En 1 día(s), 14 hora(s) y 10 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Desarrollo y caracterización de oleogeles aceite de aguacate (Persea americana ‘Lorena’) estructurados con monoglicéridos

dc.contributor.advisorPalomeque Forero, Liliam Alexandra
dc.contributor.advisorLizarazo Aparicio, Mará Cristina
dc.contributor.authorMoreno Caballero, Michael Ernesto
dc.contributor.researchgroupGrupo de Investigación en Química de Alimentosspa
dc.date.accessioned2025-04-07T15:26:51Z
dc.date.available2025-04-07T15:26:51Z
dc.date.issued2024
dc.description.abstractEl objetivo de este estudio fue desarrollar oleogeles a partir de aceite de aguacate (*Persea americana* ‘Lorena’), utilizando un monoglicérido comercial como agente estructurante. El aceite se obtuvo mediante dos métodos de extracción mecánica sin el uso de solventes, garantizando su idoneidad para el consumo humano y su cumplimiento con normas de calidad nacionales e internacionales. Los métodos de extrusión mecánica y compresión hidráulica permitieron obtener aceites con características fisicoquímicas apropiadas. Para la formación de oleogeles, se empleó un diseño experimental de superficie de respuesta con el método de Box-Behnken, evaluando el efecto de la concentración de monoglicéridos, temperatura y tiempo de calentamiento sobre la capacidad de retención de aceite (CRA), firmeza y color del gel. Los resultados indicaron que tanto la concentración del monoglicérido como la temperatura influyeron significativamente en la CRA y firmeza, mientras que el color se vio afectado solo por la concentración. Se optimizó el proceso para maximizar la CRA y alcanzar una firmeza adecuada, obteniendo condiciones óptimas de 7,98 % de monoglicérido, 86 °C de temperatura y 17 minutos de calentamiento. Estas condiciones generaron un oleogel con una CRA del 85,95 %, que posiblemente se vio afectada por una distribución no uniforme del agente estructurante y variaciones en la temperatura de enfriamiento del gel (temperatura ambiente). El análisis reológico mostró que el oleogel obtenido exhibía un comportamiento viscoelástico, con un módulo de almacenamiento (G') superior al módulo de pérdida (G'') en las frecuencias evaluadas, lo que sugiere su capacidad de almacenar energía. Sin embargo, el límite de la región viscoelástica lineal (LVR) fue bajo, indicando una estructura relativamente débil, lo que podría limitar su aplicabilidad en matrices que requieren mayor estabilidad mecánica. Además, la estabilidad oxidativa del oleogel fue superior a la del aceite puro, con 47,71 h frente a 10,80 h en el análisis Rancimat. (Texto tomado de la fuente)spa
dc.description.abstractThe objective of this study was to develop oleogels from avocado oil (*Persea americana* 'Lorena'), using a commercial monoglyceride as a structuring agent. The oil was obtained through two solvent-free mechanical extraction methods, ensuring its suitability for human consumption and compliance with national and international quality standards. The mechanical extrusion and hydraulic pressing methods resulted in oils with appropriate physicochemical characteristics. For oleogel formation, a response surface methodology was applied using the Box-Behnken design to evaluate the effect of monoglyceride concentration, temperature, and heating time on oil retention capacity (CRA), firmness, and gel color. The results indicated that both the concentration of monoglycerides and temperature significantly influenced CRA and firmness, while color was affected only by concentration. The process was optimized to maximize CRA and achieve adequate firmness, obtaining optimal conditions of 7,98 % monoglyceride, 86°C temperature, and 17 minutes of heating. These conditions yielded an oleogel with a CRA of 85,95 %, which may have been affected by uneven distribution of the structuring agent and variations in cooling conditions (ambient temperature). Rheological analysis showed that the obtained oleogel exhibited viscoelastic behavior, with a storage modulus (G') higher than the loss modulus (G'') at the evaluated frequencies, indicating its ability to store energy. However, the linear viscoelastic region (LVR) limit was low, suggesting a relatively weak structure, which could limit its application in matrices requiring greater mechanical stability. Additionally, the oxidative stability of the oleogel was superior to that of pure oil, with 47,71 hours compared to 10,80 hours in the Rancimat analysis.eng
dc.description.curricularareaCiencias Agronómicas.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaDiseño y desarrollo de productosspa
dc.description.sponsorship“Red de cooperación Biorrefinerías desde la docencia, la extensión y la investigación (BioR-DEI)” de la Universidad Nacional de Colombia – (código Hermes 57909) por su invaluable respaldo y colaboración en el desarrollo del proyecto.spa
dc.description.sponsorshipProyecto de regalías ‘‘Desarrollo, validación e implementación de tecnologías innovadoras para el manejo integral y la gestión de sistemas de cultivo de aguacate en los municipios de Monterrey, Sabanalarga y Tauramena del departamento de Casanare’’, ejecutado por la Facultad de Ciencias Agrarias de la Universidad Nacional de Colombia sede – Bogotáspa
dc.format.extentvii, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87861
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedN/Aspa
dc.relation.referencesAbdolmaleki, K., Alizadeh, L., Nayebzadeh, K., Baranowska, H. M., Kowalczewski, P. Ł., & Mousavi Khaneghah, A. (2022). Potential Application of Hydrocolloid-Based Oleogel and Beeswax Oleogel as Partial Substitutes of Solid Fat in Margarine. Applied Sciences (Switzerland), 12(23). https://doi.org/10.3390/app122312136spa
dc.relation.referencesAiroldi, R., da Silva, T. L. T., Ract, J. N. R., Foguel, A., Colleran, H. L., Ibrahim, S. A., & da Silva, R. C. (2022). Potential use of carnauba wax oleogel to replace saturated fat in ice cream. JAOCS, Journal of the American Oil Chemists’ Society, 99(11), 1085-1099. https://doi.org/10.1002/aocs.12652spa
dc.relation.referencesAlvarez-Ramirez, J., Vernon-Carter, E. J., Carrera-Tarela, Y., Garcia, A., & Roldan-Cruz, C. (2020). Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. Lwt, 130, 109701. https://doi.org/10.1016/j.lwt.2020.109701spa
dc.relation.referencesAraújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E., & Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. En Trends in Food Science and Technology (Vol. 80, pp. 51-60). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2018.07.027spa
dc.relation.referencesBlakey, R. J., Bower, J. P., & Bertling, I. (2009). Influence of water and ABA supply on the ripening pattern of avocado (Persea americana Mill.) fruit and the prediction of water content using Near Infrared Spectroscopy. Postharvest Biology and Technology, 53(1-2), 72-76. https://doi.org/10.1016/j.postharvbio.2009.03.004spa
dc.relation.referencesCabrera, S., Rojas, J., Moreno, A., & Oleogels, ". (2020). Contribution in the Production of Healthier Food Products: The Fats of the Future. Journal of Food and Nutrition Research, 8(4), 172-182. https://doi.org/10.12691/jfnr-8-4-3spa
dc.relation.referencesCalligaris, S., Mirolo, G., Pieve, S. Da, Arrighetti, G., & Nicoli, M. C. (2014). Effect of Oil Type on Formation , Structure and Thermal Properties of γ -oryzanol and β -sitosterol-Based Organogels. 69-75. https://doi.org/10.1007/s11483-013-9318-zspa
dc.relation.referencesCarol Tompkins, & Edward G. Perkins. (1999). The Evaluation of Frying Oils with the p-Anisidine Value.spa
dc.relation.referencesChai, X., Zhang, Y., Shi, Y., & Liu, Y. (2022). Crystallization and Structural Properties of Oleogel-Based Margarine. Molecules, 27(24). https://doi.org/10.3390/molecules27248952spa
dc.relation.referencesChen, C.-H., & Terentjev, E. M. (2018). Monoglycerides in Oils. En Edible Oleogels (pp. 103-131). Elsevier. https://doi.org/10.1016/b978-0-12-814270-7.00005-8spa
dc.relation.referencesChen, H., Zhou, P., Song, C., Jin, G., & Wei, L. (2022). An approach to manufacturing heat-stable and bloom-resistant chocolate by the combination of oleogel and sweeteners. Journal of Food Engineering, 330. https://doi.org/10.1016/j.jfoodeng.2022.111064spa
dc.relation.referencesColombo, R., & Papetti, A. (2019). Avocado (Persea americana Mill.) by-products and their impact: from bioactive compounds to biomass energy and sorbent material for removing contaminants. A review. En International Journal of Food Science and Technology (Vol. 54, Número 4, pp. 943-951). Blackwell Publishing Ltd. https://doi.org/10.1111/ijfs.14143spa
dc.relation.referencesCorma, A., Hamid, S. B. A., Iborra, S., & Velty, A. (2005). Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. Journal of Catalysis, 234(2), 340-347. https://doi.org/10.1016/j.jcat.2005.06.023spa
dc.relation.referencesda Silva, T. L. T., Arellano, D. B., & Martini, S. (2018). Physical Properties of Candelilla Wax, Monoacylglycerols, and Fully Hydrogenated Oil Oleogels. JAOCS, Journal of the American Oil Chemists’ Society, 95(7), 797-811. https://doi.org/10.1002/aocs.12096spa
dc.relation.referencesda Silva, T. L. T., Chaves, K. F., Fernandes, G. D., Rodrigues, J. B., Bolini, H. M. A., & Arellano, D. B. (2018). Sensory and Technological Evaluation of Margarines With Reduced Saturated Fatty Acid Contents Using Oleogel Technology. JAOCS, Journal of the American Oil Chemists’ Society, 95(6), 673-685. https://doi.org/10.1002/aocs.12074spa
dc.relation.referencesDassanayake, L. S. K., Kodali, D. R., & Ueno, S. (2011). Formation of oleogels based on edible lipid materials. En Current Opinion in Colloid and Interface Science (Vol. 16, Número 5, pp. 432-439). https://doi.org/10.1016/j.cocis.2011.05.005spa
dc.relation.referencesDavidovich-Pinhas, M. (2019). Oil structuring using polysaccharides. Current Opinion in Food Science, 27, 29-35. https://doi.org/10.1016/j.cofs.2019.04.006spa
dc.relation.referencesFayaz, G., Goli, S. A. H., Kadivar, M., Valoppi, F., Barba, L., Calligaris, S., & Nicoli, M. C. (2017). Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT, 86, 523-529. https://doi.org/10.1016/j.lwt.2017.08.036spa
dc.relation.referencesFood and Agriculture Organization. (2012). Grasas y ácidos grasos en nutrición humana Consulta de expertos.spa
dc.relation.referencesFrancesca Lupi (Romana), Shakeel, A., Baldino, N., & Gabriele, D. (2023). Rheology of food bigel system. Advances in Food Rheology and Its Applications: Development in Food Rheology, Second Edition, 689-706. https://doi.org/10.1016/B978-0-12-823983-4.00022-4spa
dc.relation.referencesGarcía-Vargas, M. C., Contreras, M. del M., Gómez-Cruz, I., Romero-García, J. M., & Castro, E. (2021). Avocado-Derived Biomass: Chemical Composition and Antioxidant Potential. 100. https://doi.org/10.3390/foods_2020-07750spa
dc.relation.referencesGiacintucci, V., Mattia, C. D. Di, Sacchetti, G., Flamminii, F., Gravelle, A. J., Baylis, B., Dutcher, J. R., Marangoni, A. G., & Pittia, P. (2018). Food Hydrocolloids Ethylcellulose oleogels with extra virgin olive oil : the role of oil minor components on microstructure and mechanical strength. Food Hydrocolloids, 84(February), 508-514. https://doi.org/10.1016/j.foodhyd.2018.05.030spa
dc.relation.referencesGiacomozzi, A. S., Carrín, M. E., & Palla, C. A. (2018). Muffins Elaborated with Optimized Monoglycerides Oleogels: From Solid Fat Replacer Obtention to Product Quality Evaluation. Journal of Food Science, 83(6), 1505-1515. https://doi.org/10.1111/1750-3841.14174spa
dc.relation.referencesGiacomozzi, A. S., Palla, C. A., Carrín, M. E., & Martini, S. (2019). Physical Properties of Monoglycerides Oleogels Modified by Concentration, Cooling Rate, and High-Intensity Ultrasound. Journal of Food Science, 84(9), 2549-2561. https://doi.org/10.1111/1750-3841.14762spa
dc.relation.referencesGobernación del Casanare. (2020). PLAN DEPARTAMENTAL DE EXTENSIÓN AGROPECUARIA PDEA CASANARE 2020-2023.spa
dc.relation.referencesGotoh. (2006). The Importance of Peroxide Value in Assessing Food Quality and Food Safety.spa
dc.relation.referencesHeertje, I., Roijers, E. C., & Hendrickx, H. A. C. M. (s. f.). Liquid Crystalline Phases in the Structuring of Food Products.spa
dc.relation.referencesHurtado-Fernández, E., Fernández-Gutiérrez, A., & Carrasco-Pancorbo, A. (2018). Avocado fruit—Persea americana. En Exotic Fruits Reference Guide (pp. 37-48). Elsevier. https://doi.org/10.1016/B978-0-12-803138-4.00001-0spa
dc.relation.referencesHwang, H. S. (2020). A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. En Biocatalysis and Agricultural Biotechnology (Vol. 26). Elsevier Ltd. https://doi.org/10.1016/j.bcab.2020.101657spa
dc.relation.referencesIgenbayev, A., Ospankulova, G., Amirkhanov, S., Aldiyeva, A., Temirova, I., & Amirkhanov, K. (2023). Substitution of Pork Fat with Beeswax-Structured Oleogels in Semi-Smoked Sausages. Applied Sciences (Switzerland), 13(9). https://doi.org/10.3390/app13095312spa
dc.relation.referencesJiang, Q., Yu, Z., & Meng, Z. (2022). Double network oleogels co-stabilized by hydroxypropyl methylcellulose and monoglyceride crystals: Baking applications. International Journal of Biological Macromolecules, 209, 180-187. https://doi.org/10.1016/j.ijbiomac.2022.04.011spa
dc.relation.referencesKameni, A., & Tchamo, P. (2003). Water extraction of avocado oil in the High Lands of Cameroon.spa
dc.relation.referencesKrumreich, F. D., Borges, C. D., Mendonça, C. R. B., Jansen-Alves, C., & Zambiazi, R. C. (2018). Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chemistry, 257, 376-381. https://doi.org/10.1016/j.foodchem.2018.03.048spa
dc.relation.referencesLi, J., Guo, R., Bi, Y., Zhang, H., & Xu, X. (2021). Comprehensive evaluation of saturated monoglycerides for the forming of oleogels. Lwt, 151(June), 112061. https://doi.org/10.1016/j.lwt.2021.112061spa
dc.relation.referencesLi, L., & Liu, G. (2019). Corn oil-based oleogels with different gelation mechanisms as novel cocoa butter alternatives in dark chocolate. Journal of Food Engineering, 263, 114-122. https://doi.org/10.1016/j.jfoodeng.2019.06.001spa
dc.relation.referencesLi, L., Liu, G., & Lin, Y. (2021). Physical and bloom stability of low-saturation chocolates with oleogels based on different gelation mechanisms. LWT, 140. https://doi.org/10.1016/j.lwt.2020.110807spa
dc.relation.referencesLi, S., Zhu, ling, Wu, G., Jin, Q., Wang, X., & Zhang, H. (2022). Relationship between the microstructure and physical properties of emulsifier based oleogels and cookies quality. Food Chemistry, 377. https://doi.org/10.1016/j.foodchem.2021.131966spa
dc.relation.referencesLi, Y., Zou, Y., Que, F., & Zhang, H. (2022). Recent advances in fabrication of edible polymer oleogels for food applications. En Current Opinion in Food Science (Vol. 43, pp. 114-119). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2021.11.007spa
dc.relation.referencesLimpimwong, W., Kumrungsee, T., Kato, N., Yanaka, N., & Thongngam, M. (2017). Rice bran wax oleogel: A potential margarine replacement and its digestibility effect in rats fed a high-fat diet. Journal of Functional Foods, 39, 250-256. https://doi.org/10.1016/j.jff.2017.10.035spa
dc.relation.referencesLopez-Martínez, A., Charó-Alonso, M. A., Marangoni, A. G., & Toro-Vazquez, J. F. (2015). Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Food Research International, 72, 37-46. https://doi.org/10.1016/j.foodres.2015.03.019spa
dc.relation.referencesManzoor, S., Masoodi, F. A., Naqash, F., & Rashid, R. (2022). Oleogels: Promising alternatives to solid fats for food applications. En Food Hydrocolloids for Health (Vol. 2). Elsevier B.V. https://doi.org/10.1016/j.fhfh.2022.100058spa
dc.relation.referencesMartins, A. J., Vicente, A. A., Cunha, R. L., & Cerqueira, M. A. (2018). Edible oleogels: An opportunity for fat replacement in foods. Food and Function, 9(2), 758-773. https://doi.org/10.1039/c7fo01641gspa
dc.relation.referencesMartins, A. J., Vicente, A. A., Pastrana, L. M., & Cerqueira, M. A. (2020a). Oleogels for development of health-promoting food products. En Food Science and Human Wellness (Vol. 9, Número 1, pp. 31-39). Elsevier B.V. https://doi.org/10.1016/j.fshw.2019.12.001spa
dc.relation.referencesMartins, A. J., Vicente, A. A., Pastrana, L. M., & Cerqueira, M. A. (2020b). Oleogels for development of health-promoting food products. En Food Science and Human Wellness (Vol. 9, Número 1, pp. 31-39). Elsevier B.V. https://doi.org/10.1016/j.fshw.2019.12.001spa
dc.relation.referencesMekonnen Tura, A., & Seifu Lemma, T. (2019). Production and Evaluation of Biogas from Mixed Fruits and Vegetable Wastes Collected from Arba Minch Market. American Journal of Applied Chemistry, 7(6), 185. https://doi.org/10.11648/j.ajac.20190706.16spa
dc.relation.referencesMinisterio de agricultura y desarrollo rural. (2020). Cadena productiva Aguacate.spa
dc.relation.referencesMoeini Alishah, M., Yıldız, S., Bilen, Ç., & Karakuş, E. (2023). Purification and characterization of avocado (Persea americana) polyphenol oxidase by affinity chromatography. Preparative Biochemistry and Biotechnology, 53(1), 40-53. https://doi.org/10.1080/10826068.2022.2035747spa
dc.relation.referencesNancy Ajzenberg, P. (2002). Introducción a la hidrogenación de aceite y su implementación en un proceso supercrítico: caso del aceite de girasol. En Fasc (Vol. 53).spa
dc.relation.referencesÖǧütcü, M., & Yilmaz, E. (2014). Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas y Aceites, 65(3). https://doi.org/10.3989/gya.0349141spa
dc.relation.referencesOh, I. K., & Lee, S. (2018). Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocolloids, 77, 796-802. https://doi.org/10.1016/j.foodhyd.2017.11.022spa
dc.relation.referencesOzdemir, C. (2023). An Investigation of Several Physicochemical Characteristics, as Well as the Cholesterol and Fatty Acid Profile of Ice Cream Samples Containing Oleogel, Various Stabilizers, and Emulsifiers. Gels, 9(7). https://doi.org/10.3390/gels9070543spa
dc.relation.referencesPascuta, M. S., Varvara, R. A., Teleky, B. E., Szabo, K., Plamada, D., Nemeş, S. A., Mitrea, L., Martău, G. A., Ciont, C., Călinoiu, L. F., Barta, G., & Vodnar, D. C. (2022). Polysaccharide-Based Edible Gels as Functional Ingredients: Characterization, Applicability, and Human Health Benefits. En Gels (Vol. 8, Número 8). MDPI. https://doi.org/10.3390/gels8080524spa
dc.relation.referencesPatel, A. R., Rajarethinem, P. S., Grȩdowska, A., Turhan, O., Lesaffer, A., De Vos, W. H., Van De Walle, D., & Dewettinck, K. (2014). Edible applications of shellac oleogels: Spreads, chocolate paste and cakes. Food and Function, 5(4), 645-652. https://doi.org/10.1039/c4fo00034jspa
dc.relation.referencesPatel, A. R., Schatteman, D., De Vos, W. H., Lesaffer, A., & Dewettinck, K. (2013). Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science, 411, 114-121. https://doi.org/10.1016/j.jcis.2013.08.039spa
dc.relation.referencesPathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. En Food and Bioprocess Technology (Vol. 6, Número 1, pp. 36-60). Springer Science and Business Media, LLC. https://doi.org/10.1007/s11947-012-0867-9spa
dc.relation.referencesPérez-Monterroza, E. J., Ciro-Velásquez, H. J., & Arango Tobón, J. C. (2016). Study of the crystallization and polymorphic structures formed in oleogels from avocado oil. Revista Facultad Nacional de Agronomia Medellin, 69(2), 7945-7954. https://doi.org/10.15446/rfna.v69n2.59139spa
dc.relation.referencesPérez-Monterroza, E. J., Márquez-Cardozo, C. J., & Ciro-Velásquez, H. J. (2014). Rheological behavior of avocado (Persea americana Mill, cv. Hass) oleogels considering the combined effect of structuring agents. LWT, 59(2P1), 673-679. https://doi.org/10.1016/j.lwt.2014.07.020spa
dc.relation.referencesPerez-Santana, M., Cedeno-Sanchez, V., Carriglio, J. C., & MacIntosh, A. J. (2023). The Effects of Emulsifier Addition on the Functionalization of a High-Oleic Palm Oil-Based Oleogel. Gels, 9(7). https://doi.org/10.3390/gels9070522spa
dc.relation.referencesPinto, T. C., Martins, A. J., Pastrana, L., Pereira, M. C., & Cerqueira, M. A. (2021). Oleogel-based systems for the delivery of bioactive compounds in foods. En Gels (Vol. 7, Número 3). MDPI AG. https://doi.org/10.3390/gels7030086spa
dc.relation.referencesQin, X., & Zhong, J. (2016). A review of extraction techniques for avocado oil. En Journal of Oleo Science (Vol. 65, Número 11, pp. 881-888). Japan Oil Chemists Society. https://doi.org/10.5650/jos.ess16063spa
dc.relation.referencesRarokar, N. R., Menghani, S., Kerzare, D., & Khedekar, P. B. (2017). Progress in Synthesis of Monoglycerides for Use in Food and Pharmaceuticals. Journal of Experimental Food Chemistry, 03(03). https://doi.org/10.4172/2472-0542.1000128spa
dc.relation.referencesRuíz Martínez, M. A., Muñoz De Benavides, M., Morales Hernández, M. E., & Gallardo Lara, V. (2003). Influence of the concentration of a gelling agent and the type of surfactant on the rheological characteristics of oleogels. Farmaco, 58(12), 1289-1294. https://doi.org/10.1016/S0014-827X(03)00180-0spa
dc.relation.referencesSaadatkhah, N., Carillo Garcia, A., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., Patience, G. S., & Chaouki, J. (2020). Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. En Canadian Journal of Chemical Engineering (Vol. 98, Número 1, pp. 34-43). Wiley-Liss Inc. https://doi.org/10.1002/cjce.23673spa
dc.relation.referencesSagalowicz, L., Leser, M. E., Watzke, H. J., & Michel, M. (2006). Monoglyceride self-assembly structures as delivery vehicles. En Trends in Food Science and Technology (Vol. 17, Número 5, pp. 204-214). https://doi.org/10.1016/j.tifs.2005.12.012spa
dc.relation.referencesSalazar-López, N. J., Domínguez-Avila, J. A., Yahia, E. M., Belmonte-Herrera, B. H., Wall-Medrano, A., Montalvo-González, E., & González-Aguilar, G. A. (2020a). Avocado fruit and by-products as potential sources of bioactive compounds. Food Research International, 138. https://doi.org/10.1016/j.foodres.2020.109774spa
dc.relation.referencesSamateh, M., Sagiri, S. S., & John, G. (2018). Molecular Oleogels: Green Approach in Structuring Vegetable Oils. En Edible Oleogels (pp. 415-438). Elsevier. https://doi.org/10.1016/b978-0-12-814270-7.00018-6spa
dc.relation.referencesSanchez-Reinoso, Z., & Gutiérrez, L. F. (2017). Effects of the Emulsion Composition on the Physical Properties and Oxidative Stability of Sacha Inchi (Plukenetia volubilis L.) Oil Microcapsules Produced by Spray Drying. Food and Bioprocess Technology, 10(7), 1354-1366. https://doi.org/10.1007/s11947-017-1906-3spa
dc.relation.referencesSandoval-Contreras, T., González Chávez, F., Poonia, A., Iñiguez-Moreno, M., & Aguirre-Güitrón, L. (2023). Avocado Waste Biorefinery: Towards Sustainable Development. En Recycling (Vol. 8, Número 5). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/recycling8050081spa
dc.relation.referencesSantana, I., dos Reis, L. M. F., Torres, A. G., Cabral, L. M. C., & Freitas, S. P. (2015). Avocado (Persea americana Mill.) oil produced by microwave drying and expeller pressing exhibits low acidity and high oxidative stability. European Journal of Lipid Science and Technology, 117(7), 999-1007. https://doi.org/10.1002/ejlt.201400172spa
dc.relation.referencesSantos, P. H. da S., & Lannes, S. C. da S. (2022). Application of organogel-like structured system as an alternative for reducing saturated fatty acid and replacing fat in milk ice cream. Journal of Food Processing and Preservation, 46(11). https://doi.org/10.1111/jfpp.16932spa
dc.relation.referencesSato, K. (2001). Crystallization behaviour of fats and lipids * a review. En Chemical Engineering Science (Vol. 56).spa
dc.relation.referencesSerpa G, A. M., Echeverri, A. L., Lezcano C, M. P., Vélez A, L. M., Ríos, A. F., & Adolfo Hincapié, G. (2014). EXTRACCIÓN DE ACEITE DE AGUACATE VARIEDAD “Hass” (Persea americana Mill) LIOFILIZADO POR PRENSADO EN FRIO (Vol. 8, Número 2). http://revistas.upb.edu.co/index.php/investigacionesaplicadasspa
dc.relation.referencesShuai, X., McClements, D. J., Geng, Q., Dai, T., Ruan, R., Du, L., Liu, Y., & Chen, J. (2023). Macadamia oil-based oleogels as cocoa butter alternatives: Physical properties, oxidative stability, lipolysis, and application. Food Research International, 172. https://doi.org/10.1016/j.foodres.2023.113098spa
dc.relation.referencesSingh, A., Auzanneau, F. I., & Rogers, M. A. (2017). Advances in edible oleogel technologies – A decade in review. En Food Research International (Vol. 97, pp. 307-317). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2017.04.022spa
dc.relation.referencesSivakanthan, S., Fawzia, S., Madhujith, T., & Karim, A. (2022). Synergistic effects of oleogelators in tailoring the properties of oleogels: A review. En Comprehensive Reviews in Food Science and Food Safety (Vol. 21, Número 4, pp. 3507-3539). John Wiley and Sons Inc. https://doi.org/10.1111/1541-4337.12966spa
dc.relation.referencesSun, H., Xu, J., Lu, X., Xu, Y., Regenstein, J. M., Zhang, Y., & Wang, F. (2022). Development and characterization of monoglyceride oleogels prepared with crude and refined walnut oil. LWT, 154, 112769. https://doi.org/10.1016/j.lwt.2021.112769spa
dc.relation.referencesSun, P., Xia, B., Ni, Z. J., Wang, Y., Elam, E., Thakur, K., Ma, Y. L., & Wei, Z. J. (2021). Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chemistry, 360. https://doi.org/10.1016/j.foodchem.2021.130017spa
dc.relation.referencesTan, T. H., Chan, E. S., Manja, M., Tang, T. K., Phuah, E. T., & Lee, Y. Y. (2023). Production, health implications and applications of oleogels as fat replacer in food system: A review. En JAOCS, Journal of the American Oil Chemists’ Society (Vol. 100, Número 9, pp. 681-697). John Wiley and Sons Inc. https://doi.org/10.1002/aocs.12720spa
dc.relation.referencesTatiana, A., & Medina, R. (2016). Caracterización fisicoquímica de diferentes variedades de aguacate, Persea americana Mill. (Lauraceae) e implementación de un método de extracción del aceite de aguacate como alternativa de industrialización.spa
dc.relation.referencesZampouni, K., Soniadis, A., Dimakopoulou-Papazoglou, D., Moschakis, T., Biliaderis, C. G., & Katsanidis, E. (2022). Modified fermented sausages with olive oil oleogel and NaCl–KCl substitution for improved nutritional quality. LWT, 158. https://doi.org/10.1016/j.lwt.2022.113172spa
dc.relation.referencesZhang, N., Li, Y., Wen, S., Sun, Y., Chen, J., Gao, Y., Sagymbek, A., & Yu, X. (2021). Analytical methods for determining the peroxide value of edible oils: A mini-review. En Food Chemistry (Vol. 358). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2021.129834spa
dc.relation.referencesZhao, M., Lan, Y., Cui, L., Monono, E., Jiajia, R., & Bingcan, C. (2020). Physical properties and cookie-making performance of oleogels prepared with crude and refined soybean oil: A comparative study. Food and Function, 3, 0-36. https://doi.org/10.1039/C9FO02180Aspa
dc.relation.referencesZhao, W., Wei, Z., & Xue, C. (2022). Recent advances on food-grade oleogels: Fabrication, application and research trends. En Critical Reviews in Food Science and Nutrition (Vol. 62, Número 27, pp. 7659-7676). Taylor and Francis Ltd. https://doi.org/10.1080/10408398.2021.1922354spa
dc.relation.referencesZulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013a). Development of formulations and processes to incorporate wax oleogels in ice cream. Journal of Food Science, 78(12). https://doi.org/10.1111/1750-3841.12248spa
dc.relation.referencesZulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013b). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of Food Science, 78(9). https://doi.org/10.1111/1750-3841.12175spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.lembAceite de aguacatespa
dc.subject.lembAvocado oileng
dc.subject.lembLípidos vegetalesspa
dc.subject.lembPlant lipidseng
dc.subject.proposalAceite de aguacatespa
dc.subject.proposalOleogelesspa
dc.subject.proposalMonoglicéridosspa
dc.subject.proposalReologíaspa
dc.subject.proposalDSC- TGA
dc.subject.proposalParámetros de calidadspa
dc.subject.proposalCaracterizaciónspa
dc.subject.proposalAvocado oileng
dc.subject.proposalOleogelseng
dc.subject.proposalMonoglycerideseng
dc.subject.proposalRheologyeng
dc.subject.proposalQuality parameterseng
dc.subject.proposalCharacterizationeng
dc.subject.wikidataExtracción de aceitespa
dc.subject.wikidataOil extractioneng
dc.titleDesarrollo y caracterización de oleogeles aceite de aguacate (Persea americana ‘Lorena’) estructurados con monoglicéridosspa
dc.title.translatedDevelopment and characterization of oleogels from avocado oil (Persea americana 'Lorena') structured with monoglycerides.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo, validación e implementación de tecnologías innovadoras para el manejo integral y la gestión de sistemas de cultivo de aguacate en los municipios de Monterrey, Sabanalarga y Tauramena del departamento de Casanarespa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
3499860740.2025.pdf
Tamaño:
1.94 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: