Introducción a la geometría algebraica y a la teoría de las bases de Groebner

dc.contributor.authorVélez Caicedo, Juan Diegospa
dc.date.accessioned2019-06-24T13:10:17Zspa
dc.date.available2019-06-24T13:10:17Zspa
dc.date.issued1998spa
dc.description.abstractEstas notas pretenden servir de motivación e introducción al estudio de la geometría algebraica. Se ha escogido un enfoque intermedio que hace uso de métodos tanto abstractos como computacionales. En el primer capítulo se hace un repaso rápido de algunos conceptos del algebra abstracta, tales como anillos, módulos, algebras, etc. Se introduce la noción de módulos y anillos Noetherianos y se demuestra el teorema de la base de Hilbert. Se introduce el concepto de variedad algebraica y se muestran algunas correspondencias elementales entre nociones algebráicas y geométricas. En el segundo capítulo se enuncia el Nullstellensatz de Hilbert, en sus formas débil y fuerte. Se introduce la noción de orden monomial, bases de Groebner y se discute el algoritmo de la división generalizado. En el capítulo tercero se definen los S-polinomios y se demuestra el algoritmo de Bucheberger, que permite el cálculo de bases de Groebner para ideales. Al final hay una discusión del problema de la minimalidad y la unicidad de las bases de Groebner, en el cual se demuestra que estas son únicas si son reducidas. En el cuarto capítulo se discute el problema de extensión. Se introduce la noción de resultante y se da una demostración del Nullstellensatz de Hilbert, en su forma débil. El quinto capítulo comienza con una prueba de la forma fuerte de Nullstellensatz. Se pasa luego a discutir la noción de dimensión de una variedad algebraica, y de dimensión de Krull de un anillo conmutativo. Se prueba el teorema de normalización de Noether, el teorema del “Going up” y se muestran algunas aplicaciones a la teoría de la dimensión. En el sexto y último capítulo se muestra cómo la teoría desarrollada en los capítulos anteriores puede ser usada para diseñar algoritmos que permiten hacer pruebas mecánicas de teoremas de la geometría euclídea elemental.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/1607/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/3178
dc.language.isospaspa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Matemáticasspa
dc.relation.ispartofEscuela de Matemáticasspa
dc.relation.referencesVélez Caicedo, Juan Diego (1998) Introducción a la geometría algebraica y a la teoría de las bases de Groebner. Documento de trabajo. Sin Definir. (No publicado)spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc51 Matemáticas / Mathematicsspa
dc.subject.proposalGeometría algebraicaspa
dc.subject.proposalAlgebra Abstractaspa
dc.subject.proposalAlgoritmosspa
dc.subject.proposalTeorema de Normalización de Noetherspa
dc.titleIntroducción a la geometría algebraica y a la teoría de las bases de Groebnerspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/draftspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
70551300.1998.pdf
Tamaño:
5.8 MB
Formato:
Adobe Portable Document Format

Colecciones