Desarrollo y caracterización de oleogeles aceite de aguacate (Persea americana ‘Lorena’) estructurados con monoglicéridos
| dc.contributor.advisor | Palomeque Forero, Liliam Alexandra | |
| dc.contributor.advisor | Lizarazo Aparicio, Mará Cristina | |
| dc.contributor.author | Moreno Caballero, Michael Ernesto | |
| dc.contributor.researchgroup | Grupo de Investigación en Química de Alimentos | spa |
| dc.date.accessioned | 2025-04-07T15:26:51Z | |
| dc.date.available | 2025-04-07T15:26:51Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | El objetivo de este estudio fue desarrollar oleogeles a partir de aceite de aguacate (*Persea americana* ‘Lorena’), utilizando un monoglicérido comercial como agente estructurante. El aceite se obtuvo mediante dos métodos de extracción mecánica sin el uso de solventes, garantizando su idoneidad para el consumo humano y su cumplimiento con normas de calidad nacionales e internacionales. Los métodos de extrusión mecánica y compresión hidráulica permitieron obtener aceites con características fisicoquímicas apropiadas. Para la formación de oleogeles, se empleó un diseño experimental de superficie de respuesta con el método de Box-Behnken, evaluando el efecto de la concentración de monoglicéridos, temperatura y tiempo de calentamiento sobre la capacidad de retención de aceite (CRA), firmeza y color del gel. Los resultados indicaron que tanto la concentración del monoglicérido como la temperatura influyeron significativamente en la CRA y firmeza, mientras que el color se vio afectado solo por la concentración. Se optimizó el proceso para maximizar la CRA y alcanzar una firmeza adecuada, obteniendo condiciones óptimas de 7,98 % de monoglicérido, 86 °C de temperatura y 17 minutos de calentamiento. Estas condiciones generaron un oleogel con una CRA del 85,95 %, que posiblemente se vio afectada por una distribución no uniforme del agente estructurante y variaciones en la temperatura de enfriamiento del gel (temperatura ambiente). El análisis reológico mostró que el oleogel obtenido exhibía un comportamiento viscoelástico, con un módulo de almacenamiento (G') superior al módulo de pérdida (G'') en las frecuencias evaluadas, lo que sugiere su capacidad de almacenar energía. Sin embargo, el límite de la región viscoelástica lineal (LVR) fue bajo, indicando una estructura relativamente débil, lo que podría limitar su aplicabilidad en matrices que requieren mayor estabilidad mecánica. Además, la estabilidad oxidativa del oleogel fue superior a la del aceite puro, con 47,71 h frente a 10,80 h en el análisis Rancimat. (Texto tomado de la fuente) | spa |
| dc.description.abstract | The objective of this study was to develop oleogels from avocado oil (*Persea americana* 'Lorena'), using a commercial monoglyceride as a structuring agent. The oil was obtained through two solvent-free mechanical extraction methods, ensuring its suitability for human consumption and compliance with national and international quality standards. The mechanical extrusion and hydraulic pressing methods resulted in oils with appropriate physicochemical characteristics. For oleogel formation, a response surface methodology was applied using the Box-Behnken design to evaluate the effect of monoglyceride concentration, temperature, and heating time on oil retention capacity (CRA), firmness, and gel color. The results indicated that both the concentration of monoglycerides and temperature significantly influenced CRA and firmness, while color was affected only by concentration. The process was optimized to maximize CRA and achieve adequate firmness, obtaining optimal conditions of 7,98 % monoglyceride, 86°C temperature, and 17 minutes of heating. These conditions yielded an oleogel with a CRA of 85,95 %, which may have been affected by uneven distribution of the structuring agent and variations in cooling conditions (ambient temperature). Rheological analysis showed that the obtained oleogel exhibited viscoelastic behavior, with a storage modulus (G') higher than the loss modulus (G'') at the evaluated frequencies, indicating its ability to store energy. However, the linear viscoelastic region (LVR) limit was low, suggesting a relatively weak structure, which could limit its application in matrices requiring greater mechanical stability. Additionally, the oxidative stability of the oleogel was superior to that of pure oil, with 47,71 hours compared to 10,80 hours in the Rancimat analysis. | eng |
| dc.description.curriculararea | Ciencias Agronómicas.Sede Bogotá | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ciencia y Tecnología de Alimentos | spa |
| dc.description.researcharea | Diseño y desarrollo de productos | spa |
| dc.description.sponsorship | “Red de cooperación Biorrefinerías desde la docencia, la extensión y la investigación (BioR-DEI)” de la Universidad Nacional de Colombia – (código Hermes 57909) por su invaluable respaldo y colaboración en el desarrollo del proyecto. | spa |
| dc.description.sponsorship | Proyecto de regalías ‘‘Desarrollo, validación e implementación de tecnologías innovadoras para el manejo integral y la gestión de sistemas de cultivo de aguacate en los municipios de Monterrey, Sabanalarga y Tauramena del departamento de Casanare’’, ejecutado por la Facultad de Ciencias Agrarias de la Universidad Nacional de Colombia sede – Bogotá | spa |
| dc.format.extent | vii, 74 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87861 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | spa |
| dc.relation.indexed | N/A | spa |
| dc.relation.references | Abdolmaleki, K., Alizadeh, L., Nayebzadeh, K., Baranowska, H. M., Kowalczewski, P. Ł., & Mousavi Khaneghah, A. (2022). Potential Application of Hydrocolloid-Based Oleogel and Beeswax Oleogel as Partial Substitutes of Solid Fat in Margarine. Applied Sciences (Switzerland), 12(23). https://doi.org/10.3390/app122312136 | spa |
| dc.relation.references | Airoldi, R., da Silva, T. L. T., Ract, J. N. R., Foguel, A., Colleran, H. L., Ibrahim, S. A., & da Silva, R. C. (2022). Potential use of carnauba wax oleogel to replace saturated fat in ice cream. JAOCS, Journal of the American Oil Chemists’ Society, 99(11), 1085-1099. https://doi.org/10.1002/aocs.12652 | spa |
| dc.relation.references | Alvarez-Ramirez, J., Vernon-Carter, E. J., Carrera-Tarela, Y., Garcia, A., & Roldan-Cruz, C. (2020). Effects of candelilla wax/canola oil oleogel on the rheology, texture, thermal properties and in vitro starch digestibility of wheat sponge cake bread. Lwt, 130, 109701. https://doi.org/10.1016/j.lwt.2020.109701 | spa |
| dc.relation.references | Araújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E., & Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. En Trends in Food Science and Technology (Vol. 80, pp. 51-60). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2018.07.027 | spa |
| dc.relation.references | Blakey, R. J., Bower, J. P., & Bertling, I. (2009). Influence of water and ABA supply on the ripening pattern of avocado (Persea americana Mill.) fruit and the prediction of water content using Near Infrared Spectroscopy. Postharvest Biology and Technology, 53(1-2), 72-76. https://doi.org/10.1016/j.postharvbio.2009.03.004 | spa |
| dc.relation.references | Cabrera, S., Rojas, J., Moreno, A., & Oleogels, ". (2020). Contribution in the Production of Healthier Food Products: The Fats of the Future. Journal of Food and Nutrition Research, 8(4), 172-182. https://doi.org/10.12691/jfnr-8-4-3 | spa |
| dc.relation.references | Calligaris, S., Mirolo, G., Pieve, S. Da, Arrighetti, G., & Nicoli, M. C. (2014). Effect of Oil Type on Formation , Structure and Thermal Properties of γ -oryzanol and β -sitosterol-Based Organogels. 69-75. https://doi.org/10.1007/s11483-013-9318-z | spa |
| dc.relation.references | Carol Tompkins, & Edward G. Perkins. (1999). The Evaluation of Frying Oils with the p-Anisidine Value. | spa |
| dc.relation.references | Chai, X., Zhang, Y., Shi, Y., & Liu, Y. (2022). Crystallization and Structural Properties of Oleogel-Based Margarine. Molecules, 27(24). https://doi.org/10.3390/molecules27248952 | spa |
| dc.relation.references | Chen, C.-H., & Terentjev, E. M. (2018). Monoglycerides in Oils. En Edible Oleogels (pp. 103-131). Elsevier. https://doi.org/10.1016/b978-0-12-814270-7.00005-8 | spa |
| dc.relation.references | Chen, H., Zhou, P., Song, C., Jin, G., & Wei, L. (2022). An approach to manufacturing heat-stable and bloom-resistant chocolate by the combination of oleogel and sweeteners. Journal of Food Engineering, 330. https://doi.org/10.1016/j.jfoodeng.2022.111064 | spa |
| dc.relation.references | Colombo, R., & Papetti, A. (2019). Avocado (Persea americana Mill.) by-products and their impact: from bioactive compounds to biomass energy and sorbent material for removing contaminants. A review. En International Journal of Food Science and Technology (Vol. 54, Número 4, pp. 943-951). Blackwell Publishing Ltd. https://doi.org/10.1111/ijfs.14143 | spa |
| dc.relation.references | Corma, A., Hamid, S. B. A., Iborra, S., & Velty, A. (2005). Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. Journal of Catalysis, 234(2), 340-347. https://doi.org/10.1016/j.jcat.2005.06.023 | spa |
| dc.relation.references | da Silva, T. L. T., Arellano, D. B., & Martini, S. (2018). Physical Properties of Candelilla Wax, Monoacylglycerols, and Fully Hydrogenated Oil Oleogels. JAOCS, Journal of the American Oil Chemists’ Society, 95(7), 797-811. https://doi.org/10.1002/aocs.12096 | spa |
| dc.relation.references | da Silva, T. L. T., Chaves, K. F., Fernandes, G. D., Rodrigues, J. B., Bolini, H. M. A., & Arellano, D. B. (2018). Sensory and Technological Evaluation of Margarines With Reduced Saturated Fatty Acid Contents Using Oleogel Technology. JAOCS, Journal of the American Oil Chemists’ Society, 95(6), 673-685. https://doi.org/10.1002/aocs.12074 | spa |
| dc.relation.references | Dassanayake, L. S. K., Kodali, D. R., & Ueno, S. (2011). Formation of oleogels based on edible lipid materials. En Current Opinion in Colloid and Interface Science (Vol. 16, Número 5, pp. 432-439). https://doi.org/10.1016/j.cocis.2011.05.005 | spa |
| dc.relation.references | Davidovich-Pinhas, M. (2019). Oil structuring using polysaccharides. Current Opinion in Food Science, 27, 29-35. https://doi.org/10.1016/j.cofs.2019.04.006 | spa |
| dc.relation.references | Fayaz, G., Goli, S. A. H., Kadivar, M., Valoppi, F., Barba, L., Calligaris, S., & Nicoli, M. C. (2017). Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT, 86, 523-529. https://doi.org/10.1016/j.lwt.2017.08.036 | spa |
| dc.relation.references | Food and Agriculture Organization. (2012). Grasas y ácidos grasos en nutrición humana Consulta de expertos. | spa |
| dc.relation.references | Francesca Lupi (Romana), Shakeel, A., Baldino, N., & Gabriele, D. (2023). Rheology of food bigel system. Advances in Food Rheology and Its Applications: Development in Food Rheology, Second Edition, 689-706. https://doi.org/10.1016/B978-0-12-823983-4.00022-4 | spa |
| dc.relation.references | García-Vargas, M. C., Contreras, M. del M., Gómez-Cruz, I., Romero-García, J. M., & Castro, E. (2021). Avocado-Derived Biomass: Chemical Composition and Antioxidant Potential. 100. https://doi.org/10.3390/foods_2020-07750 | spa |
| dc.relation.references | Giacintucci, V., Mattia, C. D. Di, Sacchetti, G., Flamminii, F., Gravelle, A. J., Baylis, B., Dutcher, J. R., Marangoni, A. G., & Pittia, P. (2018). Food Hydrocolloids Ethylcellulose oleogels with extra virgin olive oil : the role of oil minor components on microstructure and mechanical strength. Food Hydrocolloids, 84(February), 508-514. https://doi.org/10.1016/j.foodhyd.2018.05.030 | spa |
| dc.relation.references | Giacomozzi, A. S., Carrín, M. E., & Palla, C. A. (2018). Muffins Elaborated with Optimized Monoglycerides Oleogels: From Solid Fat Replacer Obtention to Product Quality Evaluation. Journal of Food Science, 83(6), 1505-1515. https://doi.org/10.1111/1750-3841.14174 | spa |
| dc.relation.references | Giacomozzi, A. S., Palla, C. A., Carrín, M. E., & Martini, S. (2019). Physical Properties of Monoglycerides Oleogels Modified by Concentration, Cooling Rate, and High-Intensity Ultrasound. Journal of Food Science, 84(9), 2549-2561. https://doi.org/10.1111/1750-3841.14762 | spa |
| dc.relation.references | Gobernación del Casanare. (2020). PLAN DEPARTAMENTAL DE EXTENSIÓN AGROPECUARIA PDEA CASANARE 2020-2023. | spa |
| dc.relation.references | Gotoh. (2006). The Importance of Peroxide Value in Assessing Food Quality and Food Safety. | spa |
| dc.relation.references | Heertje, I., Roijers, E. C., & Hendrickx, H. A. C. M. (s. f.). Liquid Crystalline Phases in the Structuring of Food Products. | spa |
| dc.relation.references | Hurtado-Fernández, E., Fernández-Gutiérrez, A., & Carrasco-Pancorbo, A. (2018). Avocado fruit—Persea americana. En Exotic Fruits Reference Guide (pp. 37-48). Elsevier. https://doi.org/10.1016/B978-0-12-803138-4.00001-0 | spa |
| dc.relation.references | Hwang, H. S. (2020). A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. En Biocatalysis and Agricultural Biotechnology (Vol. 26). Elsevier Ltd. https://doi.org/10.1016/j.bcab.2020.101657 | spa |
| dc.relation.references | Igenbayev, A., Ospankulova, G., Amirkhanov, S., Aldiyeva, A., Temirova, I., & Amirkhanov, K. (2023). Substitution of Pork Fat with Beeswax-Structured Oleogels in Semi-Smoked Sausages. Applied Sciences (Switzerland), 13(9). https://doi.org/10.3390/app13095312 | spa |
| dc.relation.references | Jiang, Q., Yu, Z., & Meng, Z. (2022). Double network oleogels co-stabilized by hydroxypropyl methylcellulose and monoglyceride crystals: Baking applications. International Journal of Biological Macromolecules, 209, 180-187. https://doi.org/10.1016/j.ijbiomac.2022.04.011 | spa |
| dc.relation.references | Kameni, A., & Tchamo, P. (2003). Water extraction of avocado oil in the High Lands of Cameroon. | spa |
| dc.relation.references | Krumreich, F. D., Borges, C. D., Mendonça, C. R. B., Jansen-Alves, C., & Zambiazi, R. C. (2018). Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chemistry, 257, 376-381. https://doi.org/10.1016/j.foodchem.2018.03.048 | spa |
| dc.relation.references | Li, J., Guo, R., Bi, Y., Zhang, H., & Xu, X. (2021). Comprehensive evaluation of saturated monoglycerides for the forming of oleogels. Lwt, 151(June), 112061. https://doi.org/10.1016/j.lwt.2021.112061 | spa |
| dc.relation.references | Li, L., & Liu, G. (2019). Corn oil-based oleogels with different gelation mechanisms as novel cocoa butter alternatives in dark chocolate. Journal of Food Engineering, 263, 114-122. https://doi.org/10.1016/j.jfoodeng.2019.06.001 | spa |
| dc.relation.references | Li, L., Liu, G., & Lin, Y. (2021). Physical and bloom stability of low-saturation chocolates with oleogels based on different gelation mechanisms. LWT, 140. https://doi.org/10.1016/j.lwt.2020.110807 | spa |
| dc.relation.references | Li, S., Zhu, ling, Wu, G., Jin, Q., Wang, X., & Zhang, H. (2022). Relationship between the microstructure and physical properties of emulsifier based oleogels and cookies quality. Food Chemistry, 377. https://doi.org/10.1016/j.foodchem.2021.131966 | spa |
| dc.relation.references | Li, Y., Zou, Y., Que, F., & Zhang, H. (2022). Recent advances in fabrication of edible polymer oleogels for food applications. En Current Opinion in Food Science (Vol. 43, pp. 114-119). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2021.11.007 | spa |
| dc.relation.references | Limpimwong, W., Kumrungsee, T., Kato, N., Yanaka, N., & Thongngam, M. (2017). Rice bran wax oleogel: A potential margarine replacement and its digestibility effect in rats fed a high-fat diet. Journal of Functional Foods, 39, 250-256. https://doi.org/10.1016/j.jff.2017.10.035 | spa |
| dc.relation.references | Lopez-Martínez, A., Charó-Alonso, M. A., Marangoni, A. G., & Toro-Vazquez, J. F. (2015). Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Food Research International, 72, 37-46. https://doi.org/10.1016/j.foodres.2015.03.019 | spa |
| dc.relation.references | Manzoor, S., Masoodi, F. A., Naqash, F., & Rashid, R. (2022). Oleogels: Promising alternatives to solid fats for food applications. En Food Hydrocolloids for Health (Vol. 2). Elsevier B.V. https://doi.org/10.1016/j.fhfh.2022.100058 | spa |
| dc.relation.references | Martins, A. J., Vicente, A. A., Cunha, R. L., & Cerqueira, M. A. (2018). Edible oleogels: An opportunity for fat replacement in foods. Food and Function, 9(2), 758-773. https://doi.org/10.1039/c7fo01641g | spa |
| dc.relation.references | Martins, A. J., Vicente, A. A., Pastrana, L. M., & Cerqueira, M. A. (2020a). Oleogels for development of health-promoting food products. En Food Science and Human Wellness (Vol. 9, Número 1, pp. 31-39). Elsevier B.V. https://doi.org/10.1016/j.fshw.2019.12.001 | spa |
| dc.relation.references | Martins, A. J., Vicente, A. A., Pastrana, L. M., & Cerqueira, M. A. (2020b). Oleogels for development of health-promoting food products. En Food Science and Human Wellness (Vol. 9, Número 1, pp. 31-39). Elsevier B.V. https://doi.org/10.1016/j.fshw.2019.12.001 | spa |
| dc.relation.references | Mekonnen Tura, A., & Seifu Lemma, T. (2019). Production and Evaluation of Biogas from Mixed Fruits and Vegetable Wastes Collected from Arba Minch Market. American Journal of Applied Chemistry, 7(6), 185. https://doi.org/10.11648/j.ajac.20190706.16 | spa |
| dc.relation.references | Ministerio de agricultura y desarrollo rural. (2020). Cadena productiva Aguacate. | spa |
| dc.relation.references | Moeini Alishah, M., Yıldız, S., Bilen, Ç., & Karakuş, E. (2023). Purification and characterization of avocado (Persea americana) polyphenol oxidase by affinity chromatography. Preparative Biochemistry and Biotechnology, 53(1), 40-53. https://doi.org/10.1080/10826068.2022.2035747 | spa |
| dc.relation.references | Nancy Ajzenberg, P. (2002). Introducción a la hidrogenación de aceite y su implementación en un proceso supercrítico: caso del aceite de girasol. En Fasc (Vol. 53). | spa |
| dc.relation.references | Öǧütcü, M., & Yilmaz, E. (2014). Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas y Aceites, 65(3). https://doi.org/10.3989/gya.0349141 | spa |
| dc.relation.references | Oh, I. K., & Lee, S. (2018). Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocolloids, 77, 796-802. https://doi.org/10.1016/j.foodhyd.2017.11.022 | spa |
| dc.relation.references | Ozdemir, C. (2023). An Investigation of Several Physicochemical Characteristics, as Well as the Cholesterol and Fatty Acid Profile of Ice Cream Samples Containing Oleogel, Various Stabilizers, and Emulsifiers. Gels, 9(7). https://doi.org/10.3390/gels9070543 | spa |
| dc.relation.references | Pascuta, M. S., Varvara, R. A., Teleky, B. E., Szabo, K., Plamada, D., Nemeş, S. A., Mitrea, L., Martău, G. A., Ciont, C., Călinoiu, L. F., Barta, G., & Vodnar, D. C. (2022). Polysaccharide-Based Edible Gels as Functional Ingredients: Characterization, Applicability, and Human Health Benefits. En Gels (Vol. 8, Número 8). MDPI. https://doi.org/10.3390/gels8080524 | spa |
| dc.relation.references | Patel, A. R., Rajarethinem, P. S., Grȩdowska, A., Turhan, O., Lesaffer, A., De Vos, W. H., Van De Walle, D., & Dewettinck, K. (2014). Edible applications of shellac oleogels: Spreads, chocolate paste and cakes. Food and Function, 5(4), 645-652. https://doi.org/10.1039/c4fo00034j | spa |
| dc.relation.references | Patel, A. R., Schatteman, D., De Vos, W. H., Lesaffer, A., & Dewettinck, K. (2013). Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science, 411, 114-121. https://doi.org/10.1016/j.jcis.2013.08.039 | spa |
| dc.relation.references | Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. En Food and Bioprocess Technology (Vol. 6, Número 1, pp. 36-60). Springer Science and Business Media, LLC. https://doi.org/10.1007/s11947-012-0867-9 | spa |
| dc.relation.references | Pérez-Monterroza, E. J., Ciro-Velásquez, H. J., & Arango Tobón, J. C. (2016). Study of the crystallization and polymorphic structures formed in oleogels from avocado oil. Revista Facultad Nacional de Agronomia Medellin, 69(2), 7945-7954. https://doi.org/10.15446/rfna.v69n2.59139 | spa |
| dc.relation.references | Pérez-Monterroza, E. J., Márquez-Cardozo, C. J., & Ciro-Velásquez, H. J. (2014). Rheological behavior of avocado (Persea americana Mill, cv. Hass) oleogels considering the combined effect of structuring agents. LWT, 59(2P1), 673-679. https://doi.org/10.1016/j.lwt.2014.07.020 | spa |
| dc.relation.references | Perez-Santana, M., Cedeno-Sanchez, V., Carriglio, J. C., & MacIntosh, A. J. (2023). The Effects of Emulsifier Addition on the Functionalization of a High-Oleic Palm Oil-Based Oleogel. Gels, 9(7). https://doi.org/10.3390/gels9070522 | spa |
| dc.relation.references | Pinto, T. C., Martins, A. J., Pastrana, L., Pereira, M. C., & Cerqueira, M. A. (2021). Oleogel-based systems for the delivery of bioactive compounds in foods. En Gels (Vol. 7, Número 3). MDPI AG. https://doi.org/10.3390/gels7030086 | spa |
| dc.relation.references | Qin, X., & Zhong, J. (2016). A review of extraction techniques for avocado oil. En Journal of Oleo Science (Vol. 65, Número 11, pp. 881-888). Japan Oil Chemists Society. https://doi.org/10.5650/jos.ess16063 | spa |
| dc.relation.references | Rarokar, N. R., Menghani, S., Kerzare, D., & Khedekar, P. B. (2017). Progress in Synthesis of Monoglycerides for Use in Food and Pharmaceuticals. Journal of Experimental Food Chemistry, 03(03). https://doi.org/10.4172/2472-0542.1000128 | spa |
| dc.relation.references | Ruíz Martínez, M. A., Muñoz De Benavides, M., Morales Hernández, M. E., & Gallardo Lara, V. (2003). Influence of the concentration of a gelling agent and the type of surfactant on the rheological characteristics of oleogels. Farmaco, 58(12), 1289-1294. https://doi.org/10.1016/S0014-827X(03)00180-0 | spa |
| dc.relation.references | Saadatkhah, N., Carillo Garcia, A., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., Patience, G. S., & Chaouki, J. (2020). Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. En Canadian Journal of Chemical Engineering (Vol. 98, Número 1, pp. 34-43). Wiley-Liss Inc. https://doi.org/10.1002/cjce.23673 | spa |
| dc.relation.references | Sagalowicz, L., Leser, M. E., Watzke, H. J., & Michel, M. (2006). Monoglyceride self-assembly structures as delivery vehicles. En Trends in Food Science and Technology (Vol. 17, Número 5, pp. 204-214). https://doi.org/10.1016/j.tifs.2005.12.012 | spa |
| dc.relation.references | Salazar-López, N. J., Domínguez-Avila, J. A., Yahia, E. M., Belmonte-Herrera, B. H., Wall-Medrano, A., Montalvo-González, E., & González-Aguilar, G. A. (2020a). Avocado fruit and by-products as potential sources of bioactive compounds. Food Research International, 138. https://doi.org/10.1016/j.foodres.2020.109774 | spa |
| dc.relation.references | Samateh, M., Sagiri, S. S., & John, G. (2018). Molecular Oleogels: Green Approach in Structuring Vegetable Oils. En Edible Oleogels (pp. 415-438). Elsevier. https://doi.org/10.1016/b978-0-12-814270-7.00018-6 | spa |
| dc.relation.references | Sanchez-Reinoso, Z., & Gutiérrez, L. F. (2017). Effects of the Emulsion Composition on the Physical Properties and Oxidative Stability of Sacha Inchi (Plukenetia volubilis L.) Oil Microcapsules Produced by Spray Drying. Food and Bioprocess Technology, 10(7), 1354-1366. https://doi.org/10.1007/s11947-017-1906-3 | spa |
| dc.relation.references | Sandoval-Contreras, T., González Chávez, F., Poonia, A., Iñiguez-Moreno, M., & Aguirre-Güitrón, L. (2023). Avocado Waste Biorefinery: Towards Sustainable Development. En Recycling (Vol. 8, Número 5). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/recycling8050081 | spa |
| dc.relation.references | Santana, I., dos Reis, L. M. F., Torres, A. G., Cabral, L. M. C., & Freitas, S. P. (2015). Avocado (Persea americana Mill.) oil produced by microwave drying and expeller pressing exhibits low acidity and high oxidative stability. European Journal of Lipid Science and Technology, 117(7), 999-1007. https://doi.org/10.1002/ejlt.201400172 | spa |
| dc.relation.references | Santos, P. H. da S., & Lannes, S. C. da S. (2022). Application of organogel-like structured system as an alternative for reducing saturated fatty acid and replacing fat in milk ice cream. Journal of Food Processing and Preservation, 46(11). https://doi.org/10.1111/jfpp.16932 | spa |
| dc.relation.references | Sato, K. (2001). Crystallization behaviour of fats and lipids * a review. En Chemical Engineering Science (Vol. 56). | spa |
| dc.relation.references | Serpa G, A. M., Echeverri, A. L., Lezcano C, M. P., Vélez A, L. M., Ríos, A. F., & Adolfo Hincapié, G. (2014). EXTRACCIÓN DE ACEITE DE AGUACATE VARIEDAD “Hass” (Persea americana Mill) LIOFILIZADO POR PRENSADO EN FRIO (Vol. 8, Número 2). http://revistas.upb.edu.co/index.php/investigacionesaplicadas | spa |
| dc.relation.references | Shuai, X., McClements, D. J., Geng, Q., Dai, T., Ruan, R., Du, L., Liu, Y., & Chen, J. (2023). Macadamia oil-based oleogels as cocoa butter alternatives: Physical properties, oxidative stability, lipolysis, and application. Food Research International, 172. https://doi.org/10.1016/j.foodres.2023.113098 | spa |
| dc.relation.references | Singh, A., Auzanneau, F. I., & Rogers, M. A. (2017). Advances in edible oleogel technologies – A decade in review. En Food Research International (Vol. 97, pp. 307-317). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2017.04.022 | spa |
| dc.relation.references | Sivakanthan, S., Fawzia, S., Madhujith, T., & Karim, A. (2022). Synergistic effects of oleogelators in tailoring the properties of oleogels: A review. En Comprehensive Reviews in Food Science and Food Safety (Vol. 21, Número 4, pp. 3507-3539). John Wiley and Sons Inc. https://doi.org/10.1111/1541-4337.12966 | spa |
| dc.relation.references | Sun, H., Xu, J., Lu, X., Xu, Y., Regenstein, J. M., Zhang, Y., & Wang, F. (2022). Development and characterization of monoglyceride oleogels prepared with crude and refined walnut oil. LWT, 154, 112769. https://doi.org/10.1016/j.lwt.2021.112769 | spa |
| dc.relation.references | Sun, P., Xia, B., Ni, Z. J., Wang, Y., Elam, E., Thakur, K., Ma, Y. L., & Wei, Z. J. (2021). Characterization of functional chocolate formulated using oleogels derived from β-sitosterol with γ-oryzanol/lecithin/stearic acid. Food Chemistry, 360. https://doi.org/10.1016/j.foodchem.2021.130017 | spa |
| dc.relation.references | Tan, T. H., Chan, E. S., Manja, M., Tang, T. K., Phuah, E. T., & Lee, Y. Y. (2023). Production, health implications and applications of oleogels as fat replacer in food system: A review. En JAOCS, Journal of the American Oil Chemists’ Society (Vol. 100, Número 9, pp. 681-697). John Wiley and Sons Inc. https://doi.org/10.1002/aocs.12720 | spa |
| dc.relation.references | Tatiana, A., & Medina, R. (2016). Caracterización fisicoquímica de diferentes variedades de aguacate, Persea americana Mill. (Lauraceae) e implementación de un método de extracción del aceite de aguacate como alternativa de industrialización. | spa |
| dc.relation.references | Zampouni, K., Soniadis, A., Dimakopoulou-Papazoglou, D., Moschakis, T., Biliaderis, C. G., & Katsanidis, E. (2022). Modified fermented sausages with olive oil oleogel and NaCl–KCl substitution for improved nutritional quality. LWT, 158. https://doi.org/10.1016/j.lwt.2022.113172 | spa |
| dc.relation.references | Zhang, N., Li, Y., Wen, S., Sun, Y., Chen, J., Gao, Y., Sagymbek, A., & Yu, X. (2021). Analytical methods for determining the peroxide value of edible oils: A mini-review. En Food Chemistry (Vol. 358). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2021.129834 | spa |
| dc.relation.references | Zhao, M., Lan, Y., Cui, L., Monono, E., Jiajia, R., & Bingcan, C. (2020). Physical properties and cookie-making performance of oleogels prepared with crude and refined soybean oil: A comparative study. Food and Function, 3, 0-36. https://doi.org/10.1039/C9FO02180A | spa |
| dc.relation.references | Zhao, W., Wei, Z., & Xue, C. (2022). Recent advances on food-grade oleogels: Fabrication, application and research trends. En Critical Reviews in Food Science and Nutrition (Vol. 62, Número 27, pp. 7659-7676). Taylor and Francis Ltd. https://doi.org/10.1080/10408398.2021.1922354 | spa |
| dc.relation.references | Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013a). Development of formulations and processes to incorporate wax oleogels in ice cream. Journal of Food Science, 78(12). https://doi.org/10.1111/1750-3841.12248 | spa |
| dc.relation.references | Zulim Botega, D. C., Marangoni, A. G., Smith, A. K., & Goff, H. D. (2013b). The potential application of rice bran wax oleogel to replace solid fat and enhance unsaturated fat content in ice cream. Journal of Food Science, 78(9). https://doi.org/10.1111/1750-3841.12175 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
| dc.subject.lemb | Aceite de aguacate | spa |
| dc.subject.lemb | Avocado oil | eng |
| dc.subject.lemb | Lípidos vegetales | spa |
| dc.subject.lemb | Plant lipids | eng |
| dc.subject.proposal | Aceite de aguacate | spa |
| dc.subject.proposal | Oleogeles | spa |
| dc.subject.proposal | Monoglicéridos | spa |
| dc.subject.proposal | Reología | spa |
| dc.subject.proposal | DSC- TGA | |
| dc.subject.proposal | Parámetros de calidad | spa |
| dc.subject.proposal | Caracterización | spa |
| dc.subject.proposal | Avocado oil | eng |
| dc.subject.proposal | Oleogels | eng |
| dc.subject.proposal | Monoglycerides | eng |
| dc.subject.proposal | Rheology | eng |
| dc.subject.proposal | Quality parameters | eng |
| dc.subject.proposal | Characterization | eng |
| dc.subject.wikidata | Extracción de aceite | spa |
| dc.subject.wikidata | Oil extraction | eng |
| dc.title | Desarrollo y caracterización de oleogeles aceite de aguacate (Persea americana ‘Lorena’) estructurados con monoglicéridos | spa |
| dc.title.translated | Development and characterization of oleogels from avocado oil (Persea americana 'Lorena') structured with monoglycerides. | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
| dcterms.audience.professionaldevelopment | Estudiantes | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Maestros | spa |
| dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
| oaire.awardtitle | Desarrollo, validación e implementación de tecnologías innovadoras para el manejo integral y la gestión de sistemas de cultivo de aguacate en los municipios de Monterrey, Sabanalarga y Tauramena del departamento de Casanare | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 3499860740.2025.pdf
- Tamaño:
- 1.94 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencia y Tecnología de Alimentos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

