 4875, 2006spa
dc.relation.referencesX. S. Yao y L. Maleki, «High frequency optical subcarrier generator,» Electronics Letters, vol. 30, nº 18, p. 1525–1526, 1994spa
dc.relation.referencesX. S. Yao y L. Maleki, «A novel photonic oscillator,» The Telecommunications and Data Acquisition Report, p. 32–43, 1995spa
dc.relation.referencesX. S. Yao y L. Maleki, «Optoelectronic microwave oscillator,» J. Opt. Soc. Am. B, vol. 13, nº 8, p. 1725–1735, 1996spa
dc.relation.referencesA. Neyer y E. Voges, «Nonlinear electrooptic oscillator using an integrated interferometerometer,» Optics Communications, vol. 37, nº 3, p. 169–174, 1981spa
dc.relation.referencesA. Neyer y E. Voges, «High-frequency electro-optic oscillator using an integrated interferometer,» Applied Physics Letters, vol. 40, nº 1, p. 6–8, 1982spa
dc.relation.referencesC. Muñoz, «Optical Microwave Signal Generation for Data Transmission in Optical Networks,» PhD tesis, Universidad Nacional de Colombia, Bogotá, 2020spa
dc.relation.referencesW. Andreas, «Generation, Modulation, and Detection of Signals in Microwave Photonic Systems,» PhD tesis, Chalmers University of Technology, 2008spa
dc.relation.referencesX. S. Yao y L. Maleki, «Optoelectronic microwave oscillator,» J. Opt. Soc. Amer. B, vol. 13, nº 8, p. 1725–1735, 1999spa
dc.relation.referencesN. Yu, E. Salik y L. Maleki, «Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,» Optics Lett., vol. 30, nº 10, p. 1231–1233, 2005spa
dc.relation.referencesK. Volyanskiy, Y. K. Chembo, L. Larger y E. Rubiola, «Contribution of Laser Frequency and Power Fluctuations to the Microwave Phase Noise of Optoelectronic Oscillators,» Journal of Lightwave Technology, vol. 28, nº 18, p. 2730–2735, 2010spa
dc.relation.referencesX. S. Yao y L. Maleki, «Multiloop optoelectronic oscillator,» IEEE J. Quantum Electron., vol. 36, nº 1, p. 79–84, 2000spa
dc.relation.referencesD. Eliyahu y L. Maleki, «Low phase noise and spurious level in multi-loop optoelectronic oscillators,» IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, p. 405–410, 2003spa
dc.relation.referencesT. Bánky, B. Horváth y T. Berceli, «Optimum configuration of multiloop optoelectronic oscillators,» J. Opt. Soc. Am B, vol. 23, nº 7, pp. 1371-1380, 2006spa
dc.relation.referencesK.-H. Lee, J.-Y. Kim y W.-Y. Choi, «Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Operation,» IEEE Photon. Technol. Lett, vol. 20, nº 19, pp. 1645-1647, 2008spa
dc.relation.referencesP. Devgan, «A Review of Optoelectronic Oscillators for High Speed Signal Processing Applications,» ISRN Electronics, vol. 2013, p. 1–16, 2013spa
dc.relation.referencesG. Charalambous, G. K. M. Hasanuzzaman, A. Perentos y S. Iezekiel, «High-Q wavelength division multiplexed optoelectronic oscillator based on a cascaded multiloop topology,» Optics Communications, vol. 387, p. 361–365, 2017spa
dc.relation.referencesK. Saleh, «High spectral purity microwave sources based on optical resonators,» PhD tesis, Université de Toulouse, 2012spa
dc.relation.referencesZ. Abdallah, «Microwave sources based on high quality factor resonators; Modeling, Optimization and Metrology,» PhD tesis, Université Toulouse 3 Paul Sabatier, 2016spa
dc.relation.referencesC. Muñoz, J. Coronel, J. Chamorro, A. Rissons y M. Varón, «Microwave signal generation with optical injection locking,» de Latin America Optics and Photonics Conference, (Optical Society of America, 2016), 2016spa
dc.relation.referencesJ. P. Zhuang y S. C. Chan, «Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,» Optic Express, vol. 23, nº 3, pp. 2777-2797, 2015spa
dc.relation.referencesP. Zhou, N. Li y S. Pan, «Period-One Laser Dynamics for Photonic Microwave Signal Generation and Applications,» Photonics , vol. 9, nº 227, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcMicrowaveseng
dc.subject.lembFotonesspa
dc.subject.lembPhotonseng
dc.subject.lembMicroondasspa
dc.subject.proposalGeneración de señales microondasspa
dc.subject.proposalSintonizaciónspa
dc.subject.proposalHeterodinaciónspa
dc.subject.proposalInyección ópticaspa
dc.subject.proposalOscilador optoelectrónicospa
dc.subject.proposalVCSELspa
dc.subject.proposalDFBeng
dc.subject.proposalMicrowave signals generationeng
dc.subject.proposalTuningeng
dc.subject.proposalHeterodyningeng
dc.subject.proposalOptical injectioneng
dc.subject.proposalOptoelectronic oscillatoreng
dc.subject.proposalVCSELeng
dc.subject.proposalDFBeng
dc.titleGeneración fotónica de señales microondas sintonizables usando tecnología VCSEL y DFBspa
dc.title.translatedPhotonic generation of tunable microwave signals using VCSEL and DFB technologyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1031144663.2023.pdf
Tamaño:
2.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Electrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: