Exploración de un transportador de NAD+ y/o sus precursores en Leishmania

dc.contributor.advisorRamírez Hernández, María Helena
dc.contributor.authorVillamil Silva, Sharon Eliana
dc.contributor.researchgroupLIBBIQ UNspa
dc.date.accessioned2021-10-07T13:21:27Z
dc.date.available2021-10-07T13:21:27Z
dc.date.issued2021-05-05
dc.descriptionilustraciones, fotografías, gráficasspa
dc.description.abstractEl parásito intracelular Leishmania compite con sus hospederos para la adquisición de compuestos esenciales y, por lo tanto, debe desarrollar mecanismos eficientes de captación. Este proceso es mediado por proteínas transportadoras que desempeñan un papel fundamental en la homeostasis celular, no solo permiten que el parásito compita de manera eficiente con los tejidos, si no también que estos compuestos sean distribuidos de manera competente al interior celular. Múltiples familias de proteínas tienen la capacidad de movilizar moléculas de relevancia metabólica para este tipo organismos, en particular, el trasporte del dinucleótido de nicotinamida y adenina, NAD+ una molécula que desempeña un rol clave en funciones esenciales ha sido descrito principalmente por las proteínas SLC25A, una familia de transportadores mitocondriales (MCF) presente únicamente en eucariotas. En respuesta a la creciente tasa de desarrollo de resistencia a los medicamentos, así como los numerosos efectos secundarios de los mismos para el control de organismos de gran importancia en la salud pública de nuestro país como lo es Leishmania; caracterizar las proteínas responsables de esta translocación, con base en homologías, ya sea de secuencia o estructura con sus ortólogos, promete proporcionar información sobre muchos aspectos básicos de su biología, determinantes para el desarrollo de nuevas terapias en el tratamiento de estas parasitemias. En este trabajo se estudiaron en Leishmania braziliensis, dos candidatos a transportador de NAD+; esto mediante el uso de herramientas bioinformáticas, donde se encontró que las proteínas denominadas LbNDT2 y LbNDT3, poseen todas las características estructurales y de secuencia propias de la familia de transportadores mitocondriales (MCF). Presentando potenciales sitios de modificación postraduccional mediante fosforilación, acetilación y glicosilación. De igual manera, al compararlas con los ortólogos descritos en otros organismos, se evidencia que estas proteínas son altamente conservadas a nivel estructural. Por otro lado, de manera experimental, con el fin de evaluar su capacidad transportadora fueron desarrollados tres acercamientos de manera paralela; el primero involucró el uso del sistema heterólogo algal Chlamydomonas reinhardtii; permitiendo insertar el candidato LbNDT2 en una membrana eucariota; el segundo, mediante la manipulación del vector bacteriano pETx28Mistic, se logró la inserción de las proteínas de interés, en la membrana plasmática de un sistema procariota, realizando una aproximación a su estudio in vivo; y finalmente, ensayos de complementación llevados a cabo en la levadura Saccharomyces cerevisiae, donde fue reestablecido el retraso en el crecimiento de los mutantes, con la inserción de los genes de interés, corroborando de manera indirecta la actividad de las proteínas. Asimismo, utilizando la tecnología del ADN recombinante y el sistema de expresión heterólogo Escherichia coli se obtuvo el antígeno necesario para la producción de una herramienta inmunológica desarrollada en el modelo aviar, que permitió su estudio in situ, encontrando que estas proteínas se ubican a nivel mitocondrial en el estadio de promastigote. En general, corroborar la función de este tipo de proteínas representa un reto; sin embargo, gracias a estos acercamientos se puede concluir que la LbNDT2 y LbNDT3, desempeñan un papel importante para el metabolismo energético en este parásito intracelular. De manera adicional, se estudió mediante la clonación, expresión y purificación, la Triparredoxina peroxidasa citosólica de L. braziliensis (LbTXNPxII) a partir del sistema heterólogo E. coli; permitiendo generar una herramienta inmunológica en modelo aviar, para el estudio in situ de esta proteína y la determinación de posibles interacciones moleculares en el parásito, mediante ensayos de co-inmunoprecipitación. (Texto tomado de la fuente).spa
dc.description.abstractThe intracellular parasite Leishmania competes with its hosts for the acquisition of essential compounds and, therefore, must develop efficient uptake mechanisms. This process is mediated by transporter proteins that play a fundamental role in cellular homeostasis, not only allowing the parasite to compete efficiently with the tissues, but also for these compounds to be distributed competently within the cell. Multiple families of proteins can mobilize molecules of metabolic relevance for this type of organisms the transport of the nicotinamide and adenine dinucleotide, NAD+ a molecule that plays a key role in essential functions has been described mainly by the SLC25A proteins, a family of mitochondrial transporters (MCF) present only in eukaryotes. In response to the increasing rate of development of resistance to drugs, as well as the numerous side effects of the same for the control of organisms of great importance in the public health of our country such as Leishmania; characterizing the proteins responsible for this translocation, based on homologies, either in sequence or structure with their orthologs, promises to provide information on many basic aspects of their biology, determining factors for the development of new therapies in the treatment of these parasitemias. In this work, two candidates for the NAD + transporter were studied in Leishmania braziliensis; this using bioinformatic tools, where it was found that the proteins called LbNDT2 and LbNDT3, possess all the structural and sequence characteristics of the family of mitochondrial transporters (MCF). Presenting potential post-translational modification sites by phosphorylation, acetylation, and glycosylation. Similarly, when comparing them with the orthologs described in other organisms, it is evident that these proteins are highly conserved at the structural level. On the other hand, in an experimental way, in order to evaluate its transport capacity, three approaches were developed in parallel; the first involved the use of the heterologous algal system Chlamydomonas reinhardtii; allowing the candidate LbNDT2 to be inserted into a eukaryotic membrane; the second, by manipulating the bacterial vector pETx28Mistic, the proteins of interest were inserted into the plasma membrane of the prokaryotic system, making an approach to their in vivo study; and finally, complementation tests carried out in the yeast Saccharomyces cerevisiae, where the growth retardation of the mutants was reestablished, with the insertion of the genes of interest, indirectly corroborating the activity of the proteins. Likewise, using recombinant DNA technology and the Escherichia coli heterologous expression system, the necessary antigen was obtained to produce an immunological tool developed in the avian model, which allowed the candidates to be studied in situ, finding that these proteins were located at the mitochondrial level in the promastigote stage. In general, corroborating the function of this type of protein represents a challenge; however, thanks to these approaches it can be concluded that LbNDT2 and LbNDT3 play an important role for energy metabolism in this intracellular parasite. Additionally, the cytosolic Triparredoxin peroxidase of L. braziliensis (LbTXNPxII) from the heterologous E. coli system was studied by means of cloning, expression, and purification, allowing the generation of an immunological tool in an avian model, for the in-situ study of this protein and the determination of possible molecular interactions in the parasite, through co-immunoprecipitation assays.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaMetabolismo energético de parásitos protozoariosspa
dc.description.sponsorshipDirección académica con la Beca Asistente Docente durante los periodos 2018-II y 2019-I.spa
dc.description.sponsorshipBeca-Pasantía Jóvenes investigadores de Colciencias convocatoria 812, por el apoyo durante los periodos 2019-II y 2020-I.spa
dc.description.sponsorshipDIB por la financiación de proyecto titulado “Explorando el metabolismo del NAD de parásitos protozoos: En busca de blancos terapéuticos promisorios para el tratamiento de enfermedades infecciosas de alta incidencia en la salud pública”, código 42176.spa
dc.description.sponsorshipUniversidad Nacional de Colombia, convocatoria "UN INNOVA" por la financiación del proyecto titulado “Desarrollo del modelo biológico, Chlamydomonas reinhardtii como sistema promisorio para la expresión de proteínas recombinantes y la implementación de ensayos de citotoxicidad.”, código 49183.spa
dc.format.extentxxiv, 58 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80406
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.indexedBiremespa
dc.relation.references[1] Grupo de Investigaciones Microbiológicas-UR (GIMUR), “Colombia, el país con más especies de parásitos de Leishmania,” Programa de Comunicación de la Ciencia Universidad Ciencia y Desarrollo - Universidad del Rosario, pp. 2–8, 2017.spa
dc.relation.references[2] J. Sunter and K. Gull, “Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding,” Open Biology, vol. 7, no. 9, p. 170165, 2017, doi: 10.1098/rsob.170165.spa
dc.relation.references[3] A. G. M. Tielens and J. J. van Hellemond, “Surprising variety in energy metabolism within Trypanosomatidae,” Trends in Parasitology, vol. 25, no. 10, pp. 482–490, 2009, doi: 10.1016/j.pt.2009.07.007.spa
dc.relation.references[4] P. Kaye and P. Scott, “Leishmaniasis: Complexity at the host-pathogen interface,” Nature Reviews Microbiology, vol. 9, no. 8, pp. 604–615, 2011, doi: 10.1038/nrmicro2608.spa
dc.relation.references[5] L. Monzote, “Current Treatment of Leishmaniasis: A Review,” The Open Antimicrobial Agents Journal, vol. 1, pp. 9–19, 2009, doi: 10.2174/1876518100901010009.spa
dc.relation.references[6] L. E. Contreras, R. Neme, and M. H. Ramírez, “Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase,” Protein Expression and Purification, vol. 115, pp. 26–33, 2015, doi: 10.1016/j.pep.2015.08.022.spa
dc.relation.references[7] N. Forero-Baena, D. Sánchez-Lancheros, J. C. Buitrago, V. Bustos, and M. H. Ramírez-Hernández, “Identification of a nicotinamide/nicotinate mononucleotide adenylyltransferase in Giardia lamblia (GlNMNAT),” Biochimie Open, vol. 1, pp. 61–69, 2015, doi: 10.1016/j.biopen.2015.11.001.spa
dc.relation.references[8] C. H. Niño, N. Forero-Baena, L. E. Contreras, D. Sánchez-Lancheros, K. Figarella, and M. H. Ramírez, “Identification of the nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi,” Memorias do Instituto Oswaldo Cruz, vol. 110, no. 7, pp. 890–897, 2015, doi: 10.1590/0074-02760150175.spa
dc.relation.references[9] M. Molina-Arcas, F. Casado, and M. Pastor-Anglada, “Nucleoside Transporter Proteins,” Current Vascular Pharmacology, vol. 7, no. 4, pp. 426–434, 2009, doi: 10.2174/157016109789043892.spa
dc.relation.references[10] S. M. Landfear, “Nutrient transport and pathogenesis in selected parasitic protozoa,” Eukaryotic Cell, vol. 10, no. 4, pp. 483–493, 2011, doi: 10.1128/EC.00287-10.spa
dc.relation.references[11] R. C. and H. F. A. Boswell-Casteel, “Equilibrative Nucleoside Transporters – A Review,” Nucleosides Nucleotides Nucleic Acids, vol. 0, no. 0, pp. 1–24, 2016, doi: 10.1080/15257770.2016.1210805.spa
dc.relation.references[12] J.-S. Choi and A. J. Berdis, “Nucleoside transporters: biological insights and therapeutic applications,” Future Medicinal Chemistry, vol. 4, no. 11, pp. 1461–1478, 2012, doi: 10.4155/fmc.12.79.spa
dc.relation.references[13] P. Major, T. M. Embley, and T. A. Williams, “Phylogenetic Diversity of NTT Nucleotide Transport Proteins in Free-Living and Parasitic Bacteria and Eukaryotes,” Genome Biol. Evol, vol. 9, no. 2, pp. 480–487, 2017, doi: doi:10.1093/gbe/evx015.spa
dc.relation.references[14] I. Haferkamp and S. Schmitz-Esser, “The Plant Mitochondrial Carrier Family: Functional and Evolutionary Aspects,” Frontiers in Plant Science, vol. 3, no. 2, pp. 1–19, 2012, doi: 10.3389/fpls.2012.00002.spa
dc.relation.references[15] D. S. Morales, L. E. Contreras, C. C. Rubiano, and M. H. R. Hernandez, “Identification and sub-cellular localization of a NAD transporter in Leishmania braziliensis (LbNDT1),” Heliyon, vol. 6, no. 7, p. e04331, 2020, doi: 10.1016/j.heliyon.2020.e04331.spa
dc.relation.references[16] G. F. Esteban, B. J. Finlay, and A. Warren, Free-Living Protozoa, Fourth Edi., vol. 1. Elsevier, 2014.spa
dc.relation.references[17] S. P. Mayfield and S. E. Franklin, “Expression of human antibodies in eukaryotic micro-algae,” Vaccine, vol. 23, no. 15 SPEC. ISS., pp. 1828–1832, 2005, doi: 10.1016/j.vaccine.2004.11.013.spa
dc.relation.references[18] M. L. Ginger, “Niche metabolism in parasitic protozoa,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 361, no. 1465, pp. 101–118, 2006, doi: 10.1098/rstb.2005.1756.spa
dc.relation.references[19] A. Y. Kostygov et al., “Euglenozoa: taxonomy , diversity and ecology , symbioses and viruses,” Open Biology, vol. 11, p. 200407, 2021, doi: https://doi.org/10.1098/rsob.200407.spa
dc.relation.references[20] D. A. Maslov, F. R. Opperdoes, A. Y. Kostygov, H. Hashimi, J. Luke, and V. Yurchenko, “Recent advances in trypanosomatid research: genome organization , expression , metabolism , taxonomy and evolution,” Parasitology, pp. 1–27, 2018, doi: https://doi.org/10.1017/ S0031182018000951.spa
dc.relation.references[21] D. A. Maslov, J. Votýpka, V. Yurchenko, and J. Lukeš, “Diversity and phylogeny of insect trypanosomatids: All that is hidden shall be revealed,” Trends in Parasitology, vol. 29, no. 1, pp. 43–52, 2013, doi: 10.1016/j.pt.2012.11.001.spa
dc.relation.references[22] A. L. S. Santos, C. M. d’Avila-Levy, C. G. R. Elias, A. B. Vermelho, and M. H. Branquinha, “Phytomonas serpens: immunological similarities with the human trypanosomatid pathogens,” Microbes and Infection, vol. 9, no. 8, pp. 915–921, 2007, doi: 10.1016/j.micinf.2007.03.018.spa
dc.relation.references[23] A. Kaufer, J. Ellis, D. Stark, and J. Barratt, “The evolution of trypanosomatid taxonomy.,” Parasites & Vectors, vol. 10, no. 287, pp. 1–17, 2017, doi: 10.1186/s13071-017-2204-7.spa
dc.relation.references[24] A. P. Jackson et al., “Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism,” Current Biology, vol. 26, no. 2, pp. 161–172, 2016, doi: 10.1016/j.cub.2015.11.055.spa
dc.relation.references[25] Á. D. L. C. Pech-Canul, V. Monteón, and R. L. Solís-Oviedo, “A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi,” Journal of Parasitology Research, vol. 2017, 2017, doi: 10.1155/2017/3751403.spa
dc.relation.references[26] R. M. L. Queiroz et al., “Cell surface proteome analysis of human-hosted trypanosoma cruzi life stages,” Journal of Proteome Research, vol. 13, no. 8, pp. 3530–3541, 2014, doi: 10.1021/pr401120y.spa
dc.relation.references[27] W. De Souza, T. M. U. De Carvalho, and E. S. Barrias, “Review on Trypanosoma cruzi: Host cell interaction,” International Journal of Cell Biology, vol. 2010, 2010, doi: 10.1155/2010/295394.spa
dc.relation.references[28] D. M. Walker, S. Oghumu, G. Gupta, B. S. McGwire, M. E. Drew, and A. R. Satoskar, “Mechanisms of cellular invasion by intracellular parasites,” Cellular and Molecular Life Sciences, vol. 71, no. 7, pp. 1245–1263, 2013, doi: 10.1007/s00018-013-1491-1.spa
dc.relation.references[29] M. Molina-Arcas, F. Casado, and M. Pastor-Anglada, “Nucleoside Transporter Proteins,” Current Vascular Pharmacology, vol. 7, no. 4, pp. 426–434, 2009, doi: 10.2174/157016109789043892.spa
dc.relation.references[30] S. M. Landfear, “Nutrient transport and pathogenesis in selected parasitic protozoa,” Eukaryotic Cell, vol. 10, no. 4, pp. 483–493, 2011, doi: 10.1128/EC.00287-10.spa
dc.relation.references[33] P. One, S. A. N. Francisco, C. A. Pereira, and A. M. Silber, “On the Evolution of Hexose Transporters in Kinetoplastid Potozoans On the Evolution of Hexose Transporters in Kinetoplastid,” pp. 413–420, 2012, doi: 10.1371/journal.pone.0036303.spa
dc.relation.references[34] T. D. Serafim et al., “Leishmania Metacyclogenesis Is Promoted in the Absence of Purines,” PLoS Neglected Tropical Diseases, vol. 6, no. 9, 2012, doi: 10.1371/journal.pntd.0001833.spa
dc.relation.references[35] C. Cantó, K. J. Menzies, and J. Auwerx, “NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus,” Cell Metabolism, vol. 22, no. 1, pp. 31–53, 2015, doi: 10.1016/j.cmet.2015.05.023.spa
dc.relation.references[36] W. Ying, “NAD +/NADH and NADP +/NADPH in Cellular Functions and Cell Death: Regulation and Biological Consequences,” Antioxidants & Redox Signaling, vol. 10, no. 2, pp. 179–206, 2008, doi: 10.1089/ars.2007.1672.spa
dc.relation.references[37] S. J. Lin and L. Guarente, “Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 241–246, 2003, doi: 10.1016/S0955-0674(03)00006-1.spa
dc.relation.references[38] P. Poltronieri, “Roles of Nicotinamide Adenine Dinucleotide (NAD+) in Biological Systems,” Challenges, vol. 9, no. 1, p. 3, 2018, doi: 10.3390/challe9010003.spa
dc.relation.references[39] L. J. Ortiz Joya, “Caracterización de la nicotinamida / nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis (LbNMNAT) mediante análisis estructural y de interacción proteína-proteína Caracterización de la nicotinamida / nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis,” 2017.spa
dc.relation.references[40] L. Contreras, “Obtención y caracterización bioquímica y funcional de la enzima recombinante nicotinamida/nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis (LbNMNAT),” 2016.spa
dc.relation.references[41] A. W. Ravna, G. Sager, S. G. Dahl, and I. Sylte, “Membrane Transporters : Structure , Function and Targets for Drug Design,” no. May 2008, pp. 15–51, 2009, doi: 10.1007/7355_2008_023.spa
dc.relation.references[42] W. Busch and M. H. Saier, “The Transporter Classification (TC) System , 2002,” vol. 37, no. 5, pp. 287–337, 2002.spa
dc.relation.references[43] A. Kumar, P. Misra, B. Sisodia, A. K. Shasany, S. Sundar, and A. Dube, “Proteomic analyses of membrane enriched proteins of Leishmania donovani Indian clinical isolate by mass spectrometry,” Parasitology International, vol. 64, no. 4, pp. 36–42, 2015, doi: 10.1016/j.parint.2015.01.004.spa
dc.relation.references[44] F. Palmieri, “The mitochondrial transporter family SLC25: Identification, properties and physiopathology,” Molecular Aspects of Medicine, vol. 34, no. 2–3, pp. 465–484, 2013, doi: 10.1016/j.mam.2012.05.005.spa
dc.relation.references[45] F. Palmieri, “Mitochondrial transporters of the SLC25 family and associated diseases: A review,” Journal of Inherited Metabolic Disease, vol. 37, no. 4, pp. 565–575, 2014, doi: 10.1007/s10545-014-9708-5.spa
dc.relation.references[46] D. M. Sánchez-Lancheros, L. F. Ospina-Giraldo, and M. H. Ospina-Giraldo, “Nicotinamide mononucleotide adenylyltransferase of Trypanosoma cruzi (TcNMNAT): A cytosol protein target for serine kinases,” Memorias do Instituto Oswaldo Cruz, vol. 111, no. 11, pp. 670–675, 2016, doi: 10.1590/0074-02760160103.spa
dc.relation.references[47] C. A. Kulkarni and P. S. Brookes, “Cellular Compartmentation and the Redox/Nonredox Functions of NAD+,” Antioxidants and Redox Signaling, vol. 31, no. 9, pp. 623–642, 2019, doi: 10.1089/ars.2018.7722.spa
dc.relation.references[48] D. Morales Herrera, “Contribución Al Estudio De Transportadores En Tripanosomátidos: Clonación De Por Lo Menos Un Gen Codificante Para Proteínas Transportadoras De Nad,” 2016.spa
dc.relation.references[49] F. A. M. Paez, “PLAN ESTRATEGICO LEISHMANIASIS 2018 – 2022 Direccion de Promocion y Prevencion Subdireccion Enfermedades Transmsibles,” 2018.spa
dc.relation.references[50] Instituto nacional de salud, “Boletín Epidemiológico Semanal: Leishmaniasis,” 2019.spa
dc.relation.references[51] L. Ortiz-joya, L. E. Contreras-rodríguez, and M. H. Ramírez-Hernández, “Protein-protein interactions of the nicotinamide / nicotinate mononucleotide adenylyltransferase of Leishmania braziliensis,” vol. 114, no. 6, pp. 1–9, 2019, doi: 10.1590/0074-02760180506.spa
dc.relation.references[52] QIAGEN, CLC Main Workbench. 2016.spa
dc.relation.references[53] G. Agrimi, A. Russo, P. Scarcia, and F. Palmieri, “The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD +,” Biochemical Journal, vol. 443, no. 1, pp. 241–247, 2011, doi: 10.1042/bj20111420.spa
dc.relation.references[54] S. Todisco, G. Agrimi, A. Castegna, and F. Palmieri, “Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 281, no. 3, pp. 1524–1531, 2006, doi: 10.1074/jbc.M510425200.spa
dc.relation.references[55] C. W. T. van Roermund et al., “The Peroxisomal NAD Carrier from Arabidopsis Imports NAD in Exchange with AMP,” Plant Physiology, vol. 171, no. 3, pp. 2127–2139, 2016, doi: 10.1104/pp.16.00540.spa
dc.relation.references[56] A. Krogh, B. Larsson, G. Von Heijne, and E. L. L. Sonnhammer, “Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes,” Journal of Molecular Biology, vol. 305, no. 3, pp. 567–580, 2001, doi: 10.1006/jmbi.2000.4315.spa
dc.relation.references[57] L. Käll, A. Krogh, and E. L. L. Sonnhammer, “A combined transmembrane topology and signal peptide prediction method,” Journal of Molecular Biology, vol. 338, no. 5, pp. 1027–1036, 2004, doi: 10.1016/j.jmb.2004.03.016.spa
dc.relation.references[58] H. Viklund and A. Elofsson, “OCTOPUS: Improving topology prediction by two-track ANN-based preference scores and an extended topological grammar,” Bioinformatics, vol. 24, no. 15, pp. 1662–1668, 2008, doi: 10.1093/bioinformatics/btn221.spa
dc.relation.references[59] TS. M. Reynolds, L. Käll, M. E. Riffle, J. A. Bilmes, and W. S. Noble, “Transmembrane topology and signal peptide prediction using dynamic Bayesian networks,” PLoS Computational Biology, vol. 4, no. 11, 2008, doi: 10.1371/journal.pcbi.1000213.spa
dc.relation.references[60] L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. E. Sternberg, “Europe PMC Funders Group The Phyre2 web portal for protein modelling , prediction and analysis,” Nature protocols, vol. 10, no. 6, pp. 845–858, 2015, doi: 10.1038/nprot.2015.053.spa
dc.relation.references[61] M. Blum et al., “The InterPro protein families and domains database: 20 years on,” Nucleic Acids Research, vol. 49, no. D1, pp. D344–D354, 2021, doi: 10.1093/nar/gkaa977.spa
dc.relation.references[62] T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, “SWISS-MODEL: An automated protein homology-modeling server,” Nucleic Acids Research, vol. 31, no. 13, pp. 3381–3385, 2003, doi: 10.1093/nar/gkg520.spa
dc.relation.references[63] J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, and Y. Zhang, “The I-TASSER suite: Protein structure and function prediction,” Nature Methods, vol. 12, no. 1, pp. 7–8, 2014, doi: 10.1038/nmeth.3213.spa
dc.relation.references[64] Y. Z. Ambrish Roy, Alper Kucukural, et al,. “I-TASSER: a unified platform for automated protein structure and function prediction,” Current protocols in bioinformatics, vol. 9, no. December, pp. 5–9, 2011, doi: 10.1038/nprot.2010.5.I-TASSER.spa
dc.relation.references[65] Y. Zhang, “I-TASSER server for protein 3D structure prediction,” BMC Bioinformatics, vol. 8, pp. 1–8, 2008, doi: 10.1186/1471-2105-9-40.spa
dc.relation.references[66] D. E. Kim, D. Chivian, and D. Baker, “Protein structure prediction and analysis using the Robetta server,” Nucleic Acids Research, vol. 32, no. WEB SERVER ISS., pp. 526–531, 2004, doi: 10.1093/nar/gkh468.spa
dc.relation.references[67] E. C. Meng, E. F. Pettersen, G. S. Couch, C. C. Huang, and T. E. Ferrin, “Tools for integrated sequence-structure analysis with UCSF Chimera,” BMC Bioinformatics, vol. 7, no. 339, pp. 1–10, 2006, doi: 10.1186/1471-2105-7-339.spa
dc.relation.references[68] E. F. Pettersen et al., “UCSF Chimera — A Visualization System for Exploratory Research and Analysis,” 2004, doi: 10.1002/jcc.20084.spa
dc.relation.references[69] D. Bhattacharya, J. Nowotny, R. Cao, and J. Cheng, “3Drefine: an interactive web server for efficient protein structure refinement,” Nucleic acids research, vol. 44, no. W1, pp. W406–W409, 2016, doi: 10.1093/nar/gkw336.spa
dc.relation.references[70] S. C. Lovell et al., “Structure validation by C alpha Geometry: phi, psi and C beta Deviation,” Proteins-Structure Function and Genetics, vol. 50, no. August 2002, pp. 437–450, 2003, doi: 10.1002/prot.10286.spa
dc.relation.references[71] J. J. Almagro Armenteros et al., “SignalP 5.0 improves signal peptide predictions using deep neural networks,” Nature Biotechnology, vol. 37, no. 4, pp. 420–423, 2019, doi: 10.1038/s41587-019-0036-z.spa
dc.relation.references[72] J. J. A. Armenteros et al., “Detecting sequence signals in targeting peptides using deep learning,” Life Science Alliance, vol. 2, no. 5, pp. 1–14, 2019, doi: 10.26508/lsa.201900429.spa
dc.relation.references[73] K. C. Chou and H. Bin Shen, “A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0,” PLoS ONE, vol. 5, no. 4, pp. 1–9, 2010, doi: 10.1371/journal.pone.0009931.spa
dc.relation.references[74] J. J. Almagro Armenteros, C. K. Sønderby, S. K. Sønderby, H. Nielsen, and O. Winther, “DeepLoc: prediction of protein subcellular localization using deep learning,” Bioinformatics (Oxford, England), vol. 33, no. 21, pp. 3387–3395, 2017, doi: 10.1093/bioinformatics/btx431.spa
dc.relation.references[75] W. Z. Lin, J. A. Fang, X. Xiao, and K. C. Chou, “ILoc-Animal: A multi-label learning classifier for predicting subcellular localization of animal proteins,” Molecular BioSystems, vol. 9, no. 4, pp. 634–644, 2013, doi: 10.1039/c3mb25466f.spa
dc.relation.references[76] N. Blom, S. Gammeltoft, and S. Brunak, “Sequence and structure-based prediction of eukaryotic protein phosphorylation sites,” Journal of Molecular Biology, vol. 294, no. 5, pp. 1351–1362, 1999, doi: 10.1006/jmbi.1999.3310.spa
dc.relation.references[77] L. Kiemer, J. D. Bendtsen, and N. Blom, “NetAcet: Prediction of N-terminal acetylation sites,” Bioinformatics, vol. 21, no. 7, pp. 1269–1270, 2005, doi: 10.1093/bioinformatics/bti130.spa
dc.relation.references[78] C. Steentoft et al., “Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology,” EMBO Journal, vol. 32, no. 10, pp. 1478–1488, 2013, doi: 10.1038/emboj.2013.79.spa
dc.relation.references[79] R. Gupta and S. Brunak, “Prediction of glycosylation across the human proteome and the correlation to protein function.,” Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, vol. 322, pp. 310–322, 2002, doi: 10.1142/9789812799623_0029.spa
dc.relation.references[80] J. S. Chauhan, A. Rao, and G. P. S. Raghava, “In silico Platform for Prediction of N-, O- and C-Glycosites in Eukaryotic Protein Sequences,” PLoS ONE, vol. 8, no. 6, pp. 1–10, 2013, doi: 10.1371/journal.pone.0067008.spa
dc.relation.references[81] S. Eliana, V. Silva, D. María, H. Ramírez, H. Mcs, and D. de Biología, “DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA PARA EXPRESIÓN DE PROTEÍNAS RECOMBINANTES EN ALGAS,” pp. 1–68.spa
dc.relation.references[82] T. Pröschold, E. H. Harris, and A. W. Coleman, “Portrait of a species: Chlamydonomas reinhardtii,” Genetics, vol. 170, no. 4, pp. 1601–1610, 2005, doi: 10.1534/genetics.105.044503.spa
dc.relation.references[83] E. Specht, S. Miyake-Stoner, and S. Mayfield, “Micro-algae come of age as a platform for recombinant protein production,” Biotechnology Letters, vol. 32, no. 10, pp. 1373–1383, 2010, doi: 10.1007/s10529-010-0326-5.spa
dc.relation.references[84] Invitrogen by Life Technologies, GeneArt TM Chlamydomonas Protein Expression Vector.spa
dc.relation.references[85] A. Romo, “Manual para el cultivo de microalgas,” Universidad Autónoma de baja California Sur, 2002.spa
dc.relation.references[86] J. K. Hoober and Harris.Elizabeth H., The Chlamydomonas Sourcebook. A Comprehensive Guide to Biology and Laboratory Use., Academic P., no. 246(4936). San Diego, 1989.spa
dc.relation.references[87] QIAGEN, Manual del Kit QIAamp(R) DSP DNA Blood Mini, Versión 2. 2012.spa
dc.relation.references[88] Promega, “pGEM®- T and pGEM®- T Easy Vector Systems,” Technical Manual, pp. 1–28, 2010.spa
dc.relation.references[89] D. W. & C. S. H. L. Sambrook, Joseph. & Russell, Molecular cloning: a laboratory manual. 2001.spa
dc.relation.references[90] Invitrogen by Life Technologies, “PureLink® HiPure Plasmid Filter Purification Kits,” Protocols, vol. MAN0000545, no. Publication part number 25-0880, pp. 2–28, 2011.spa
dc.relation.references[91] Invitrogen by Life Technologies, T4 DNA Ligase Handbook, Technical. 2002.spa
dc.relation.references[92] C. Scarbrough and M. Wirschell, “Comparative analysis of cryopreservation methods in Chlamydomonas reinhardtii,” Cryobiology, vol. 73, no. 2, pp. 291–295, 2016, doi: 10.1016/j.cryobiol.2016.07.011.spa
dc.relation.references[93] J. G. Day and M. R. McLellan, Cryopreservation and freeze-drying protocols., Second edi., vol. 368. 2007.spa
dc.relation.references[94] N. S. Alves et al., “MISTIC-fusion proteins as antigens for high quality membrane protein antibodies,” Scientific Reports, vol. 7, no. February, pp. 1–12, 2017, doi: 10.1038/srep41519.spa
dc.relation.references[95] H. Dvir, M. E. Lundberg, S. K. Maji, R. Riek, and S. Choe, “Mistic: Cellular localization, solution behavior, polymerization, and fibril formation,” Protein Science, vol. 18, no. 7, pp. 1564–1570, 2009, doi: 10.1002/pro.148.spa
dc.relation.references[96] H. Dvir and S. Choe, “Bacterial expression of a eukaryotic membrane protein in fusion to various Mistic orthologs,” Protein Expression and Purification, vol. 68, no. 1, pp. 28–33, 2009, doi: 10.1016/j.pep.2009.06.007.spa
dc.relation.references[97] M. Wolfsberg, Tyra G. Bethesda, “Using the NCBI Map Viewer to Browse Genomic Sequence Data,” Current protocols in bioinformatics, vol. 1.5.1-1.5., pp. 1–25, 2010, doi: 10.1002/0471250953.bi0105s29.spa
dc.relation.references[98] J. M. Butler, “DNA Amplification (The Polymerase Chain Reaction),” in Fundamentals of Forensic DNA Typing, 2010, pp. 125–146.spa
dc.relation.references[99] D. Santiago and M. H. Ramirez-Hernandez, “Estudio del transporte de nucleótidos en parásitos intracelulares: caracterización de un posible transportador de NAD + en Leishmania braziliensis,” 2019.spa
dc.relation.references[100] F. M. Ausubel et al., Current Protocols in Molecular Biology, vol. 1. 2003.spa
dc.relation.references[101] Invitrogen by Life Technologies, ChampionTM pET Directional TOPO® Expression Kits, no. 25. 2010.spa
dc.relation.references[102] H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.,” Proceedings of the National Academy of Sciences, vol. 76, no. 9, pp. 4350–4354, 1979, doi: 10.1073/pnas.76.9.4350.spa
dc.relation.references[103] Z. Q. Liu, T. Mahmood, and P. C. Yang, “Western blot: Technique, theory and trouble shooting,” North American Journal of Medical Sciences, vol. 6, no. 3, p. 160, 2014, doi: 10.4103/1947-2714.128482.spa
dc.relation.references[104] J. W. Wimpenny and A. Firth, “Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen.,” Journal of Bacteriology, vol. 111, no. 1, pp. 24–32, 1972, doi: 10.1128/jb.111.1.24-32.1972.spa
dc.relation.references[105] Y. Zhou, L. Wang, F. Yang, X. Lin, S. Zhang, and Z. K. Zhao, “Determining the extremes of the cellular NAD(H) level by using an Escherichia coli NAD +-auxotrophic mutant,” Applied and Environmental Microbiology, vol. 77, no. 17, pp. 6133–6140, 2011, doi: 10.1128/AEM.00630-11.spa
dc.relation.references[106] Invitrogen by Life Technologies, pYES2 Manual (Cat. no. V825–20), no. 28–0053. 2008.spa
dc.relation.references[107] J. Piškur and C. Compagno, Molecular mechanisms in yeast carbon metabolism. 2014.spa
dc.relation.references[108] T. Vincze, J. Posfai, and R. J. Roberts, “NEBcutter: A program to cleave DNA with restriction enzymes,” Nucleic Acids Research, vol. 31, no. 13, pp. 3688–3691, 2003, doi: 10.1093/nar/gkg526.spa
dc.relation.references[109] M. M. Bradford, “A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,” Analytical Biochemistry, vol. 72, pp. 248–254, 1976, doi: doi: 10.1006/abio.1976.9999.spa
dc.relation.references[110] H. F. Stils, “Adjuvants and Antibody Production: Dispelling the Myths Associated with Freund’s Complete and Other Adjuvants,” ILAR Journal, vol. 46, no. 3, pp. 280–293, 2005, doi: 10.1093/ilar.46.3.280.spa
dc.relation.references[111] W. A. Amro, W. Al-Qaisi, and F. Al-Razem, “Production and purification of IgY antibodies from chicken egg yolk,” Journal of Genetic Engineering and Biotechnology, vol. 16, no. 1, pp. 99–103, 2018, doi: 10.1016/j.jgeb.2017.10.003.spa
dc.relation.references[112] D. Pauly, P. A. Chacana, E. G. Calzado, B. Brembs, and R. Schade, “Igy technology: Extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation,” Journal of Visualized Experiments, vol. 51, no. i, p. e3084, 2011, doi: 10.3791/3084.spa
dc.relation.references[113] F. Palmieri et al., “Molecular Identification and Functional Characterization of Arabidopsis thaliana Mitochondrial and Chloroplastic NAD + Carrier Proteins,” Journal of Biological Chemistry, vol. 284, no. 45, pp. 31249–31259, 2009, doi: 10.1074/jbc.M109.041830.spa
dc.relation.references[114] INVITROGEN, “pET SUMO,” vol. 5474, no. C, p. 5474.spa
dc.relation.references[115] T. Vincze, J. Posfai, and R. J. Roberts, “NEBcutter: A program to cleave DNA with restriction enzymes,” Nucleic Acids Research, vol. 31, no. 13, pp. 3688–3691, 2003, doi: 10.1093/nar/gkg526.spa
dc.relation.references[116] The QIAexpressionistTM, A handbook for high-level expression and purification of 6xHis-tagged proteins, Fifth Edit., no. June. 2003.spa
dc.relation.references[117] JOSHUA A. BORNHORST and JOSEPH J. FALKE, “Purification of proteins using polyhistidine affinity tags.,” Bulletin de l’Academie Nationale de Medecine, vol. 150, no. 23, pp. 446–453, 1966.spa
dc.relation.references[118] T. F. Scientific, “Pierce ® Silver Stain Kit,” 2016.spa
dc.relation.references[119] P. van der Geer, Analysis of protein-protein interactions by coimmunoprecipitation, 1st ed., vol. 541. Elsevier Inc., 2014.spa
dc.relation.references[120] T. S. Luongo et al., “SLC25A51 is a mammalian mitochondrial NAD+ transporter,” Nature, vol. 588, no. 7836, pp. 174–179, 2021, doi: 10.1038/s41586-020-2741-7. SLC25A51.spa
dc.relation.references[121] J. Kuan and M. H. Saier, “The Mitochondrial Carrier Family of Transport Proteins : Structural , Functional , and Evolutionary Relationships,” Critical reviews in biochemistry and molecular biology, vol. 28, no. 3, pp. 209–33, 1993, doi: 10.3109/10409239309086795.spa
dc.relation.references[122] F. Madeira et al., “The EMBL-EBI search and sequence analysis tools APIs in 2019,” Nucleic Acids Research, vol. 47, no. W1, pp. W636–W641, 2019, doi: 10.1093/nar/gkz268.spa
dc.relation.references[123] Hannaert, Bringaud, and Michels, “Kinetoplastid Biology and Disease,” Kinetoplastid Biology and Disease, vol. 10, pp. 1–10, 2007, doi: 10.1186/1475-9292-6-4.spa
dc.relation.references[124] L. C. Czuba, K. M. Hillgren, and P. W. Swaan, “Post-translational modifications of transporters,” Pharmacology and Therapeutics, vol. 192, pp. 88–99, 2018, doi: 10.1016/j.pharmthera.2018.06.013.spa
dc.relation.references[125] C. Doerig, J. C. Rayner, A. Scherf, and A. B. Tobin, “Post-translational protein modifications in malaria parasites,” Nature Reviews Microbiology, vol. 13, no. 3, pp. 160–172, 2015, doi: 10.1038/nrmicro3402.spa
dc.relation.references[126] N. B. Pedersen, M. C. Carlsson, and S. F. Pedersen, “Glycosylation of solute carriers: mechanisms and functional consequences,” Pflugers Archiv European Journal of Physiology, vol. 468, no. 2, pp. 159–176, 2016, doi: 10.1007/s00424-015-1730-4.spa
dc.relation.references[127] Amanda R. Burnham-Marusich and P. M. Berninsone, “Multiple proteins with essential mitochondrial functions have glycosylated isoforms,” Mitochondrion., vol. 12, no. 4, pp. 423–427, 2012, doi: 10.1016/j.mito.2012.04.004.Multiple.spa
dc.relation.references[128] N. Q. K. Le, G. A. Sandag, and Y. Y. Ou, “Incorporating post translational modification information for enhancing the predictive performance of membrane transport proteins,” Computational Biology and Chemistry, vol. 77, pp. 251–260, 2018, doi: 10.1016/j.compbiolchem.2018.10.010.spa
dc.relation.references[129] L. de L. de L. Balico et al., “Heterologous expression of mitochondrial nicotinamide adenine dinucleotide transporter (Ndt1) from Aspergillus fumigatus rescues impaired growth in Δndt1Δndt2 Saccharomyces cerevisiae strain,” Journal of Bioenergetics and Biomembranes, vol. 49, no. 6, pp. 423–435, 2017, doi: 10.1007/s10863-017-9732-x.spa
dc.relation.references[130] F. Palmieri and C. L. Pierri, “Structure and function of mitochondrial carriers - Role of the transmembrane helix P and G residues in the gating and transport mechanism,” FEBS Letters, vol. 584, no. 9, pp. 1931–1939, 2010, doi: 10.1016/j.febslet.2009.10.063.spa
dc.relation.references[131] F. Palmieri and M. Monné, Discoveries, metabolic roles and diseases of mitochondrial carriers: A review, vol. 1863, no. 10. Elsevier B.V., 2016.spa
dc.relation.references[132] F. Palmieri, C. L. Pierri, A. De Grassi, A. Nunes-Nesi, and A. R. Fernie, “Evolution, structure and function of mitochondrial carriers: A review with new insights,” Plant Journal, vol. 66, no. 1, pp. 161–181, 2011, doi: 10.1111/j.1365-313X.2011.04516. x.spa
dc.relation.references[133] M. S. King, M. Kerr, P. G. Crichton, R. Springett, and E. R. S. Kunji, “Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier,” Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol. 1857, no. 1, pp. 14–22, 2016, doi: 10.1016/J.BBABIO.2015.09.013.spa
dc.relation.references[134] C. Peña, “Métodos de inferencia filogenética,” Revista Peruana de Biologia, vol. 18, no. 2, pp. 265–267, 2011, doi: 10.15381/rpb.v18i2.243.spa
dc.relation.references[135] N. Kory et al., “MCART1/SLC25A51 is required for mitochondrial NAD transport,” Science Advances, vol. 6, no. 43, pp. 1–20, 2020, doi: 10.1126/sciadv.abe5310.spa
dc.relation.references[136] L. Palmieri et al., “Identification and Characterization of ADNT1, a Novel Mitochondrial Adenine Nucleotide Transporter from Arabidopsis,” Plant Physiology, vol. 148, no. 4, pp. 1797–1808, 2008, doi: 10.1104/pp.108.130310.spa
dc.relation.references[137] O. Trentmann, C. Decker, H. H. Winkler, and H. E. Neuhaus, “Charged amino-acid residues in transmembrane domains of the plastidic ATP/ADP transporter from Arabidopsis are important for transport efficiency, substrate specificity, and counter exchange properties,” European Journal of Biochemistry, vol. 267, no. 13, pp. 4098–4105, 2000, doi: 10.1046/j.1432-1033.2000.01468.x.spa
dc.relation.references[138] S. S. Merchant et al., “The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions,” Science, vol. 318, no. 5848, pp. 245–250, 2010, doi: 10.1126/science.1143609.spa
dc.relation.references[139] Gustavo Adolfo Garzón Fajardo, “Estudio de un candidato a NAD quinasa en Leishmania sp,” 2018.spa
dc.relation.references[140] L. Invitrogen, “GeneArt Chlamydomonas Engineering Kits,” Tools.Lifetechnologies.Com, 2013, [Online]. Available: http://tools.lifetechnologies.com/content/sfs/manuals/geneart_chlamy_kits_man.pdf%5Cnpapers2://publication/uuid/F9E00F25-FDDF-4070-84B1-CD50853BA789.spa
dc.relation.references[141] D. Barrera and S. Mayfield, High‐value Recombinant Protein Production in Microalgae. 2013.spa
dc.relation.references[142] S. Rosales-Mendoza, L. M. T. Paz-Maldonado, and R. E. Soria-Guerra, “Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: Current status and perspectives,” Plant Cell Reports, vol. 31, no. 3, pp. 479–494, 2012, doi: 10.1007/s00299-011-1186-8.spa
dc.relation.references[143] J. H. Mussgnug, “Genetic tools and techniques for Chlamydomonas reinhardtii,” Applied Microbiology and Biotechnology, vol. 99, no. 13, pp. 5407–5418, 2015, doi: 10.1007/s00253-015-6698-7.spa
dc.relation.references[144] E. H. Harris, “CHLAMYDOMONAS AS A MODEL ORGANISM,” Plant Physiol. Plant Mol. Biol., vol. 52, pp. 363–406, 2001.spa
dc.relation.references[145] S. Sasso, H. Stibor, M. Mittag, and A. R. Grossman, “The natural history of model organisms from molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature,” eLife, vol. 7, no. e39233, pp. 1–14, 2018, doi: 10.7554/eLife.39233.spa
dc.relation.references[146] P. Kathir et al., “Molecular map of the Chlamydomonas reinhardtii nuclear genome,” Eukaryotic Cell, vol. 2, no. 2, pp. 362–379, 2003, doi: 10.1128/EC.2.2.362.spa
dc.relation.references[147] S. Noboru, “Mitotic Replication of Deoxyribonucleic Acid in Chlamydomonas reinhardi,” National Academy of Sciences, vol. 46, no. 1, pp. 83–91, 1960.spa
dc.relation.references[148] A. Hallmann, “Evolution of reproductive development in the volvocine algae,” Sexual Plant Reproduction, vol. 24, no. 2, pp. 97–112, 2011, doi: 10.1007/s00497-010-0158-4.spa
dc.relation.references[149] Y. K. Lee et al., Basic Culturing and Analytical Measurement Techniques, no. April. 2013.spa
dc.relation.references[150] J. M. Bateman and S. Purton, “Tools for chloroplast transformation in Chlamydomonas: Expression vectors and a new dominant selectable marker,” Molecular and General Genetics, vol. 263, no. 3, pp. 404–410, 2000, doi: 10.1007/s004380051184.spa
dc.relation.references[151] S. Kim et al., “A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii,” PLoS ONE, vol. 9, no. 7, pp. 1–9, 2014, doi: 10.1371/journal.pone.0101018.spa
dc.relation.references[152] L. E. Brown, S. L. Sprecher, and L. R. Keller, “Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation.,” Molecular and Cellular Biology, vol. 11, no. 4, pp. 2328–2332, 1991, doi: 10.1128/mcb.11.4.2328.spa
dc.relation.references[153] M. Schroda, “Good News for Nuclear Transgene Expression in Chlamydomonas,” Cells, vol. 8, no. 12, p. 1534, 2019, doi: 10.3390/cells8121534.spa
dc.relation.references[154] J. M. Coll, “Review. Methodologies for transferring DNA into eukaryotic microalgae,” Spanish Journal of Agricultural Research, vol. 4, no. 4, pp. 316–330, 2006, doi: 10.5424/sjar/2006044-209.spa
dc.relation.references[155] K. L. Kindle, “High-frequency nuclear transformation of Chlamydomonas reinhardtii,” Methods in Enzymology, vol. 297, no. February, pp. 27–38, 1998, doi: 10.1016/S0076-6879(98)97005-7.spa
dc.relation.references[156] A. E. Rawlings, “Membrane proteins: always an insoluble problem?,” Biochemical Society Transactions, vol. 44, no. 3, pp. 790–795, 2016, doi: 10.1042/bst20160025.spa
dc.relation.references[157] E. Psachoulia, P. J. Bond, and M. S. P. Sansom, “MD simulations of mistic: Conformational stability in detergent micelles and water,” Biochemistry, vol. 45, no. 30, pp. 9053–9058, 2006, doi: 10.1021/bi0608818.spa
dc.relation.references[158] A. Deniaud et al., “Expression of a chloroplast ATP/ADP transporter in E. coli membranes: Behind the Mistic strategy,” Biochimica et Biophysica Acta - Biomembranes, vol. 1808, no. 8, pp. 2059–2066, 2011, doi: 10.1016/j.bbamem.2011.04.011.spa
dc.relation.references[159] T. P. Roosild, J. Greenwald, M. Vega, S. Castronovo, R. Riek, and S. Choe, “NMR structure of mistic, a membrane-integrating protein for membrane protein expression,” Science, vol. 307, no. 5713, pp. 1317–1321, 2005, doi: 10.1126/science.1106392.spa
dc.relation.references[160] Balducci E, Emanuelli M, Raffaelli N, et al,. “Assay methods for nicotinamide mononucleotide adenylyltransferase of wide applicability,” Anal Biochem, vol. 228, pp. 64–68, 1995.spa
dc.relation.references[161] S. Todisco, G. Agrimi, A. Castegna, and F. Palmieri, “Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 281, no. 3, pp. 1524–1531, 2006, doi: 10.1074/jbc.M510425200.spa
dc.relation.references[162] A. Uscanga. B, S. P. J, and F. J, “Estudio de la variación de la composición de los polisacáridos contenidos en la pared celular de la levadura Saccharomyces Cerevisiae,” Revista Electrónica y Tecnológica e-Gnosis, vol. 3, no. 12, p. e-Gnosis, 2005.spa
dc.relation.references[163] S. Kawai, W. Hashimoto, and K. Murata, “Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism.,” Bioengineered bugs, vol. 1, no. 6, pp. 395–403, 2010, doi: 10.4161/bbug.1.6.13257.spa
dc.relation.references[164] C. H. Schein, “Production of soluble recombinant proteins in bacteria,” Nature Biotechnology, vol. 7, no. 11, pp. 1141–1149, 1989.spa
dc.relation.references[165] L. Invitrogen, ChampionTM pET Directional TOPO® Expression Kits, no. 25–0400. 2011.spa
dc.relation.references[166] E. P. V. Pereira, M. F. van Tilburg, E. O. P. T. Florean, and M. I. F. Guedes, “Egg yolk antibodies (IgY)and their applications in human and veterinary health: A review,” International Immunopharmacology, vol. 73, no. May, pp. 293–303, 2019, doi: 10.1016/j.intimp.2019.05.015.spa
dc.relation.references[167] D. Pauly, P. A. Chacana, E. G. Calzado, B. Brembs, and R. Schade, “Igy technology: Extraction of chicken antibodies from egg yolk by polyethylene glycol (PEG) precipitation,” Journal of Visualized Experiments, vol. 51, no. e3084, pp. 1–6, 2011, doi: 10.3791/3084.spa
dc.relation.references[168] C. Colasante, P. Peña Diaz, C. Clayton, and F. Voncken, “Mitochondrial carrier family inventory of Trypanosoma brucei brucei: Identification, expression and subcellular localisation,” Molecular and Biochemical Parasitology, vol. 167, no. 2, pp. 104–117, 2009, doi: 10.1016/j.molbiopara.2009.05.004.spa
dc.relation.references[169] D. Santiago and M. H. Ramirez-Hernandez, “Estudio del transporte de nucleótidos en parásitos intracelulares: caracterización de un posible transportador de NAD + en Leishmania braziliensis,” 2019.spa
dc.relation.references[170] M. C. Jespersen, B. Peters, M. Nielsen, and P. Marcatili, “BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes,” Nucleic Acids Research, vol. 45, no. W1, pp. W24–W29, 2017, doi: 10.1093/nar/gkx346.spa
dc.relation.references[171] N. Lehninger, Principios de Bioquímica. 2009.spa
dc.relation.references[172] E. B. Taylor, “Functional Properties of the Mitochondrial Carrier System,” Trends in Cell Biology, vol. 27, no. 9, pp. 633–644, 2017, doi: 10.1016/j.tcb.2017.04.004.spa
dc.relation.references[173] A. H. Fairlamb and A. Cerami, “Metabolism and funtions of Trypanothione in the kinetoplastida,” Annu. Rev. Microbial., vol. 46, pp. 695–729, 1992.spa
dc.relation.references[174] S. D. Barr and L. Gedamu, “Cloning and characterization of three differentially expressed peroxidoxin genes from Leishmania chagasi. Evidence for an enzymatic detoxification of hydroxyl radicals,” Journal of Biological Chemistry, vol. 276, no. 36, pp. 34279–34287, 2001, doi: 10.1074/jbc.M104406200.spa
dc.relation.references[175] J. P. Iyer, A. Kaprakkaden, M. L. Choudhary, and C. Shaha, “Crucial role of cytosolic tryparedoxin peroxidase in Leishmania donovani survival, drug response and virulence,” Molecular Microbiology, vol. 68, no. 2, pp. 372–391, 2008, doi: 10.1111/j.1365-2958.2008.06154.x.spa
dc.relation.references[176] A. Fiorillo, G. Colotti, A. Boffi, P. Baiocco, and A. Ilari, “The Crystal Structures of the Tryparedoxin-Tryparedoxin Peroxidase Couple Unveil the Structural Determinants of Leishmania Detoxification Pathway,” PLoS Neglected Tropical Diseases, vol. 6, no. 8, p. e1781, 2012, doi: 10.1371/journal.pntd.0001781.spa
dc.relation.references[177] L. Ortiz-Joya, L. E. Contreras-rodríguez, and M. H. Ramírez-Hernández, “Protein-protein interactions of the nicotinamide/nicotinate mononucleotide adenylyltransferase of Leishmania braziliensis,” Memorias do Instituto Oswaldo Cruz, vol. 114, no. 2, pp. 1–9, 2019, doi: 10.1590/0074-02760180506.spa
dc.relation.references[178] V. de La Torre Russis, A. Valles, R. Gómez, G. Chinea, and T. Pons, “Interacciones proteína-proteína: Bases de datos y métodos teóricos de predicción,” Biotecnologia Aplicada, vol. 20, no. 4, pp. 201–208, 2003.spa
dc.relation.references[179] A. Kumar, B. Saha, and S. Singh, “Dataset generated for Dissection of mechanisms of Trypanothione Reductase and Tryparedoxin Peroxidase through dynamic network analysis and simulations in leishmaniasis,” Data in Brief, vol. 15, pp. 757–769, 2017, doi: 10.1016/j.dib.2017.10.031.spa
dc.relation.references[180] L. Flohé et al., “Tryparedoxin peroxidase of Leishmania donovani: Molecular cloning, heterologous expression, specificity, and catalytic mechanism,” Archives of Biochemistry and Biophysics, vol. 397, no. 2, pp. 324–335, 2002, doi: 10.1006/abbi.2001.2688.spa
dc.relation.references[181] M. A. B. de Morais, T. de A. C. B. de Souza, and M. T. Murakami, “Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the mitochondrial tryparedoxin peroxidase from Leishmania braziliensis,” Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol. 69, no. 4, pp. 408–411, 2013, doi: 10.1107/s1744309113003989.spa
dc.relation.references[182] J. König and A. H. Fairlamb, “A comparative study of type I and type II tryparedoxin peroxidases in Leishmania major,” FEBS Journal, vol. 274, no. 21, pp. 5643–5658, 2007, doi: 10.1111/j.1742-4658.2007.06087.x.spa
dc.relation.references[183] J. Ko, H. Park, L. Heo, and C. Seok, “GalaxyWEB server for protein structure prediction and refinement,” Nucleic Acids Research, vol. 40, no. W1, pp. 294–297, 2012, doi: 10.1093/nar/gks493.spa
dc.relation.references[184] M. Brindisi et al., “Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking,” Scientific Reports, vol. 5, no. 9705, pp. 1–10, 2015, doi: 10.1038/srep09705.spa
dc.relation.references[185] M. C. Gretes, L. B. Poole, and P. A. Karplus, “Peroxiredoxins in Parasites,” Antioxidants & Redox Signaling, vol. 17, no. 4, pp. 608–633, 2012, doi: 10.1089/ars.2011.4404.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc572 - Bioquímicaspa
dc.subject.decsLeishmaniasisspa
dc.subject.decsLeishmaniasiseng
dc.subject.decsProtozoan Infectionseng
dc.subject.decsInfecciones por Protozoosspa
dc.subject.decsEnfermedades Parasitariasspa
dc.subject.decsParasitic Diseaseseng
dc.subject.proposalNAD+spa
dc.subject.proposalParásitos protozoariosspa
dc.subject.proposalProteínas de membranaspa
dc.subject.proposalLeishmaniaspa
dc.subject.proposalTriparedoxinaspa
dc.subject.proposalNAD +eng
dc.subject.proposalProtozoan parasiteseng
dc.subject.proposalMembrane proteinseng
dc.subject.proposalLeishmaniaeng
dc.subject.proposalTriparedoxineng
dc.titleExploración de un transportador de NAD+ y/o sus precursores en Leishmaniaspa
dc.title.translatedExploration of a NAD+ carrier and/or its precursors in Leishmaniaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCOLCIENCIASspa
oaire.fundernameUniversidad Nacional de Colombia sede Bogotáspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010205155.2021.pdf
Tamaño:
9.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: