Implementación de un bioensayo ex vivo de permeación e irritación corneal: valoración del clorhidrato de proparacaína como caso de estudio
dc.contributor.advisor | Baena Aristizábal, Yolima | |
dc.contributor.advisor | Lozano Álvarez, María Constanza | |
dc.contributor.author | González Jiménez, Natalia Carolina | |
dc.contributor.orcid | González Jiménez, Natalia Carolina [0009000085948498] | |
dc.contributor.researchgroup | Sistemas Para Liberación Controlada de Moléculas Biológicamente Activas | spa |
dc.date.accessioned | 2025-09-02T13:50:13Z | |
dc.date.available | 2025-09-02T13:50:13Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (principalmente a color), diagramas, gráficos, fotografías | |
dc.description.abstract | La córnea es una barrera esencial para la protección ocular y su daño representa una causa significativa de ceguera a nivel mundial. El uso inadecuado de anestésicos tópicos como el clorhidrato de proparacaína puede generar lesiones corneales severas, lo que resalta la importancia de evaluar su permeabilidad e impacto histológico. Este estudio implementó un ensayo ex vivo para evaluar la permeación y el potencial de irritación del clorhidrato de proparacaína. Se emplearon celdas de Franz y córneas porcinas para evaluar la permeabilidad del fármaco en diferentes concentraciones. La cuantificación del fármaco se realizó mediante espectrofotometría UV-Vis. También se llevó a cabo un análisis histológico de las córneas tratadas, clasificando las lesiones en epitelio, estroma y endotelio. Los ensayos de permeación en celdas de Franz evidenciaron que la proparacaína presenta baja permeabilidad corneal (9.33 x10-7 cm/s), favoreciendo su retención en el epitelio y limitando su difusión al estroma. Se determinó que la concentración inicial y el tiempo influyen significativamente en la cantidad permeada, con un efecto dominante del gradiente de concentración. Aunque la formulación comercial presentó diferencias en algunas dosis aplicadas, estas se atribuyen más a la concentración que a la presencia de cloruro de benzalconio (CB) como preservante en la solución oftálmica. El análisis histológico mostró que concentraciones elevadas de proparacaína causan daño corneal significativo al igual que el etanol, empleado como control positivo y clasificado como causante de irritación ocular grave. El coeficiente de correlación de Spearman (ρ = 0.5449, p = 3.027x 10-16) confirmó una relación positiva entre la permeación y el potencial irritante. Este estudio soporta el uso de córneas porcinas y celdas de Franz como un modelo ex vivo eficaz para evaluar la permeación y el potencial de irritación de fármacos oftálmicos, reduciendo la dependencia de ensayos in vivo. Se destaca la importancia de estandarizar las pruebas in vitro según el tipo de tejido, ya que la córnea es más especializada que la piel y presenta características únicas que afectan la permeabilidad y la respuesta a los fármacos. | spa |
dc.description.abstract | The cornea serves as a critical barrier for ocular protection, and its damage constitutes a significant cause of blindness worldwide. The improper use of topical anesthetics such as proparacaine hydrochloride can induce severe corneal injury, underscoring the need to assess its permeability and histological impact. This study implemented an ex vivo assay to evaluate the permeation and irritation potential of proparacaine hydrochloride. Franz diffusion cells and porcine corneas were employed to investigate drug permeability across different concentrations. Drug quantification was performed using UV-Vis spectrophotometry. Additionally, histological analysis of the treated corneas was conducted, classifying lesions across the epithelium, stroma, and endothelium. Permeation assays using Franz cells revealed that proparacaine exhibits low corneal permeability (9.33x10-7 cm/s), favoring its retention in the epithelium and limiting its diffusion into the stroma. | eng |
dc.description.curriculararea | Farmacia.Sede Bogotá | |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias- Farmacología | spa |
dc.description.researcharea | Farmacocinética y estudios de biodisponibilidad y bioequivalencia | spa |
dc.format.extent | 3, v-xvi, 122 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88529 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Farmacología | spa |
dc.relation.references | Kanski J, Bowling B. Oftalmología Clínica. 8a Edición. Elsevier, editor. España; 2016. | spa |
dc.relation.references | Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res. 2022 Mar;87:101011. | spa |
dc.relation.references | Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016 Dec 31;6(6):735–54. | spa |
dc.relation.references | Mathews PM, Lindsley K, Aldave AJ, Akpek EK. Etiology of Global Corneal Blindness and Current Practices of Corneal Transplantation: A Focused Review. Cornea. 2018 Sep 14;37(9):1198–203. | spa |
dc.relation.references | Chiang P, Keeffe J, Le Mesurier R, Taylor H. Global burden of disease and visual impairment. The Lancet. 2006 Jul;368(9533):365. | spa |
dc.relation.references | Steinmetz JD, Bourne RRA, Briant PS, Flaxman SR, Taylor HRB, Jonas JB, et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021 Feb;9(2):e144–60. | spa |
dc.relation.references | Wang C, Pang Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev. 2023 Mar;194:114721. | spa |
dc.relation.references | Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020 Jul 14;18(7):e3000411. | spa |
dc.relation.references | Organización para la Cooperación y el Desarrollo Económicos (OCDE). Guidance Document on Good In Vitro Method Practices (GIVIMP) [Internet]. OCDE; 2018 [cited 2023 Feb 18]. (OECD Series on Testing and Assessment). Available from: https://www.oecd-ilibrary.org/environment/guidance-document-on-good-in-vitro-method-practices-givimp_9789264304796-en | spa |
dc.relation.references | Onodera H, Sasaki S, Otake S, Tomohiro M, Shibuya K, Nomura M. General considerations in ocular toxicity risk assessment from the toxicologists’ viewpoints. J Toxicol Sci. 2015;40(3):295–307. | spa |
dc.relation.references | Karamouzian M, Esmaeili H, Sharifi A, Sharifi H, Mokhtari M, Nejad A, et al. Topical ocular anesthetic abuse among Iranian welders: time for action. Middle East Afr J Ophthalmol. 2013;20(4):336. | spa |
dc.relation.references | Sughra U, Khan WA, Kausar S. Topical Ocular Anesthetic Use among Welders of Rawalpindi City, Pakistan. J Coll Physicians Surg Pak. 2021 Jun;30(6):737–9. | spa |
dc.relation.references | Fan WY, Sui YL, Fan TJ. Proparacaine induces cytotoxicity and mitochondria-dependent apoptosis in corneal stromal cells both in vitro and in vivo. Toxicol Res (Camb). 2016;5(5):1434–44. | spa |
dc.relation.references | Abuin L, Cecilia MD, Ferella E, Leticia M. Queratopatía por abuso de anestésicos. Oftalmología Clínica y Experimental. 2012;5(3):95–101. | spa |
dc.relation.references | Zagelbaum BM, Tostanoski JR, Hochman MA, Hersh PS. Topical lidocaine and proparacaine abuse. Am J Emerg Med. 1994 Jan;12(1):96–7. | spa |
dc.relation.references | Baradad-Jurjo MC, Planas-Domenech N, Barnils-Garcia N, López-López M, Martí-Huguet T. Topical anesthetic abuse keratopathy in a contact lens wearer. J Fr Ophtalmol. 2022 Jan;45(1):154–6. | spa |
dc.relation.references | Sharifi A, Naisir N, Shams M, Sharifi M, Sharifi H. Adverse Reactions from Topical Ophthalmic Anesthetic Abuse. J Ophthalmic Vis Res. 2022 Nov 24; | spa |
dc.relation.references | Aksoy A, Başkan AM, Aslan L, Aslankurt M. Topical proparacaine abuse resulting in evisceration. BMJ Case Rep. 2013 Apr 22;2013. | spa |
dc.relation.references | Agnieszka B, Agnieszka K, Jan O, Joanna G, Tomasz G, Anna W, et al. Pharmacokinetics and ocular disposition of paracetamol and paracetamol glucuronide in rabbits with diabetes mellitus induced by alloxan. Pharmacological Reports. 2012 Mar;64(2):421–7. | spa |
dc.relation.references | Pamulapati CR, Schoenwald RD. Ocular Pharmacokinetics of a Novel Tetrahydroquinoline Analog in Rabbit: Compartmental Analysis and PK–PD Evaluation. J Pharm Sci. 2012 Jan;101(1):414–23. | spa |
dc.relation.references | Fayyaz A, Ranta VP, Toropainen E, Vellonen KS, Valtari A, Puranen J, et al. Topical ocular pharmacokinetics and bioavailability for a cocktail of atenolol, timolol and betaxolol in rabbits. European Journal of Pharmaceutical Sciences. 2020 Dec;155:105553. | spa |
dc.relation.references | Park CG, Choi K, Kim YK, Park KH, Kim S, Choy Y Bin. Mathematical modelling of brimonidine absorption via topical delivery of microparticle formulations to the eye. Journal of Industrial and Engineering Chemistry. 2016 Jul;39:194–202. | spa |
dc.relation.references | Organización para la Cooperación y el Desarrollo Económicos (OCDE). Guidance document on the collection of eye tissues for histological evaluation and collection of data series on testing and assesment [Internet]. 2018 [cited 2023 Apr 6]. Available from: https://one.oecd.org/document/env/jm/mono(2011)45/rev1/en/pdf | spa |
dc.relation.references | Food and Drug Administration. In Vitro Permeation Test Studies for Topical Drug Products Submitted in ANDAs Guidance for Industry [Internet]. 2022. Available from: https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs | spa |
dc.relation.references | Baena Y, Dallos L, Manzo R, Ponce de León L. Estandarización de celdas de Franz para la realización de ensayos de liberación de fármacos a partir de complejos con polielectrolitos. Rev Colomb Cienc Quím Farm. 2011;40(2):174–88. | spa |
dc.relation.references | Sanabria LM, Martínez JA, Baena Y. Validación de una metodología analítica por HPLC-DAD para la cuantificación de cafeína en un ensayo de permeación in vitro empleando mucosa oral porcina. Revista Colombiana de Ciencias Químico-Farmacéuticas. 2017 May 1;46(2). | spa |
dc.relation.references | Ospina VE, Mantilla JC, Conde CA, Escobar P. Permeación en piel humana de una nanoemulsión de ftalocianina de aluminio clorada para la optimización de tratamientos tópicos de leishmaniasis cutánea. Ciencias de la Salud. 2014 May 30;12(2):195–211. | spa |
dc.relation.references | Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood–retina barrier: Emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006 Nov;58(11):1136–63. | spa |
dc.relation.references | Zeng Y, Yang J, Huang K, Lee Z, Lee X. A comparison of biomechanical properties between human and porcine cornea. J Biomech. 2001 Apr;34(4):533–7. | spa |
dc.relation.references | Elsheikh A, Alhasso D, Rama P. Biomechanical properties of human and porcine corneas. Exp Eye Res. 2008 May;86(5):783–90. | spa |
dc.relation.references | Agarwal P, Rupenthal ID. In vitro and ex vivo corneal penetration and absorption models. Drug Deliv Transl Res. 2016 Dec;6(6):634–47. | spa |
dc.relation.references | Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, et al. Principles of pharmacology in the eye. Br J Pharmacol. 2017 Dec;174(23):4205–23. | spa |
dc.relation.references | BioRender [Internet]. 2023 [cited 2023 Apr 23]. Available from: https://app.biorender.com/biorender-templates | spa |
dc.relation.references | Downie LE, Bandlitz S, Bergmanson JPG, Craig JP, Dutta D, Maldonado-Codina C, et al. BCLA CLEAR - Anatomy and physiology of the anterior eye. Contact Lens and Anterior Eye. 2021 Apr;44(2):132–56. | spa |
dc.relation.references | DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011 Mar;37(3):588–98. | spa |
dc.relation.references | Soni V, Pandey V, Tiwari R, Asati S, Tekade RK. Design and Evaluation of Ophthalmic Delivery Formulations. In: Basic Fundamentals of Drug Delivery. Elsevier; 2019. p. 473–538. | spa |
dc.relation.references | Tian B, Bilsbury E, Doherty S, Teebagy S, Wood E, Su W, et al. Ocular Drug Delivery: Advancements and Innovations. Pharmaceutics. 2022 Sep 13;14(9). | spa |
dc.relation.references | Adrianto MF, Annuryanti F, Wilson CG, Sheshala R, Thakur RRS. In vitro dissolution testing models of ocular implants for posterior segment drug delivery. Drug Deliv Transl Res. 2022 Jun 11;12(6):1355–75. | spa |
dc.relation.references | Ashique S, Mishra N, Mohanto S, Gowda BHJ, Kumar S, Raikar AS, et al. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon. 2024 Jan;10(1):e23810. | spa |
dc.relation.references | Hornof M, Toropainen E, Urtti A. Cell culture models of the ocular barriers. Eur J Pharm Biopharm. 2005 Jul;60(2):207–25. | spa |
dc.relation.references | Crafts P. The Role of Solubility Modeling and Crystallization in the Design of Active Pharmaceutical Ingredients. In 2007. p. 23–85. | spa |
dc.relation.references | Deb PK, Abed SN, Jaber AMY, Tekade RK. Particulate Level Properties and its Implications on Product Performance and Processing. In: Dosage Form Design Parameters. Elsevier; 2018. p. 155–220. | spa |
dc.relation.references | Rousseau RW. Crystallization Processes. In: Encyclopedia of Physical Science and Technology. Elsevier; 2003. p. 91–119. | spa |
dc.relation.references | SCCS (Scientific Committee on Consumer Safety). Basic criteria for the in vitro assessment of dermal absorption of cosmetic ingredients. European Union; 2010. | spa |
dc.relation.references | United States Pharmacopeial Convention. The United States Pharmacopeia 2023: USP 42 . The United States Pharmacopeia 2023: USP 42, editor. Vol. 48. Rockville; 2023. | spa |
dc.relation.references | Dahan A, Beig A, Lindley D, Miller JM. The solubility–permeability interplay and oral drug formulation design: Two heads are better than one. Adv Drug Deliv Rev. 2016 Jun;101:99–107. | spa |
dc.relation.references | Lennernäs H. Animal data: the contributions of the ussing chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv Drug Deliv Rev. 2007 Sep 30;59(11):1103–20. | spa |
dc.relation.references | Zhang W, Prausnitz MR, Edwards A. Model of transient drug diffusion across cornea. Journal of Controlled Release. 2004 Sep;99(2):241–58. | spa |
dc.relation.references | Valkó KL. Application of HPLC measurements for the determination of physicochemical and biomimetic properties to model in vivo drug distribution in support of early drug discovery. In 2020. p. 667–758. | spa |
dc.relation.references | Dosmar E, Walsh J, Doyel M, Bussett K, Oladipupo A, Amer S, et al. Targeting Ocular Drug Delivery: An Examination of Local Anatomy and Current Approaches. Bioengineering. 2022 Jan 17;9(1):41. | spa |
dc.relation.references | Stamper RL, Lieberman MF, Drake M V. Medical treatment of glaucoma: general principles. In: Becker-Shaffer’s Diagnosis and Therapy of the Glaucomas. Elsevier; 2009. p. 345–58. | spa |
dc.relation.references | Vandervoort J, Ludwig A. Ocular drug delivery: nanomedicine applications. Nanomedicine. 2007 Feb;2(1):11–21. | spa |
dc.relation.references | Gratieri T, Gelfuso GM, Thomazini JA, Lopez RFV. Excised Porcine Cornea Integrity Evaluation in an in vitro Model of Iontophoretic Ocular Research. Ophthalmic Res. 2010;43(4):208–16. | spa |
dc.relation.references | Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, et al. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int J Pharm. 2021 Sep;607:120924. | spa |
dc.relation.references | Al-Ghananeem A, Crooks P. Phase I and Phase II Ocular Metabolic Activities and the Role of Metabolism in Ophthalmic Prodrug and Codrug Design and Delivery. Molecules. 2007 Mar 8;12(3):373–88. | spa |
dc.relation.references | Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, et al. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. Journal of Controlled Release. 2023 Feb;354:465–88. | spa |
dc.relation.references | Grossniklaus HE, Nickerson JM, Edelhauser HF, Bergman LAMK, Berglin L. Anatomic Alterations in Aging and Age-Related Diseases of the Eye. Investigative Opthalmology & Visual Science. 2013 Dec 13;54(14):ORSF23. | spa |
dc.relation.references | Kutlehria S, Sachdeva MS. Role of In Vitro Models for Development of Ophthalmic Delivery Systems. Crit Rev Ther Drug Carrier Syst. 2021;38(3):1–31. | spa |
dc.relation.references | Maurice DM. The permeability to sodium ions of the living rabbit’s cornea. J Physiol. 1951 Feb 20;112(3–4):367–91. | spa |
dc.relation.references | Dikstein S, Maurice DM. The metabolic basis to the fluid pump in the cornea. J Physiol. 1972 Feb 1;221(1):29–41. | spa |
dc.relation.references | Hedbys BO, Mishima S, Maurice DM. The imbibition pressure of the corneal stroma. Exp Eye Res. 1963 Apr;2(2):99-IN1. | spa |
dc.relation.references | Maurice D. Characterization of paracellular penetration routes. Invest Ophthalmol Vis Sci. 1997 Oct;38(11):2177–80. | spa |
dc.relation.references | Maurice DM, Giardini AA. A Simple Optical Apparatus for Measuring the Corneal Thickness, and the Average Thickness of the Human Cornea. British Journal of Ophthalmology. 1951 Mar 1;35(3):169–77. | spa |
dc.relation.references | Mishima S, Kudo T. In Vitro Incubation of Rabbit Cornea. Invest Ophthalmol Vis Sci [Internet]. 1967 [cited 2023 May 21];6(4):329–39. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2203555 | spa |
dc.relation.references | Mishima S, Hedbys BO. The permeability of the corneal epithelium and endothelium to water. Exp Eye Res. 1967 Jan;6(1):10–32. | spa |
dc.relation.references | Donn A, Maurice DM, Mills NL. Studies on the living cornea in vitro. II. The active transport of sodium across the epithelium. Arch Ophthalmol. 1959 Nov;62:748–57. | spa |
dc.relation.references | Maurice DM. The use of fluorescein in ophthalmological research. Invest Ophthalmol [Internet]. 1967 Oct [cited 2023 May 21];6(5):464–77. Available from: https://iovs.arvojournals.org/article.aspx?articleid=2203579 | spa |
dc.relation.references | Franz TJ. Percutaneous Absorption. On the Relevance of in Vitro Data. Journal of Investigative Dermatology. 1975 Mar;64(3):190–5. | spa |
dc.relation.references | Franz TJ. The finite dose technique as a valid in vitro model for the study of percutaneous absorption in man. Curr Probl Dermatol. 1978;7:58–68. | spa |
dc.relation.references | Bonferoni MC, Rossi S, Ferrari F, Caramella C. A Modified Franz Diffusion Cell for Simultaneous Assessment of Drug Release and Washability of Mucoadhesive Gels. Pharm Dev Technol. 1999 Jan 6;4(1):45–53. | spa |
dc.relation.references | Tegtmeyer S, Papantoniou I, Müller-Goymann CC. Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride. European Journal of Pharmaceutics and Biopharmaceutics. 2001 Mar;51(2):119–25. | spa |
dc.relation.references | Reichl S, Müller-Goymann CC. [Development of an organotypic corneal construction as an in vitro model for permeability studies]. Ophthalmologe. 2001 Sep;98(9):853–8. | spa |
dc.relation.references | Elhabal SF, Ghaffar SA, Hager R, Elzohairy NA, Khalifa MM, Mohie PM, et al. Development of thermosensitive hydrogel of Amphotericin-B and Lactoferrin combination-loaded PLGA-PEG-PEI nanoparticles for potential eradication of ocular fungal infections: In-vitro, ex-vivo and in-vivo studies. Int J Pharm X. 2023 Dec;5:100174. | spa |
dc.relation.references | Alsaidan OA, Zafar A, Yasir M, Alzarea SI, Alqinyah M, Khalid M. Development of Ciprofloxacin-Loaded Bilosomes In-Situ Gel for Ocular Delivery: Optimization, In-Vitro Characterization, Ex-Vivo Permeation, and Antimicrobial Study. Gels. 2022 Oct 25;8(11):687. | spa |
dc.relation.references | Khattab A, Marzok S, Ibrahim M. Development of optimized mucoadhesive thermosensitive pluronic based in situ gel for controlled delivery of Latanoprost: Antiglaucoma efficacy and stability approaches. J Drug Deliv Sci Technol. 2019 Oct;53:101134. | spa |
dc.relation.references | Di Prima G, Bongiovì F, Palumbo FS, Pitarresi G, Licciardi M, Giammona G. Mucoadhesive PEGylated inulin-based self-assembling nanoparticles: In vitro and ex vivo transcorneal permeation enhancement of corticosteroids. J Drug Deliv Sci Technol. 2019 Feb;49:195–208. | spa |
dc.relation.references | Al-Ghabeish M, Xu X, Krishnaiah YSR, Rahman Z, Yang Y, Khan MA. Influence of drug loading and type of ointment base on the in vitro performance of acyclovir ophthalmic ointment. Int J Pharm. 2015 Nov;495(2):783–91. | spa |
dc.relation.references | Yu Y, Feng R, Li J, Wang Y, Song Y, Tan G, et al. A hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier ocular drug delivery platform. Asian J Pharm Sci. 2019 Jul;14(4):423–34. | spa |
dc.relation.references | Bao Q, Newman B, Wang Y, Choi S, Burgess DJ. In vitro and ex vivo correlation of drug release from ophthalmic ointments. Journal of Controlled Release. 2018 Apr;276:93–101. | spa |
dc.relation.references | Ilka R, Mohseni M, Kianirad M, Naseripour M, Ashtari K, Mehravi B. Nanogel-based natural polymers as smart carriers for the controlled delivery of Timolol Maleate through the cornea for glaucoma. Int J Biol Macromol. 2018 Apr;109:955–62. | spa |
dc.relation.references | Dave V, Paliwal S. A novel approach to formulation factor of aceclofenac eye drops efficiency evaluation based on physicochemical characteristics of in vitro and in vivo permeation. Saudi Pharmaceutical Journal. 2014 Jul;22(3):240–5. | spa |
dc.relation.references | Gupta H, Jain S, Mathur R, Mishra P, Mishra AK, Velpandian T. Sustained Ocular Drug Delivery from a Temperature and pH Triggered Novel In Situ Gel System. Drug Deliv. 2007 Jan 10;14(8):507–15. | spa |
dc.relation.references | Pawar PK, Majumdar DK. Effect of formulation factors on in vitro permeation of moxifloxacin from aqueous drops through excised goat, sheep, and buffalo corneas. AAPS PharmSciTech. 2006 Mar;7(1):E89. | spa |
dc.relation.references | Reichl S, Müller-Goymann CC. The use of a porcine organotypic cornea construct for permeation studies from formulations containing befunolol hydrochloride. Int J Pharm. 2003 Jan;250(1):191–201. | spa |
dc.relation.references | Li Q, Li Z, Zeng W, Ge S, Lu H, Wu C, et al. Proniosome-derived niosomes for tacrolimus topical ocular delivery: in vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection. Eur J Pharm Sci. 2014 Oct 1;62:115–23. | spa |
dc.relation.references | Li X, Nie S fang, Kong J, Li N, Ju C yi, Pan W san. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int J Pharm. 2008 Nov;363(1–2):177–82. | spa |
dc.relation.references | Singla S, Majumdar DK, Goyal S, Khilnani G. Evidence of carrier mediated transport of ascorbic acid through mammalian cornea. Saudi Pharmaceutical Journal. 2011 Jul;19(3):165–70. | spa |
dc.relation.references | Fangueiro JF, Calpena AC, Clares B, Andreani T, Egea MA, Veiga FJ, et al. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo , in vitro and ex vivo studies. Int J Pharm. 2016 Apr;502(1–2):161–9. | spa |
dc.relation.references | Song K, Yan M, Li M, Geng Y, Wu X. Preparation and in vitro-in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin. Colloids Surf B Biointerfaces. 2020 Oct;194:111157. | spa |
dc.relation.references | Chaudhari P, Naik R, Sruthi Mallela L, Roy S, Birangal S, Ghate V, et al. A supramolecular thermosensitive gel of ketoconazole for ocular applications: In silico, in vitro, and ex vivo studies. Int J Pharm. 2022 Feb 5;613:121409. | spa |
dc.relation.references | Mudgil M. Preparation and In Vitro/Ex Vivo Evaluation of Moxifloxacin-Loaded PLGA Nanosuspensions for Ophthalmic Application. Sci Pharm. 2013;81(2):591–606. | spa |
dc.relation.references | Alhowyan AA, Kalam MA, Iqbal M, Raish M, El-Toni AM, Alkholief M, et al. Mesoporous Silica Nanoparticles Coated with Carboxymethyl Chitosan for 5-Fluorouracil Ocular Delivery: Characterization, In Vitro and In Vivo Studies. Molecules. 2023 Jan 27;28(3):1260. | spa |
dc.relation.references | Bíró T, Bocsik A, Jurišić Dukovski B, Gróf I, Lovrić J, Csóka I, et al. New Approach in Ocular Drug Delivery: In vitro and ex vivo Investigation of Cyclodextrin-Containing, Mucoadhesive Eye Drop Formulations. Drug Des Devel Ther. 2021;15:351–60. | spa |
dc.relation.references | Sharma D, Wadhwa S, Gulati M, Kumar B, Chitranshi N, Gupta V, et al. Chitosan-modified 5-fluorouracil nanostructured lipid carriers for treatment of diabetic retinopathy in rats: a new dimension to an anticancer drug. Int J Biol Macromol. 2023 Jan;224:810–30. | spa |
dc.relation.references | Alzahrani A, Youssef AAA, Nyavanandi D, Tripathi S, Bandari S, Majumdar S, et al. Design and optimization of ciprofloxacin hydrochloride biodegradable 3D printed ocular inserts: Full factorial design and in-vitro and ex-vivo evaluations: Part II. Int J Pharm. 2023 Jan;631:122533. | spa |
dc.relation.references | Uner B, Ozdemir S, Yildirim E, Yaba A, Tas C, Uner M, et al. Loteprednol loaded nanoformulations for corneal delivery: Ex-vivo permeation study, ocular safety assessment and stability studies. J Drug Deliv Sci Technol. 2023 Mar;81:104252. | spa |
dc.relation.references | Juretić M, Cetina-Čižmek B, Filipović-Grčić J, Hafner A, Lovrić J, Pepić I. Biopharmaceutical evaluation of surface active ophthalmic excipients using in vitro and ex vivo corneal models. European Journal of Pharmaceutical Sciences. 2018 Jul;120:133–41. | spa |
dc.relation.references | Organización para la Cooperación y el Desarrollo Económicos (OCDE). Test No. 405: Acute Eye Irritation/Corrosion. OCDE; 2021. | spa |
dc.relation.references | Draize J, Woodard G, Calvery H. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes . Journal of Pharmacology and Experimental Therapeutics. 1944;82(3):377–90. | spa |
dc.relation.references | Organización para la Cooperación y el Desarrollo Económicos (OECD). Second Edition - Guidance Document on Integrated Approaches to Testing and Assessment (IATA) for Serious Eye Damage and Eye Irritation [Internet]. OECD; 2019 [cited 2023 Feb 18]. (OECD Series on Testing and Assessment). Available from: https://www.oecd-ilibrary.org/environment/second-edition-guidance-document-on-integrated-approaches-to-testing-and-assessment-iata-for-serious-eye-damage-and-eye-irritation_84b83321-en | spa |
dc.relation.references | Kaluzhny Y, Klausner M. In vitro reconstructed 3D corneal tissue models for ocular toxicology and ophthalmic drug development. In Vitro Cell Dev Biol Anim. 2021 Feb 5;57(2):207–37. | spa |
dc.relation.references | Organización para la Cooperación y el Desarrollo Económicos (OCDE). Test No. 437: Bovine Corneal Opacity and Permeability Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage. OCDE; 2023. | spa |
dc.relation.references | Burton ABG. A method for the objective assessment of eye irritation. Food Cosmet Toxicol. 1972 Jan;10(2):209–17. | spa |
dc.relation.references | Borenfreund E, Borrero O. In vitro cytotoxicity assays. Potential alternatives to the Draize ocular allergy test. Cell Biol Toxicol. 1984 Oct;1(1):55–65. | spa |
dc.relation.references | Märtins T, Pauluhn J, Machemer L. Analysis of alternative methods for determining ocular irritation. Food and Chemical Toxicology. 1992 Dec;30(12):1061–7. | spa |
dc.relation.references | Gautheron P, Dukic M, Alix D, Sina JF. Bovine corneal opacity and permeability test: an in vitro assay of ocular irritancy. Fundam Appl Toxicol. 1992 Apr;18(3):442–9. | spa |
dc.relation.references | Organización para la Cooperación y el Desarrollo Económicos (OCDE). Test No. 438: Isolated Chicken Eye Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage. OCDE; 2018. | spa |
dc.relation.references | Organización para la Cooperación y el Desarrollo Económicos (OCDE). Test No. 492B: Reconstructed Human Cornea-like Epithelium (RHCE) Test Method for Eye Hazard Identification. OCDE; 2022. | spa |
dc.relation.references | Lancina MG, Wang J, Williamson GS, Yang H. Dentimol as a dendrimeric timolol analogue for glaucoma therapy: synthesis and preliminary efficacy and safety assessment. Mol Pharm. 2018 Jul 2;15(7):2883–9. | spa |
dc.relation.references | Han S, Shen J qiu, Gan Y, Geng H ming, Zhang X xin, Zhu C liu, et al. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin. 2010 Aug;31(8):990–8. | spa |
dc.relation.references | Cardoso TP de A, Kishishita J, Souza ATM, Vieira JRC, Melo CML de, Santana DP de, et al. A proposed eye ex vivo permeation approach to evaluate pesticides: Case dimethoate. Toxicology in Vitro. 2020 Aug;66:104833. | spa |
dc.relation.references | Gómez-Segura L, Parra A, Calpena AC, Gimeno Á, Boix-Montañes A. Carprofen Permeation Test through Porcine Ex Vivo Mucous Membranes and Ophthalmic Tissues for Tolerability Assessments: Validation and Histological Study. Vet Sci. 2020 Oct 10;7(4):152. | spa |
dc.relation.references | Verstraelen S, Maglennon G, Hollanders K, Boonen F, Adriaens E, Alépée N, et al. Reprint of “CON4EI: Bovine Corneal Opacity and Permeability (BCOP) test for hazard identification and labelling of eye irritating chemicals.” Toxicology in Vitro. 2018 Oct;44:122–33. | spa |
dc.relation.references | Kolle SN, Van Cott A, van Ravenzwaay B, Landsiedel R. Lacking applicability of in vitro eye irritation methods to identify seriously eye irritating agrochemical formulations: Results of bovine cornea opacity and permeability assay, isolated chicken eye test and the EpiOcularTM ET-50 method to classify according to UN GHS. Regulatory Toxicology and Pharmacology. 2017 Apr;85:33–47. | spa |
dc.relation.references | Jeong MK, Kim BH. Grading criteria of histopathological evaluation in BCOP assay by various staining methods. Toxicol Res. 2022 Jan;38(1):9–17. | spa |
dc.relation.references | Furukawa M, Sakakibara T, Itoh K, Kawamura K, Sasaki S, Matsuura M. Histopathological evaluation of the ocular-irritation potential of shampoos, make-up removers and cleansing foams in the bovine corneal opacity and permeability assay. J Toxicol Pathol. 2015 Oct;28(4):243–8. | spa |
dc.relation.references | Barile FA. Validating and troubleshooting ocular in vitro toxicology tests. J Pharmacol Toxicol Methods. 2010 Mar;61(2):136–45. | spa |
dc.relation.references | Pescina S, Govoni P, Potenza A, Padula C, Santi P, Nicoli S. Development of a Convenient ex vivo Model for the Study of the Transcorneal Permeation of Drugs: Histological and Permeability Evaluation. J Pharm Sci. 2015 Jan;104(1):63–71. | spa |
dc.relation.references | Piehl M, Gilotti A, Donovan A, DeGeorge G, Cerven D. Novel cultured porcine corneal irritancy assay with reversibility endpoint. Toxicology in Vitro. 2010 Feb;24(1):231–9. | spa |
dc.relation.references | Schoen HF, Candia OA. Effects of tertiary amine local anesthetics on ion transport in the isolated bullfrog cornea. Exp Eye Res. 1979 Feb;28(2):199–209. | spa |
dc.relation.references | Fuchsjäger-Mayrl G, Zehetmayer M, Plass H, Turnheim K. Alkalinization increases penetration of lidocaine across the human cornea. J Cataract Refract Surg. 2002 Apr;28(4):692–6. | spa |
dc.relation.references | Igarashi H, Sato Y, Hamada S, Kawasaki T. Studies on rabbit corneal permeability of local anesthetics (I). Jpn J Pharmacol. 1984;34(4):429–34. | spa |
dc.relation.references | Lalatsa A, Patel P V., Sun Y, Kiun CC, Karimi F, Zekonyte J, et al. Transcutaneous anaesthetic nano-enabled hydrogels for eyelid surgery. Int J Pharm. 2020 Mar;577:119003. | spa |
dc.relation.references | Diaz L. Evaluación de la permeación y la irritación ocular y dérmica de una mezcla de ramnolípidos a través de metodologías in vitro [tesis de maestría]. [Bogotá D.C., Colombia]: Universidad Nacional de Colombia; 2019. | spa |
dc.relation.references | Salamanca CH, Barrera-Ocampo A, Lasso JC, Camacho N, Yarce CJ. Franz Diffusion Cell Approach for Pre-Formulation Characterisation of Ketoprofen Semi-Solid Dosage Forms. Pharmaceutics. 2018 Sep 5;10(3). | spa |
dc.relation.references | PermeGear. Franz Cell – The Original. 2023 [cited 2023 Apr 6]; Available from: https://permegear.com/franz-cells/ | spa |
dc.relation.references | Organización para la Cooperación y el Desarrollo Económicos (OCDE). Test No. 428: Skin Absorption: In Vitro Method. OCDE; 2004. | spa |
dc.relation.references | Moss GP, Gullick DR, Wilkinson SC. Predictive Methods in Percutaneous Absorption. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. | spa |
dc.relation.references | Ehrhardt C, Kwang-Jin K. Drug Absorption Studies: In Situ, In Vitro and In Silico Models. New York: Springer; 2008. | spa |
dc.relation.references | Enderle JD. Bioelectric Phenomena. In: Introduction to Biomedical Engineering. Elsevier; 2012. p. 747–815. | spa |
dc.relation.references | Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR, Reiss AB. Toxic External Exposure Leading to Ocular Surface Injury. Vision. 2023 Apr 3;7(2):32. | spa |
dc.relation.references | Nourse WL, Tyson CA, Bednarz RM. Mechanisms of mild ocular irritation. Toxicology in Vitro. 1995 Dec;9(6):967–76. | spa |
dc.relation.references | UNECE. Globally Harmonized System of Classification and Labelling of Chemicals (GHS). United Nations; 2021. | spa |
dc.relation.references | Parasuraman S. Toxicological screening. J Pharmacol Pharmacother. 2011 Jun 11;2(2):74–9. | spa |
dc.relation.references | Brock WJ, Somps CJ, Torti V, Render JA, Jamison J, Rivera MI. Ocular Toxicity Assessment From Systemically Administered Xenobiotics. Int J Toxicol. 2013 May 24;32(3):171–88. | spa |
dc.relation.references | Short BG. Safety Evaluation of Ocular Drug Delivery Formulations: Techniques and Practical Considerations. Toxicol Pathol. 2008 Jan 1;36(1):49–62. | spa |
dc.relation.references | Glaudo M, Panfil C, Schrage NF. Defining corneal chemical burns: A novel exact and adjustable ocular model. Toxicol Rep. 2021;8:1200–6. | spa |
dc.relation.references | Schrage NF, Abu SS, Hermanns L, Panfil C, Dutescu RM. Irrigation with phosphate-buffered saline causes corneal calcification during treatment of ocular burns. Burns. 2019 Dec;45(8):1871–9. | spa |
dc.relation.references | Griffith GL, Wirostko B, Lee HK, Cornell LE, McDaniel JS, Zamora DO, et al. Treatment of corneal chemical alkali burns with a crosslinked thiolated hyaluronic acid film. Burns. 2018 Aug;44(5):1179–86. | spa |
dc.relation.references | Bhasker S, Kislay R, Rupinder KK, Jagat KR. Evaluation of nanoformulated therapeutics in an ex-vivo bovine corneal irritation model. Toxicology in Vitro. 2015 Aug;29(5):917–25. | spa |
dc.relation.references | Prinsen MK, Schipper MEI, Wijnands MVW. Histopathology in the isolated chicken eye test and comparison of different stainings of the cornea. Toxicology in Vitro. 2011 Oct;25(7):1475–9. | spa |
dc.relation.references | Organización para la Cooperación y el Desarrollo Económicos (OCDE). SIDS Initial Assessment Report SODIUM HYDROXIDE CAS N°: 1310-73-2 [Internet]. Paris; 2002 Mar [cited 2024 Aug 6]. Available from: https://hpvchemicals.oecd.org/ui/handler.axd?id=4d5cda68-5a7d-4ab6-85ec-20a0fd6592ca#:~:text=Based%20on%20human%20data%20concentrations,concentration%20was%201.2%20%25%20or%20higher | spa |
dc.relation.references | Organización para la Cooperación y el Desarrollo Económicos (OCDE). Test No. 491: Short Time Exposure In Vitro Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage. OCDE; 2023. | spa |
dc.relation.references | Nemr AA, El-Mahrouk GM, Badie HA. Hyaluronic acid-enriched bilosomes: an approach to enhance ocular delivery of agomelatine via D-optimal design: formulation, in vitro characterization, and in vivo pharmacodynamic evaluation in rabbits. Drug Deliv. 2022 Dec 31;29(1):2343–56. | spa |
dc.relation.references | Sá L de L, Rodrigues RV, Alves VM, Gaspar LR. Strategies for the evaluation of the eye irritation potential of different types of surfactants and silicones used in cosmetic products. Toxicology in Vitro. 2022 Jun;81:105351. | spa |
dc.relation.references | Vincent A, Bernard L, Léone M. Farmacología de los anestésicos locales. EMC - Podología. 2019 Oct;21(4):1–19. | spa |
dc.relation.references | Becker DE, Reed KL. Local anesthetics: review of pharmacological considerations. Anesth Prog. 2012;59(2):90–101; quiz 102–3. | spa |
dc.relation.references | Drugbank. Drugbank online [Internet]. 2024 [cited 2024 Jun 12]. Available from: https://go.drugbank.com/ | spa |
dc.relation.references | Whigan DB. Proparacaine Hydrochloride. In: Florey K, editor. Analytical Profiles of Drug Substances. New Brunswick; 1977. p. 423–56. | spa |
dc.relation.references | National Library of Medicine (US). PubChem [Internet]. Vol. 51. [cited 2025 Mar 22]. Available from: https://pubchem.ncbi.nlm.nih.gov/ | spa |
dc.relation.references | Settimo L, Bellman K, Knegtel RMA. Comparison of the Accuracy of Experimental and Predicted pKa Values of Basic and Acidic Compounds. Pharm Res. 2014 Apr 19;31(4):1082–95. | spa |
dc.relation.references | Maher TJ. Anesthetic Agents: General and Local Anesthetics. In: Lemke TL, Williams DA, editors. Foye’s Principles of Medicinal Chemistry [Internet]. 7th ed. Philadelphia; 2012 [cited 2025 Mar 23]. p. 508–22. Available from: https://downloads.lww.com/wolterskluwer_vitalstream_com/sample-content/9781609133450_Lemke/samples/Chapter_16.pdf | spa |
dc.relation.references | Pope RLE, Brown AM. A primer on tissue pH and local anesthetic potency. Adv Physiol Educ. 2020 Sep 1;44(3):305–8. | spa |
dc.relation.references | Yamuna M, Divya T. Drug pKa value prediction – Using graph eccentricity. International Journal of Green Pharmacy [Internet]. 2018 [cited 2025 Mar 23];12:168–74. Available from: http://greenpharmacy.info/index.php/ijgp/article/viewFile/1948/917 | spa |
dc.relation.references | Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: A literature analysis for drug delivery to the eye. J Pharm Sci. 1998 Dec;87(12):1479–88. | spa |
dc.relation.references | Luo AM, Sasaki H, Lee VHL. Ocular drug interactions involving topically applied timolol in the pigmented rabbit. Curr Eye Res. 1991 Jan 2;10(3):231–40. | spa |
dc.relation.references | Eke T. Anesthesia for glaucoma surgery. Ophthalmol Clin North Am. 2006 Jun;19(2):245–55. | spa |
dc.relation.references | Rafailov L, Kulak A, Weedon J, Shinder R. Comparison of Lidocaine Gel–Assisted Transconjunctival and Transcutaneous Local Anesthesia for Outpatient Eyelid Surgery. Ophthalmic Plast Reconstr Surg. 2015 Nov;31(6):470–3. | spa |
dc.relation.references | Mahan M, Flor R, Purt B. Local And Regional Anesthesia in Ophthalmology and Ocular Trauma. 2023. | spa |
dc.relation.references | Mahajan A, Derian A. Local Anesthetic Toxicity. 2023. | spa |
dc.relation.references | El-Boghdadly K, Pawa A, Chin KJ. Local anesthetic systemic toxicity: current perspectives. Local Reg Anesth. 2018 Aug;Volume 11:35–44. | spa |
dc.relation.references | McGee HT, Fraunfelder F. Toxicities of topical ophthalmic anesthetics. Expert Opin Drug Saf. 2007 Nov 30;6(6):637–40. | spa |
dc.relation.references | Patel M, Fraunfelder FW. Toxicity of topical ophthalmic anesthetics. Expert Opin Drug Metab Toxicol. 2013 Aug 25;9(8):983–8. | spa |
dc.relation.references | Moon J, Choi SH, Lee MJ, Jo DH, Park UC, Yoon SO, et al. Ocular surface complications of local anticancer drugs for treatment of ocular tumors. Ocul Surf. 2021 Jan;19:16–30. | spa |
dc.relation.references | Maurice D, Singh T. A permeability test for acute corneal toxicity. Toxicol Lett. 1986 May;31(2):125–30. | spa |
dc.relation.references | Gohil H, Miskovic M, Buxton JA, Holland SP, Strike C. Smoke Gets in the Eye: A systematic review of case reports of ocular complications of crack cocaine use. Drug Alcohol Rev. 2022 Feb;41(2):347–55. | spa |
dc.relation.references | Erdem E, Undar IH, Esen E, Yar K, Yagmur M, Ersoz R. Topical anesthetic eye drops abuse: are we aware of the danger? Cutan Ocul Toxicol. 2013 Sep 15;32(3):189–93. | spa |
dc.relation.references | Sun R, Hamilton RC, Gimbel H V. Comparison of 4 topical anesthetic agents for effect and corneal toxicity in rabbits. J Cataract Refract Surg. 1999 Sep;25(9):1232–6. | spa |
dc.relation.references | Liu JC, Steinemann TL, McDonald MB, Thompson HW, Beuerman RW. Topical Bupivacaine and Proparacaine: A Comparison of Toxicity, Onset of Action, and Duration of Action. Cornea. 1993 May;12(3):228–32. | spa |
dc.relation.references | Swaminathan A, Otterness K, Milne K, Rezaie S. The Safety of Topical Anesthetics in the Treatment of Corneal Abrasions: A Review. J Emerg Med. 2015 Nov;49(5):810–5. | spa |
dc.relation.references | Moreira LB, Kasetsuwan N, Sanchez D, Shah SS, LaBree L, McDonnell PJ. Toxicity of topical anesthetic agents to human keratocytes in vivo. J Cataract Refract Surg. 1999 Jul;25(7):975–80. | spa |
dc.relation.references | Tappeiner C, Flueckiger F, Boehnke M, Goldblum D, Garweg JG. Effect of topical anesthetic agents and ethanol on corneoepithelial wound healing in an ex vivo whole-globe porcine model. J Cataract Refract Surg. 2012 Mar;38(3):519–24. | spa |
dc.relation.references | Begum G, Leigh T, Courtie E, Moakes R, Butt G, Ahmed Z, et al. Rapid assessment of ocular drug delivery in a novel ex vivo corneal model. Sci Rep. 2020 Jul 16;10(1):11754. | spa |
dc.relation.references | Loch C, Zakelj S, Kristl A, Nagel S, Guthoff R, Weitschies W, et al. Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes. European Journal of Pharmaceutical Sciences. 2012 Aug;47(1):131–8. | spa |
dc.relation.references | Ministerio de Salud. Resolución No 008430. Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. [Internet]. Bogotá; 1993 [cited 2023 Apr 8]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCION-8430-DE-1993.PDF | spa |
dc.relation.references | Congreso de Colombia. Ley 84. Por la cual se adopta el Estatuto Nacional de Protección de los Animales y se crean unas contravenciones y se regula lo referente a su procedimiento y competencia. [Internet]. Bogotá; 1989 [cited 2023 Apr 8]. Available from: https://www.dnp.gov.co/programas/justicia-seguridad-y-gobierno/Documents/ANEXO%203_LEY%2084%20DE%201989.pdf | spa |
dc.relation.references | Armitage WJ. Preservation of Human Cornea. Transfusion Medicine and Hemotherapy. 2011;38(2):143–7. | spa |
dc.relation.references | Kaur A, Priyadarshini S, Mohanty A, Sahu S, Das S. Preservation of donor corneal epithelium in McCarey-Kaufman medium. Indian J Ophthalmol. 2022;70(8):2946. | spa |
dc.relation.references | Thoft RA, Friend J, Freedman H, Dohlman CH. Corneal Epithelial Preservation. Archives of Ophthalmology. 1975 May 1;93(5):357–61. | spa |
dc.relation.references | Lindstrom RL. Advances in corneal preservation. Trans Am Ophthalmol Soc. 1990;88:555–648. | spa |
dc.relation.references | Nibourg LM, Koopmans SA. Preservation of enucleated porcine eyes for use in a wet laboratory. J Cataract Refract Surg. 2014 Apr;40(4):644–51. | spa |
dc.relation.references | Kissner A, Spoerl E, Jung R, Spekl K, Pillunat LE, Raiskup F. Pharmacological Modification of the Epithelial Permeability by Benzalkonium Chloride in UVA/Riboflavin Corneal Collagen Cross-Linking. Curr Eye Res. 2010 Aug 30;35(8):715–21. | spa |
dc.relation.references | Koppen C, Gobin L, Tassignon MJ. The Absorption Characteristics of the Human Cornea in Ultraviolet-A Crosslinking. Eye & Contact Lens: Science & Clinical Practice. 2010 Mar;36(2):77–80. | spa |
dc.relation.references | Boice EN, Snider EJ. Anterior Segment Organ Culture Platform for Tracking Open Globe Injuries and Therapeutic Performance. Journal of Visualized Experiments. 2021 Aug 25;(174). | spa |
dc.relation.references | Ng SF, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM. Validation of a Static Franz Diffusion Cell System for In Vitro Permeation Studies. AAPS PharmSciTech. 2010 Sep 15;11(3):1432–41. | spa |
dc.relation.references | Yang Z, Zhao J, Feng Y, Lei Y, Liu D, Qin F, et al. Identification, synthesis and structural confirmation of process-related impurities in proparacaine hydrochloride. J Pharm Biomed Anal. 2020 Oct;190:113497. | spa |
dc.relation.references | Cañadas-Enrich C, Abrego G, Alvarado HL, Calpena-Campmany AC, Boix-Montañes A. Pranoprofen quantification in ex vivo corneal and scleral permeation samples: Analytical validation. J Pharm Biomed Anal. 2018 Oct;160:109–18. | spa |
dc.relation.references | National Library of Medicine (NIH). 2024. Dailymed. | spa |
dc.relation.references | Instituto Nacional de Vigilancia de Medicamentos y Alimentos (INVIMA). CONSULTA DATOS DE PRODUCTOS [Internet]. 2024 [cited 2024 Jun 15]. Available from: https://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jsp | spa |
dc.relation.references | Kumar V, Abbas AK, Aster JC. Robbins & Cotran Pathologic Basis of Disease. 9th Edition. Philadelphia: Elsevier; 2015. | spa |
dc.relation.references | Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015 Nov;49:1–16. | spa |
dc.relation.references | Crespo-Moral M, García-Posadas L, López-García A, Diebold Y. Histological and immunohistochemical characterization of the porcine ocular surface. PLoS One. 2020 Jan 13;15(1):e0227732. | spa |
dc.relation.references | Muñoz E. Micropunción estromal anterior en la queratopatía bullosa [tesis de maestría]. [Valencia]: Universitat De Valencia; 2006. | spa |
dc.relation.references | Daryabari SH, Aghamollaei H, Asadi Amoli F, Jadidi K, Tebyanian H. Histopathology Study of Patients with Delayed Mustard Gas Keratopathy 30 Years After Exposure. Iran J Pathol. 2022 Jul 1;17(3):354–9. | spa |
dc.relation.references | Radwan SES, El-Moslemany RM, Mehanna RA, Thabet EH, Abdelfattah EZA, El-Kamel A. Chitosan-coated bovine serum albumin nanoparticles for topical tetrandrine delivery in glaucoma: in vitro and in vivo assessment. Drug Deliv. 2022 Dec;29(1):1150–63. | spa |
dc.relation.references | Song J, Bi H, Xie X, Guo J, Wang X, Liu D. Natural borneol enhances geniposide ophthalmic absorption in rabbits. Int J Pharm. 2013 Mar;445(1–2):163–70. | spa |
dc.relation.references | Klein S. Influence of different test parameters on in vitro drug release from topical diclofenac formulations in a vertical diffusion cell setup. Pharmazie. 2013 Jul;68(7):565–71. | spa |
dc.relation.references | Zhang R, Yang J, Luo Q, Shi J, Xu H, Zhang J. Preparation and in vitro and in vivo evaluation of an isoliquiritigenin-loaded ophthalmic nanoemulsion for the treatment of corneal neovascularization. Drug Deliv. 2022 Dec;29(1):2217–33. | spa |
dc.relation.references | Díaz-Tomé V, Bendicho-Lavilla C, García-Otero X, Varela-Fernández R, Martín-Pastor M, Llovo-Taboada J, et al. Antifungal Combination Eye Drops for Fungal Keratitis Treatment. Pharmaceutics. 2022 Dec 22;15(1):35. | spa |
dc.relation.references | Lewczuk K, Jabłońska J, Konopińska J, Mariak Z, Rękas M. Schlemm’s canal: the outflow ‘vessel.’ Acta Ophthalmol. 2022 Jun 13;100(4). | spa |
dc.relation.references | Shah AM, Galor A. Impact of Ocular Surface Temperature on Tear Characteristics: Current Insights. Clin Optom (Auckl). 2021 Feb;Volume 13:51–62. | spa |
dc.relation.references | Kessel L, Johnson L, Arvidsson H, Larsen M. The Relationship between Body and Ambient Temperature and Corneal Temperature. Investigative Opthalmology & Visual Science. 2010 Dec 1;51(12):6593. | spa |
dc.relation.references | Vitoux MA, Kessal K, Melik Parsadaniantz S, Claret M, Guerin C, Baudouin C, et al. Benzalkonium chloride-induced direct and indirect toxicity on corneal epithelial and trigeminal neuronal cells: proinflammatory and apoptotic responses in vitro. Toxicol Lett. 2020 Feb;319:74–84. | spa |
dc.relation.references | Mohamed HB, Attia Shafie MA, Mekkawy AI. Chitosan Nanoparticles for Meloxicam Ocular Delivery: Development, In Vitro Characterization, and In Vivo Evaluation in a Rabbit Eye Model. Pharmaceutics. 2022 Apr 20;14(5):893. | spa |
dc.relation.references | Üstündağ-Okur N, Gökçe EH, Bozbıyık Dİ, Eğrilmez S, Özer Ö, Ertan G. Preparation and in vitro–in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. European Journal of Pharmaceutical Sciences. 2014 Oct;63:204–15. | spa |
dc.relation.references | Liu J, Fu S, Wei N, Hou Y, Zhang X, Cui H. The effects of combined menthol and borneol on fluconazole permeation through the cornea ex vivo. Eur J Pharmacol. 2012 Aug;688(1–3):1–5. | spa |
dc.relation.references | Xie F, Ji S, Cheng Z. In vitro dissolution similarity factor (f2) and in vivo bioequivalence criteria, how and when do they match? Using a BCS class II drug as a simulation example. European Journal of Pharmaceutical Sciences. 2015 Jan;66:163–72. | spa |
dc.relation.references | Dincel A, Basci NE, Atilla H, Bozkurt A. Development and Validation of an HPLC–UV–Vis Method for the Determination of Proparacaine in Human Aqueous Humour. Chromatographia. 2007 Sep 23;66(S1):51–6. | spa |
dc.relation.references | Latreille PL, Banquy X. A simple method for the subnanomolar quantitation of seven ophthalmic drugs in the rabbit eye. Anal Bioanal Chem. 2015 May 8;407(13):3567–78. | spa |
dc.relation.references | Taylor A, McLeod G. Basic pharmacology of local anaesthetics. BJA Educ. 2020 Feb;20(2):34–41. | spa |
dc.relation.references | Tojo K. Pharmacokinetic model of transcorneal drug delivery. Math Biosci. 1988 May;89(1):53–77. | spa |
dc.relation.references | Avtar R, Tandon D. Modeling the drug transport in the anterior segment of the eye. European Journal of Pharmaceutical Sciences. 2008 Oct;35(3):175–82. | spa |
dc.relation.references | Schreier S, Malheiros SVP, de Paula E. Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2000 Nov;1508(1–2):210–34. | spa |
dc.relation.references | Toffoletto N, Chauhan A, Alvarez-Lorenzo C, Saramago B, Serro AP. Asymmetry in Drug Permeability through the Cornea. Pharmaceutics. 2021 May 11;13(5):694. | spa |
dc.relation.references | Margo CE, Grossniklaus HE, Filutowski O. Clinical-pathologic correlation. In: Ophthalmic Pathology. Elsevier; 2023. p. 363–8. | spa |
dc.relation.references | Klyce SD, Hallak J, Romond K, Azar DT, Kim T im. Corneal Physiology: Corneal Form and Function. In: Albert and Jakobiec’s Principles and Practice of Ophthalmology. Cham: Springer International Publishing; 2022. p. 31–103. | spa |
dc.relation.references | National Center for Biotechnology Information (NCBI). National Library of Medicine (NLM), National Institutes of Health (NIH). [cited 2025 Mar 1]. MedGen. Available from: https://www.ncbi.nlm.nih.gov/medgen/ | spa |
dc.relation.references | Alomar TS, Al-Aqaba M, Gray T, Lowe J, Dua HS. Histological and Confocal Microscopy Changes in Chronic Corneal Edema: Implications for Endothelial Transplantation. Investigative Opthalmology & Visual Science. 2011 Oct 17;52(11):8193. | spa |
dc.relation.references | Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, et al. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci. 2021 Jan 28;22(3). | spa |
dc.relation.references | Oh JY, Yu JM, Ko JH. Analysis of Ethanol Effects on Corneal Epithelium. Investigative Opthalmology & Visual Science. 2013 Jun 4;54(6):3852. | spa |
dc.relation.references | Soni NG, Hoover CK, Da Silva H, Jeng BH. Preservation of the Corneal Epithelium in Different Corneal Storage Media. Cornea. 2015 Nov;34(11):1400–3. | spa |
dc.relation.references | Globally Harmonized System of Classification and Labelling of Chemicals (GHS). echemportal [Internet]. [cited 2024 Aug 5]. Available from: https://www.echemportal.org/echemportal/ghs-search | spa |
dc.relation.references | Mahajan A, Coelho A, Pissurlenkar R, Fernandes A, Tagalpallewar A. Prediction of Ocular Toxicity of Potential Degradation Products of Proparacaine Hydrochloride Subjected under ICH Recommended Stress Conditions. J Chromatogr Sci. 2023 Apr 24;61(4):393–401. | spa |
dc.relation.references | Benhar H, Idri A, Fernández-Alemán JL. Data preprocessing for heart disease classification: A systematic literature review. Comput Methods Programs Biomed. 2020 Oct;195:105635. | spa |
dc.relation.references | Seaman CW, Whittingham A, Guest R, Warren N, Olson MJ, Guerriero FJ, et al. An evaluation of a cultured human corneal epithelial tissue model for the determination of the ocular irritation potential of pharmaceutical process materials. Toxicology in Vitro. 2010 Sep;24(6):1862–70. | spa |
dc.relation.references | Zhu R, Chen W, Gu D, Wang T, Li J, Pan H. Chondroitin sulfate and L-Cysteine conjugate modified cationic nanostructured lipid carriers: Pre-corneal retention, permeability, and related studies for dry eye treatment. Int J Biol Macromol. 2023 Feb;228:624–37. | spa |
dc.relation.references | Khan N, Aqil M, Imam SS, Ali A. Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug delivery: in vitro and ex vivo characterization. Pharm Dev Technol. 2015 Aug 18;20(6):662–9. | spa |
dc.relation.references | Gómez-Segura L, Parra A, Calpena-Campmany AC, Gimeno Á, Gómez de Aranda I, Boix-Montañes A. Ex Vivo Permeation of Carprofen Vehiculated by PLGA Nanoparticles through Porcine Mucous Membranes and Ophthalmic Tissues. Nanomaterials. 2020 Feb 18;10(2):355. | spa |
dc.relation.references | Jiang G, Jia H, Qiu J, Mo Z, Wen Y, Zhang Y, et al. PLGA Nanoparticle Platform for Trans-Ocular Barrier to Enhance Drug Delivery: A Comparative Study Based on the Application of Oligosaccharides in the Outer Membrane of Carriers. Int J Nanomedicine. 2020 Nov;Volume 15:9373–87. | spa |
dc.relation.references | Schrage A, Kolle SN, Moreno MCR, Norman K, Raabe H, Curren R, et al. The Bovine Corneal Opacity and Permeability Test in Routine Ocular Irritation Testing and its Improvement within the Limits of OECD Test Guideline 437. Alternatives to Laboratory Animals. 2011 Mar 1;39(1):37–53. | spa |
dc.relation.references | Cydulka R, Betzelos S. Seizures following the use of proparacaine hydrochloride eye drops. J Emerg Med. 1990;8:131–3. | spa |
dc.relation.references | Grant RL, Acosta D. Comparative Toxicity of Tetracaine, Proparacaine and Cocaine Evaluated with Primary Cultures of Rabbit Corneal Epithelial Cells. Exp Eye Res. 1994 Apr;58(4):469–78. | spa |
dc.relation.references | Riff C, Le Caloch A, Dupouey J, Allanioux L, Leone M, Blin O, et al. Local Anesthetic Plasma Concentrations as a Valuable Tool to Confirm the Diagnosis of Local Anesthetic Systemic Toxicity? A Report of 10 Years of Experience. Pharmaceutics. 2022 Mar 26;14(4). | spa |
dc.relation.references | Organización para la Cooperación y el Desarrollo Económicos (OCDE). Test No. 460: Fluorescein Leakage Test Method for Identifying Ocular Corrosives and Severe Irritants. OECD; 2023. | spa |
dc.relation.references | Hefferren JJ, Klessig RS, Dietz CL. Ultraviolet Absorption of Local Anesthetics with an Aromatic Amino Group as a Function of pH. J Dent Res. 1963 May 1;42(3):793–802. | spa |
dc.relation.references | Bahgat EA, Hashem H, Saleh H, Kamel EB, Eissa MS. Manipulation and Processing of Spectral Signals for the Assay of the Newly Authorized Mixture of Bupivacaine/Meloxicam Using Fully Green Solvents and a Comparative Green Evaluation Supporting the Greenness and Sustainability of the Developed Smart Spectrophotometric Methods. J AOAC Int. 2023 Jul 17;106(4):1056–69. | spa |
dc.relation.references | Omer LS, Ali RJ. Extraction-Spectrophotometric Determination of Lidocaine Hydrochloride in Pharmaceuticals. Int J Chem. 2017 Sep 29;9(4):49. | spa |
dc.relation.references | Hamdan MF, Ramadhani NN, Aziz AYR, Sahra M, Agrabudi AI, Permana AD. Development and validation of UV–Vis spectrophotometry-colorimetric method for the specific quantification of rivastigmine tartrate from separable effervescent microneedles: Ex vivo and in vivo applications in complex biological matrices. J Mol Struct. 2024 May;1303:137589. | spa |
dc.relation.references | The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). ICH guideline M10 on bioanalytical method validation and study sample analysis [Internet]. Amsterdam; 2022 [cited 2024 Jun 15]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m10-bioanalytical-method-validation-step-5_en.pdf | spa |
dc.relation.references | The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Validation of analytical procedures: text and methodology Q2 (R1) [Internet]. Geneva; 2005 [cited 2024 Jun 15]. Available from: http://somatek.com/wp-content/uploads/2014/06/sk140605h.pdf | spa |
dc.relation.references | Owen T. Fundamentos de la espectroscopía UV-visible moderna Conceptos básicos. Agilent Technologies. Alemania ; 2000. | spa |
dc.relation.references | Smolinska M, Ostapiv R, Yurkevych M, Poliuzhyn L, Korobova O, Kotsiumbas I, et al. Determination of Benzalkonium Chloride in a Disinfectant by UV Spectrophotometry and Gas and High-Performance Liquid Chromatography: Validation, Comparison of Characteristics, and Economic Feasibility. Int J Anal Chem. 2022 Sep 19;2022:1–8. | spa |
dc.relation.references | Tong A, Tang X, Zhang F, Wang B. Study on the shift of ultraviolet spectra in aqueous solution with variations of the solution concentration. Spectrochim Acta A Mol Biomol Spectrosc. 2020 Jun;234:118259. | spa |
dc.relation.references | Worsfold PJ. Spectrophotometry| Overview. In: Encyclopedia of Analytical Science. Elsevier; 2005. p. 318–21. | spa |
dc.relation.references | Raposo F. Evaluation of analytical calibration based on least-squares linear regression for instrumental techniques: A tutorial review. TrAC Trends in Analytical Chemistry. 2016 Mar;77:167–85. | spa |
dc.relation.references | Dincel A, Basci NE. An Experimental Design Approach to Selecting the Optimum LC Conditions for the Determination of Local Anaesthetics. Chromatographia. 2007 Sep 20;66(S1):81–5. | spa |
dc.relation.references | Van Loco J, Elskens M, Croux C, Beernaert H. Linearity of calibration curves: use and misuse of the correlation coefficient. Accreditation and Quality Assurance. 2002 Jul 1;7(7):281–5. | spa |
dc.relation.references | Wisniak J, Polishuk A. Analysis of residuals — a useful tool for phase equilibrium data analysis. Fluid Phase Equilib. 1999 Oct;164(1):61–82. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.bne | Córnea. Enfermedades. Tratamiento | spa |
dc.subject.bne | Farmacología ocular | spa |
dc.subject.bne | Medicamentos oftalmológicos | spa |
dc.subject.bne | Ojos. Enfermedades. Tratamiento | spa |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | |
dc.subject.lcc | Cornea-Diseases-Treatment | eng |
dc.subject.lcc | Eye-Diseases-Treatment | eng |
dc.subject.lcc | Pharmacologie oculaire | eng |
dc.subject.lcc | Ophthalmic drugs | eng |
dc.subject.proposal | Clorhidrato de proparacaína | spa |
dc.subject.proposal | Permeación corneal | spa |
dc.subject.proposal | Irritación corneal | spa |
dc.subject.proposal | Integridad histológica | spa |
dc.subject.proposal | Ex vivo | lat |
dc.subject.proposal | Celdas de difusión de Franz | spa |
dc.subject.proposal | Proparacaine hydrochloride | eng |
dc.subject.proposal | Corneal permeation | eng |
dc.subject.proposal | Corneal irritation | eng |
dc.subject.proposal | Histological integrity | eng |
dc.subject.proposal | Franz diffusion cells | eng |
dc.title | Implementación de un bioensayo ex vivo de permeación e irritación corneal: valoración del clorhidrato de proparacaína como caso de estudio | spa |
dc.title.translated | Implementation of an ex vivo bioassay for corneal permeation and irritation: evaluation of proparacaine hydrochloride as a case study | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |