Estudio comparativo de algoritmos de clasificación de imágenes basados en análisis de datos funcionales. Caso de estudio en superficies de fractura de elementos mecánicos

dc.contributor.advisorBohorquez Castañeda, Martha Patriciaspa
dc.contributor.authorEspejo Mora, Edgarspa
dc.contributor.orcidEspejo-Mora, Edgar [0000-0002-3745-102X]spa
dc.contributor.researchgroupEstadística Espacialspa
dc.contributor.scopusEspejo-Mora, Edgar [57208106992]spa
dc.date.accessioned2024-07-17T15:34:13Z
dc.date.available2024-07-17T15:34:13Z
dc.date.issued2024-07-16
dc.descriptionilustraciones, diagramasspa
dc.description.abstractPara este trabajo se usaron fotografías tomadas a superficies de fractura de elementos mecánicos, que fallaron mediante fractura dúctil, fractura frágil y fractura por fatiga. Cada uno de estos tipos de fractura deja una textura característica, a partir de la cual un experto en análisis de fallas puede usarla para clasificarlas. De las imágenes se extrajeron datos funcionales y con ellos se evaluó la exactitud de varios modelos de clasificación. De cada imagen de 200 x 200 pixeles, se extrajeron 400 datos funcionales correspondientes a cada línea de pixeles en X e Y. Como modelos se usaron métodos estadísticos basados en distancias, modelo lineal generalizado (MLG), modelo aditivo generalizado (MAG) y modelos basados en medidas de profundidad. También se usaron modelos de aprendizaje de máquina como K-vecinos más cercanos, máquina de soporte vectorial (MSV), regresión logística, árbol de decisión, bosque aleatorio y red neuronal tipo perceptrón. En los modelos estadísticos se evaluó también el efecto sobre la exactitud de clasificación, de incluir información de autocorrelación espacial intra dato funcional o del operador de covarianza. Como conclusiones relevantes se obtuvo que la inclusión de la información de autocorrelación espacial a los clasificadores basados en métodos estadísticos, mejora la exactitud de los mismos y que los datos funcionales extraídos de las imágenes tienen la información suficiente para entrenar modelos de clasificación. (Texto tomado de la fuente).spa
dc.description.abstractFor this work, photographs taken of fracture surfaces of mechanical elements were used, which failed through ductile fracture, brittle fracture and fatigue fracture. Each of these fracture types leaves a characteristic texture, from which a failure analysis expert can use to classify them. Functional data was extracted from the images and the accuracy of various classification models was evaluated. From each image of 200 x 200, 400 functional data were extracted corresponding to each line of pixels X and Y. Statistical methods based on distances, generalized linear model (GLM), generalized additive model (GAM) and models based on depth measurements were used. Machine learning models such as K-nearest neighbors, support vector machine (SVM), logistic regression, decision tree, random forest and perceptron-type neural network were also used. In the statistical models, the effect on classification accuracy of including spatial autocorrelation information or the covariance operator was also evaluated. As relevant conclusions, it was obtained that the inclusion of spatial autocorrelation information to classifiers based on statistical methods, improves their accuracy and that the functional data extracted from the images have sufficient information to train classification models.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaDatos funcionales espacialesspa
dc.format.extentxii, 87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86524
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.references[Alonso et al., 2012] Andrés M. Alonso, David Casado, Juan Romo, Supervised classification for functional data: A weighted distance approach, Computational Statistics & Data Analysis, Volume 56, Issue 7, 2012, Pages 2334-2346, ISSN 0167-9473, https://doi.org/10.1016/j.csda.2012.01.013.spa
dc.relation.references[Ashraf et al., 2012] Hemeida, Ashraf & Hassan, Moatamad. (2022). Image classification based deep learning: A Review. Aswan University Journal of Sciences and Technology. 2. 10.21608/aujst.2022.259887.spa
dc.relation.references[Blanquero et al., 2019] Rafael Blanquero, Emilio Carrizosa, Asunción Jiménez-Cordero, Belén Martín-Barragán, Variable selection in classification for multivariate functional data, Information Sciences, Volume 481, 2019, Pages 445-462, ISSN 0020-0255, https://doi.org/10.1016/j.ins.2018.12.060.spa
dc.relation.references[Chen et al., 2021] Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of Image Classification Algorithms Based on Convolutional Neural Networks. Remote Sens. 2021, 13, 4712. https://doi.org/10.3390/rs13224712.spa
dc.relation.references[Delaigle et al., 2012] Delaigle, Aurore & Hall, Peter. (2012). Achieving near Perfect Classification for Functional Data. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 74. 267 - 286. 10.1111/j.1467-9868.2011.01003.x.spa
dc.relation.references[Dryden et al., 2009] Ian L. Dryden, Alexey Koloydenko, Diwei Zhou "Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging," The Annals of Applied Statistics, Ann. Appl. Stat. 3(3), 1102-1123, (September 2009)spa
dc.relation.references[Febrero et al., 2012] Febrero-Bande M, Oviedo de la Fuente M (2012). “Statistical Computing in Functional Data Analysis: The R Package fda.usc.” Journal of Statistical Software, 51(4), 1–28. https://www.jstatsoft.org/v51/i04/.spa
dc.relation.references[Ghigliet et al., 2017] Ghiglietti, Andrea & Ieva, Francesca & Paganoni, Anna. (2017). Statistical inference for stochastic processes: Two-sample hypothesis tests. Journal of Statistical Planning and Inference. 180. 49-68. 10.1016/j.jspi.2016.08.004.spa
dc.relation.references[Jiaohua et al., 2020] Jiaohua Qin, Wenyan Pan, Xuyu Xiang, Yun Tan, Guimin Hou, A biological image classification method based on improved CNN, Ecological Informatics, Volume 58, 2020, 101093, ISSN 1574-9541, https://doi.org/10.1016/j.ecoinf.2020.101093.spa
dc.relation.references[Krishna et al., 2018] krishna, M & Neelima, M & Mane, Harshali & Matcha, Venu. (2018). Image classification using Deep learning. International Journal of Engineering & Technology. 7. 614. 10.14419/ijet.v7i2.7.10892.spa
dc.relation.references[Krizhevsky et al., 2012] Krizhevsky, Alex & Sutskever, Ilya & Hinton, Geoffrey. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems. 25. 10.1145/3065386.spa
dc.relation.references[Kumar et al., 2012] Anil Kumar, C.P. Gandhi, Yuqing Zhou, Rajesh Kumar, Jiawei Xiang, Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images, Applied Acoustics, Volume 167, 2020, 107399, ISSN 0003-682X, https://doi.org/10.1016/j.apacoust.2020.107399.spa
dc.relation.references[Llop et al., 2008] P. Llop, L. Forzani, R. Fraiman, On local times, density estimation and supervised classification from functional data, Journal of Multivariate Analysis, Volume 102, Issue 1, 2011, Pages 73-86, ISSN 0047-259X, https://doi.org/10.1016/j.jmva.2010.08.002.spa
dc.relation.references[Nilsback et al., 2008] M. -E. Nilsback and A. Zisserman, "Automated Flower Classification over a Large Number of Classes," 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, Bhubaneswar, India, 2008, pp. 722-729, doi: 10.1109/ICVGIP.2008.47.spa
dc.relation.references[Oviedo et al., 2011] Manuel Oviedo de la Fuente, Manuel Febrero Bande, Localización: X Congreso SGAPEIO, Congreso Galego de Estatística e Investigación de Operacións: Pazo de Congresos e Exposicións, Pontevedra, 3, 4 y 5 de novembro de 2011, 2011, ISBN 978-84-938642-2-4.spa
dc.relation.references[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., … others. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825–2830.spa
dc.relation.references[R Core Team] R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.spa
dc.relation.references[Radhesyam et al., 2020] Radhesyam Vaddi, Prabukumar Manoharan, Hyperspectral image classification using CNN with spectral and spatial features integration, Infrared Physics & Technology, Volume 107, 2020, 103296, ISSN 1350-4495, https://doi.org/10.1016/j.infrared.2020.103296.spa
dc.relation.references[Ramsay et al., 2005] J. O. Ramsay, B. W. Silverman, Functional Data Analysis, Springer, 2005, New York, ISBN 978-0-387-40080-8, https://doi.org/10.1007/b98888.spa
dc.relation.references[Sabat-Tomala et al., 2020] Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Comparison of Support Vector Machine and Random Forest Algorithms for Invasive and Expansive Species Classification Using Airborne Hyperspectral Data. Remote Sens. 2020, 12, 516. https://doi.org/10.3390/rs12030516spa
dc.relation.references[Sheykhmousa et al., 2020] M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi and S. Homayouni, "Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 6308-6325, 2020, doi: 10.1109/JSTARS.2020.3026724.spa
dc.relation.references[Shuoyang et al., 2021] Shuoyang Wang, Zuofeng Shang, Guanqun Cao and Jun S. Liu, Optimal classification for functional data, 2021, arXiv:2103.00569 [stat.ME]spa
dc.relation.references[Van Rossum et al., 1995] Van Rossum G and Drake Jr FL. Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam; 1995.spa
dc.relation.references[Waqar et al., 2019] M. Waqar Akram, Guiqiang Li, Yi Jin, Xiao Chen, Changan Zhu, Xudong Zhao, Abdul Khaliq, M. Faheem, Ashfaq Ahmad, CNN based automatic detection of photovoltaic cell defects in electroluminescence images, Energy, Volume 189, 2019, 116319, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2019.116319.spa
dc.relation.references[Watanabe et al., 2019] Akihiko Watanabe, Naoto Hirose, Hyoungseop Kim, Ichiro Omura, Convolutional neural network (CNNs) based image diagnosis for failure analysis of power devices, Microelectronics Reliability, Volumes 100–101, 2019, 113399, ISSN 0026-2714, https://doi.org/10.1016/j.microrel.2019.113399.spa
dc.relation.references[Xinyu et al., 2023] Xinyu Huang, Ziyang Pan, A Functional Data Classification Model Utilizing Functional Mahalanobis Distance and Regenerative Kernel Methods. Journal of Electronics and Information Science (2023) Vol. 8: 104-110. DOI: http://dx.doi.org/10.23977/10.23977/jeis.2023.080613.spa
dc.relation.references[Yeonjoo et al., 2019] Yeonjoo Park, Douglas G. Simpson, Robust probabilistic classification applicable to irregularly sampled functional data, Computational Statistics & Data Analysis, Volume 131, 2019, Pages 37-49, ISSN 0167-9473, https://doi.org/10.1016/j.csda.2018.08.001.spa
dc.relation.references[Yinfeng et al., 2016] Yinfeng Meng, Jiye Liang, Yuhua Qian, Comparison study of orthonormal representations of functional data in classification, Knowledge-Based Systems, Volume 97, 2016, Pages 224-236, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2015.12.016.spa
dc.relation.references[Zhao et al., 2020] Yudi Zhao, Kuangrong Hao, Haibo He, Xuesong Tang, Bing Wei, A visual long-short-term memory based integrated CNN model for fabric defect image classification, Neurocomputing, Volume 380, 2020, Pages 259-270, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2019.10.067.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalAprendizaje supervisadospa
dc.subject.proposalFractografíaspa
dc.subject.proposalAnálisis de datos funcionalesspa
dc.subject.proposalAutocorrelación espacialspa
dc.subject.proposalSupervised learningeng
dc.subject.proposalFractographyeng
dc.subject.proposalFunctional Data Analysiseng
dc.subject.proposalSpatial autocorrelationeng
dc.subject.wikidataclassification algorithmeng
dc.subject.wikidatared neuronal artificialspa
dc.subject.wikidataartificial neural networkeng
dc.subject.wikidataresistencia de materialesspa
dc.subject.wikidatastrength of materialseng
dc.subject.wikidataaprendizaje automáticospa
dc.subject.wikidatamachine learningeng
dc.titleEstudio comparativo de algoritmos de clasificación de imágenes basados en análisis de datos funcionales. Caso de estudio en superficies de fractura de elementos mecánicosspa
dc.title.translatedComparative study of image classification algorithms based on functional data analysis. Case study on fracture surfaces of mechanical elementseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79756570.2024.pdf
Tamaño:
4.98 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: