Dynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022

dc.contributor.advisorBotero Botero, Sergio
dc.contributor.advisorGonzález Ruiz, Juan David
dc.contributor.authorMarín-Rodríguez, Nini Johana
dc.contributor.cvlacMarín-Rodríguez, Nini Johana [0001337439]spa
dc.contributor.googlescholarMarín-Rodríguez, Nini Johana [https://scholar.google.com/citations?user=QnylAiQAAAAJ&hl=es]spa
dc.contributor.orcidMarín-Rodríguez, Nini Johana [0000-0003-4318-7947]spa
dc.contributor.orcidGonzález Ruiz, Juan David [0000-0003-4425-7687]spa
dc.contributor.researchgateMarín-Rodríguez, Nini Johana [ J-4437-2015]spa
dc.contributor.researchgroupModelamiento y Análisis Energía Ambiente Economíaspa
dc.contributor.scopusMarín-Rodríguez, Nini Johana [57195913643]spa
dc.date.accessioned2023-05-30T12:47:08Z
dc.date.available2023-05-30T12:47:08Z
dc.date.issued2023-05-29
dc.descriptionilustraciones, diagramasspa
dc.description.abstractThis research addresses the problem of the coverage gap in the extant literature to know how oil prices, green bonds, and CO2 emissions are related to each other. Additionally, to research the short and long-term relations using a machine learning model for measuring co-movements among these important variables in the global energy transition context. Therefore, this study’s primary objective is to analyze the results of the short- and long-term co-movements and the implications for researchers, investors, and policy-makers. To validate the analysis, we use daily data from oil prices, green bonds, and CO2 emissions from 2014 to 2022. In addition, a scientometric analysis of the principal methodologies for measuring the co-movements among financial markets, using techniques such as the analysis of (i) sources, (ii) authors, (iii) documents, and (iv) cluster analysis. In this way, this research applies methodologies like Granger Causality Test, Dynamic Conditional Correlation (DCC-Garch), Wavelet power spectrum (WPS), and wavelet coherence analyses (WCA). Additionally, this study employs a machine learning model for measuring the relationships among the selected variables. Specifically, the Fuzzy Logistic Autoencoder (FLAE) was implemented. Furthermore, the results of the machine learning model were validated and compared with the estimated models. Finally, this study represents a breakthrough in explaining the relationship among these variables.eng
dc.description.abstractEsta investigación aborda el vacío en la literatura existente sobre cómo se relacionan entre sí los precios del petróleo, los bonos verdes y las emisiones de CO2. Además, se investigan las relaciones a corto y largo plazo de los co-movimientos entre estas importantes variables en el contexto de la transición energética mundial, utilizando un modelo de aprendizaje automático. Por lo tanto, el objetivo principal de este estudio es analizar los resultados de los co-movimientos a corto y largo plazo y las implicaciones para investigadores, inversores y responsables de política. Para validar el análisis, utilizamos datos diarios de los precios del petróleo, los bonos verdes y las emisiones de CO2 desde 2014 hasta 2022. Además, se realiza un análisis cienciométrico de las principales metodologías para medir los co-movimientos entre los mercados financieros, utilizando técnicas como el análisis de (i) fuentes, (ii) autores, (iii) documentos, y (iv) análisis de clusters. De este modo, esta investigación aplica metodologías como la prueba de causalidad de Granger, la correlación condicional dinámica (Dynamic Conditional Correlation, DCC-Garch), el espectro de potencia wavelet (Wavelet Power Spectrum, WPS) y el análisis de coherencia wavelet (Wavelet Coherence Analyses, WCA). Además, este estudio emplea un modelo de aprendizaje automático para medir las relaciones entre las variables seleccionadas. En concreto, se implementó el autoencoder logístico difuso (Fuzzy Logistic Autoencoder, FLAE). Además, los resultados del modelo de aprendizaje automático se validaron y compararon con los modelos estimados. Por último, este estudio representa un avance en la explicación de la relación entre estas variables. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaInvestigación en Finanzas (Finance Research)spa
dc.format.extentxx, 225 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83906
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Industria y Organizacionesspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdelmaksoud, A. M., Balomenos, G. P., & Becker, T. C. (2022). Fuzzy-Logistic Models for Incorporating Epistemic Uncertainty in Bridge Management Decisions. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 8(3), 04022025.spa
dc.relation.referencesAddison, P. S. (2017). The Illustrated Wavelet Transform Handbook. CRC Press. https://doi.org/10.1201/9781315372556spa
dc.relation.referencesAdom, P. K., Kwakwa, P. A., & Amankvvaa, A. (2018). The long-run effects of economic, demographic, and political indices on actual and potential CO2 emissions. Journal of Environmental Management, 218, 516–526. https://doi.org/10.1016/j.jenvman.2018.04.090spa
dc.relation.referencesAgboola, M. O., Bekun, F. V., & Balsalobre-Lorente, D. (2021). Implications of Social Isolation in Combating COVID-19 Outbreak in Kingdom of Saudi Arabia: Its Consequences on the Carbon Emissions Reduction. Sustainability, 13(16), 9476. https://doi.org/10.3390/su13169476spa
dc.relation.referencesAguiar-Conraria, L., & Soares, M. J. (2011). Oil and the macroeconomy: using wavelets to analyze old issues. Empirical Economics, 40(3), 645–655. https://doi.org/10.1007/s00181-010-0371-xspa
dc.relation.referencesAhmed, S., Chakrabortty, R. K., Essam, D. L., & Ding, W. (2022). Poly-linear regression with augmented long short term memory neural network: Predicting time series data. Information Sciences, 606, 573–600. https://doi.org/10.1016/j.ins.2022.05.078spa
dc.relation.referencesAhmed, W. M. A. (2022). On the higher-order moment interdependence of stock and commodity markets: A wavelet coherence analysis. The Quarterly Review of Economics and Finance, 83, 135–151. https://doi.org/10.1016/j.qref.2021.12.003spa
dc.relation.referencesAkca, H. (2021). Environmental Kuznets Curve and financial development in Turkey: evidence from augmented ARDL approach. Environmental Science and Pollution Research, 28(48), 69149–69159. https://doi.org/10.1007/s11356-021-15417-wspa
dc.relation.referencesAkkoc, U., & Civcir, I. (2019). Dynamic linkages between strategic commodities and stock market in Turkey: Evidence from SVAR-DCC-GARCH model. Resources Policy, 62, 231–239. https://doi.org/10.1016/j.resourpol.2019.03.017spa
dc.relation.referencesAkram, V., & Haider, S. (2022). A Dynamic Nexus Between COVID-19 Sentiment, Clean Energy Stocks, Technology Stocks, and Oil Prices: Global Evidence. Energy RESEARCH LETTERS, 3(3). https://doi.org/10.46557/001c.32625spa
dc.relation.referencesal Mamun, M., Boubaker, S., & Nguyen, D. K. (2022). Green finance and decarbonization: Evidence from around the world. Finance Research Letters, 46, 102807. https://doi.org/10.1016/j.frl.2022.102807spa
dc.relation.referencesAlbulescu, C. T., Demirer, R., Raheem, I. D., & Tiwari, A. K. (2019). Does the U.S. economic policy uncertainty connect financial markets? Evidence from oil and commodity currencies. Energy Economics, 83, 375–388. https://doi.org/https://doi.org/10.1016/j.eneco.2019.07.024spa
dc.relation.referencesAlhodiry, A., Rjoub, H., & Samour, A. (2021). Impact of oil prices, the U.S interest rates on Turkey’s real estate market. New evidence from combined co-integration and bootstrap ARDL tests. Plos One, 16(1), e0242672. https://doi.org/10.1371/journal.pone.0242672spa
dc.relation.referencesAli, M., Tursoy, T., Samour, A., Moyo, D., & Konneh, A. (2022). Testing the impact of the gold price, oil price, and renewable energy on carbon emissions in South Africa: Novel evidence from bootstrap ARDL and NARDL approaches. Resources Policy, 79, 102984. https://doi.org/10.1016/j.resourpol.2022.102984spa
dc.relation.referencesAli, S. R. M., Mensi, W., Anik, K. I., Rahman, M., & Kang, S. H. (2022). The impacts of COVID-19 crisis on spillovers between the oil and stock markets: Evidence from the largest oil importers and exporters. Economic Analysis and Policy, 73, 345–372. https://doi.org/10.1016/j.eap.2021.11.009spa
dc.relation.referencesAlkathery, M. A., & Chaudhuri, K. (2021). Co-movement between oil price, CO<inf>2</inf> emission,renewable energy and energy equities: Evidence from GCC countries. Journal of Environmental Management, 297. https://doi.org/10.1016/j.jenvman.2021.113350spa
dc.relation.referencesAllen, R. G. D. (1950). The Substitution Effect in Value Theory. The Economic Journal, 60(240), 675. https://doi.org/10.2307/2226707spa
dc.relation.referencesAloui, R., ben Aïssa, M. S., & Nguyen, D. K. (2013). Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach. Journal of International Money and Finance, 32(1), 719–738. https://doi.org/10.1016/j.jimonfin.2012.06.006spa
dc.relation.referencesAloui, R., Hammoudeh, S., & Nguyen, D. K. (2013). A time-varying copula approach to oil and stock market dependence: The case of transition economies. Energy Economics, 39, 208–221. https://doi.org/10.1016/j.eneco.2013.04.012spa
dc.relation.referencesAlshdadi, A. A., Hayat, M. K., Daud, A., Banjar, A., & Dawood, H. (2022). Measuring the impact of COVID-19 surveillance variables over the international oil market. International Journal of Advanced and Applied Sciences, 9(1), 27–33. https://doi.org/10.21833/IJAAS.2022.01.004spa
dc.relation.referencesAlshehry, A. S., & Belloumi, M. (2017). Study of the environmental Kuznets curve for transport carbon dioxide emissions in Saudi Arabia. Renewable and Sustainable Energy Reviews, 75, 1339–1347. https://doi.org/10.1016/j.rser.2016.11.122spa
dc.relation.referencesAmano, R. A., & van Norden, S. (1998a). Exchange rates and oil prices. Review of International Economics, 6(4), 683–694. https://doi.org/10.1111/1467-9396.00136spa
dc.relation.referencesAmano, R. A., & van Norden, S. (1998b). Oil prices and the rise and fall of the US real exchange rate. Journal of International Money and Finance, 17(2), 299–316. https://doi.org/10.1016/S0261-5606(98)00004-7spa
dc.relation.referencesAndrews, D. W. K. (2003). Tests for parameter instability and structural change with unknown change point: A corrigendum. Econometrica, 71(1), 395–397. https://doi.org/10.1111/1468-0262.00405spa
dc.relation.referencesAntonakakis, N., Chatziantoniou, I., & Filis, G. (2013). Dynamic co-movements of stock market returns, implied volatility and policy uncertainty. Economics Letters, 120(1), 87–92. https://doi.org/10.1016/j.econlet.2013.04.004spa
dc.relation.referencesAntonakakis, N., Chatziantoniou, I., & Filis, G. (2017). Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest. International Review of Financial Analysis, 50, 1–26. https://doi.org/10.1016/j.irfa.2017.01.004spa
dc.relation.referencesApergis, N., & Miller, S. M. (2009). Do structural oil-market shocks affect stock prices? Energy Economics, 31(4), 569–575. https://doi.org/10.1016/j.eneco.2009.03.001spa
dc.relation.referencesApergis, N., & Payne, J. E. (2015). Renewable energy, output, carbon dioxide emissions, and oil prices: Evidence from South America. Energy Sources, Part B: Economics, Planning and Policy, 10(3), 281–287. https://doi.org/10.1080/15567249.2013.853713spa
dc.relation.referencesAria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007spa
dc.relation.referencesArouri, M. E. H., Jouini, J., & Nguyen, D. K. (2012). On the impacts of oil price fluctuations on European equity markets: Volatility spillover and hedging effectiveness. Energy Economics, 34(2), 611–617. https://doi.org/10.1016/j.eneco.2011.08.009spa
dc.relation.referencesAzhgaliyeva, D., Kapoor, A., & Liu, Y. (2020). Green bonds for financing renewable energy and energy efficiency in South-East Asia: a review of policies. Journal of Sustainable Finance and Investment, 10(2), 113–140. https://doi.org/10.1080/20430795.2019.1704160spa
dc.relation.referencesAzhgaliyeva, D., Kapsalyamova, Z., & Mishra, R. (2022). Oil price shocks and green bonds: An empirical evidence. Energy Economics, 112, 106108. https://doi.org/10.1016/j.eneco.2022.106108spa
dc.relation.referencesAzhgaliyeva, D., Mishra, R., & Kapsalyamova, Z. (2021). Oil Price Shocks and Green Bonds: A Longitudinal Multilevel Model (ADBI Working Paper 1278). Asian Development Bank. https://www.adb.org/publications/oil-price-shocks-green-bonds-longitudinal-multilevel-modelspa
dc.relation.referencesBai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1–22. https://doi.org/10.1002/jae.659spa
dc.relation.referencesBalaguer, J., & Cantavella, M. (2016). Estimating the environmental Kuznets curve for Spain by considering fuel oil prices (1874–2011). Ecological Indicators, 60, 853–859. https://doi.org/10.1016/j.ecolind.2015.08.006spa
dc.relation.referencesBali, T. G., & Engle, R. F. (2010). The intertemporal capital asset pricing model with dynamic conditional correlations. Journal of Monetary Economics, 57(4), 377–390. https://doi.org/10.1016/j.jmoneco.2010.03.002spa
dc.relation.referencesBalsalobre-Lorente, D., Driha, O. M., Bekun Festus Victor and Sinha, A., & Adedoyin, F. F. (2020). Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Quality Atmosphere And Health, 13(12), 1439–1451. https://doi.org/10.1007/s11869-020-00898-4spa
dc.relation.referencesBarsky, R. B., & Kilian, L. (2004). Oil and the Macroeconomy Since the 1970s. Journal of Economic Perspectives, 18(4), 115–134. https://doi.org/10.1257/0895330042632708spa
dc.relation.referencesBasher, S. A., Haug, A. A., & Sadorsky, P. (2012). Oil prices, exchange rates and emerging stock markets. Energy Economics, 34(1), 227–240.spa
dc.relation.referencesBasher, S. A., & Sadorsky, P. (2006). Oil price risk and emerging stock markets. Global Finance Journal, 17(2), 224–251. https://doi.org/10.1016/j.gfj.2006.04.001spa
dc.relation.referencesBasher, S. A., & Sadorsky, P. (2016). Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH. Energy Economics, 54, 235–247. https://doi.org/10.1016/j.eneco.2015.11.022spa
dc.relation.referencesBashir, M. F. (2022). Oil price shocks, stock market returns, and volatility spillovers: a bibliometric analysis and its implications. Environmental Science and Pollution Research, 29(16), 22809–22828. https://doi.org/10.1007/s11356-021-18314-4spa
dc.relation.referencesBashir, M. F., MA, B., Shahbaz, M., & Jiao, Z. (2020). The nexus between environmental tax and carbon emissions with the roles of environmental technology and financial development. Plos One, 15(11), e0242412. https://doi.org/10.1371/journal.pone.0242412spa
dc.relation.referencesBashir, M. F., MA, B., Shahzad, L., Liu, B., & Ruan, Q. (2021). China’s quest for economic dominance and energy consumption: Can Asian economies provide natural resources for the success of One Belt One Road? Managerial and Decision Economics, 42(3), 570–587. https://doi.org/10.1002/mde.3255spa
dc.relation.referencesBassey, E. (2015). Oil price: Effect on carbon emission. Carbon Management Technology Conference 2015: Sustainable and Economical CCUS Options, CMTC 2015, 1, 37–51.spa
dc.relation.referencesBaur, D. G. (2012). Financial contagion and the real economy. Journal of Banking & Finance, 36(10), 2680–2692. https://doi.org/10.1016/j.jbankfin.2011.05.019spa
dc.relation.referencesBayar, Y., Sasmaz, M. U., & Ozkaya, M. H. (2021). Impact of Trade and Financial Globalization on Renewable Energy in EU Transition Economies: A Bootstrap Panel Granger Causality Test. Energies, 14(1). https://doi.org/10.3390/en14010019spa
dc.relation.referencesBehmiri, N. B., & Pires Manso, J. R. (2012). Crude oil conservation policy hypothesis in OECD (organisation for economic cooperation and development) countries: A multivariate panel Granger causality test. Energy, 43(1), 253–260. https://doi.org/10.1016/j.energy.2012.04.032spa
dc.relation.referencesBeirne, J., & Gieck, J. (2014). Interdependence and contagion in global asset markets. Review of International Economics, 22(4), 639–659.spa
dc.relation.referencesBelhassine, O. (2020). Volatility spillovers and hedging effectiveness between the oil market and Eurozone sectors: A tale of two crises. Research in International Business and Finance, 53. https://doi.org/10.1016/j.ribaf.2020.101195spa
dc.relation.referencesBengio, Y. (2012). Deep Learning of Representations for Unsupervised and Transfer Learning. In I. Guyon, G. Dror, V. Lemaire, G. Taylor, & D. Silver (Eds.), Proceedings of ICML Workshop on Unsupervised and Transfer Learning (Vol. 27, pp. 17–36). PMLR. https://proceedings.mlr.press/v27/bengio12a.htmlspa
dc.relation.referencesBhavsar, H., Jivani, A., Amesara, S., Shah, S., Gindani, P., & Patel, S. (2023). Stock Price Prediction Using Sentiment Analysis on News Headlines (pp. 25–34). https://doi.org/10.1007/978-981-19-3571-8_4spa
dc.relation.referencesBloomberg, & MSCI. (2021). Bloomberg MSCI Green Bond Indices. Bringing clarity to the green bond market through benchmark indices. In Manual. https://www.msci.com/documents/1296102/26180598/BBG+MSCI+Green+Bond+Indices+Primer.pdfspa
dc.relation.referencesBloomfield, P. (2013). Fourier analysis of time series: an introduction (Second Edition). John Wiley & Sons.spa
dc.relation.referencesBodart, V., & Candelon, B. (2009). Evidence of interdependence and contagion using a frequency domain framework. Emerging Markets Review, 10(2), 140–150. https://doi.org/10.1016/j.ememar.2008.11.003spa
dc.relation.referencesBoersen, A., & Scholtens, B. (2014). The relationship between European electricity markets and emission allowance futures prices in phase II of the EU (European Union) emission trading scheme. Energy, 74, 585–594. https://doi.org/10.1016/j.energy.2014.07.024spa
dc.relation.referencesBoldanov, R., Degiannakis, S., & Filis, G. (2016). Time-varying correlation between oil and stock market volatilities: Evidence from oil-importing and oil-exporting countries. International Review of Financial Analysis, 48, 209–220. https://doi.org/10.1016/j.irfa.2016.10.002spa
dc.relation.referencesBollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1spa
dc.relation.referencesBoufateh, T. (2019). The environmental Kuznets curve by considering asymmetric oil price shocks: evidence from the top two. Environmental Science and Pollution Research, 26(1), 706–720. https://doi.org/10.1007/s11356-018-3641-3spa
dc.relation.referencesBouoiyour, J., Gauthier, M., & Bouri, E. (2023). Which is leading: Renewable or brown energy assets? Energy Economics, 117, 106339. https://doi.org/10.1016/j.eneco.2022.106339spa
dc.relation.referencesBouri, E., Chen, Q., Lien, D., & Lv, X. (2017). Causality between oil prices and the stock market in China: The relevance of the reformed oil product pricing mechanism. International Review of Economics and Finance, 48, 34–48. https://doi.org/10.1016/j.iref.2016.11.004spa
dc.relation.referencesBouri, E., Shahzad, S. J. H., Roubaud, D., Kristoufek, L., & Lucey, B. (2020). Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis. The Quarterly Review of Economics and Finance, 77, 156–164. https://doi.org/https://doi.org/10.1016/j.qref.2020.03.004spa
dc.relation.referencesBradford, S. C. (1934). Sources of information on specific subjects. Engineering, 137, 85–86.spa
dc.relation.referencesBroadstock, D. C., & Cheng, L. T. W. (2019). Time-varying relation between black and green bond price benchmarks: Macroeconomic determinants for the first decade. Finance Research Letters, 29, 17–22. https://doi.org/https://doi.org/10.1016/j.frl.2019.02.006spa
dc.relation.referencesBurandt, T. (2021). Decarbonizing the global energy system : modelling global and regional transformation pathways with multi-sector energy system models [Technische Universität Berlin]. https://doi.org/10.14279/depositonce-12079spa
dc.relation.referencesCaporin, M., & McAleer, M. (2013). Ten things you should know about the dynamic conditional correlation representation. Econometrics, 1(1), 115–126. https://doi.org/10.3390/econometrics1010115spa
dc.relation.referencesCappiello, L., Engle, R. F., & Sheppard, K. (2006). Asymmetric dynamics in the correlations of global equity and bond returns. Journal of Financial Econometrics, 4(4), 537–572. https://doi.org/10.1093/jjfinec/nbl005spa
dc.relation.referencesCavalcante, R. C., Brasileiro, R. C., Souza, V. L. F., Nobrega, J. P., & Oliveira, A. L. I. (2016). Computational Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with Applications, 55, 194–211. https://doi.org/10.1016/j.eswa.2016.02.006spa
dc.relation.referencesÇelik, T. Ö., Jamneshan, A., Montúfar, G., Sturmfels, B., & Venturello, L. (2021). Wasserstein distance to independence models. Journal of Symbolic Computation, 104, 855–873. https://doi.org/10.1016/j.jsc.2020.10.005spa
dc.relation.referencesChang, K., Ye, Z., & Wang, W. (2019). Volatility spillover effect and dynamic correlation between regional emissions allowances and fossil energy markets: New evidence from China’s emissions trading scheme pilots. Energy, 185, 1314–1324. https://doi.org/https://doi.org/10.1016/j.energy.2019.07.132spa
dc.relation.referencesChansanam, W., & Li, C. (2022). Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus. Sustainability, 14(9), 5339. https://doi.org/10.3390/su14095339spa
dc.relation.referencesCharte, D., Charte, F., & Herrera, F. (2022). Reducing Data Complexity Using Autoencoders With Class-Informed Loss Functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 9549–9560. https://doi.org/10.1109/TPAMI.2021.3127698spa
dc.relation.referencesChen, N.-F., Roll, R., & Ross, S. A. (1986). Economic forces and the stock market. Journal of Business, 383–403.spa
dc.relation.referencesChen, Q., & Taylor, D. (2020). Economic development and pollution emissions in Singapore: Evidence in support of the Environmental Kuznets Curve hypothesis and its implications for regional sustainability. Journal of Cleaner Production, 243, 118637. https://doi.org/10.1016/j.jclepro.2019.118637spa
dc.relation.referencesChen, S.-S. (2010). Do higher oil prices push the stock market into bear territory? Energy Economics, 32(2), 490–495. https://doi.org/10.1016/j.eneco.2009.08.018spa
dc.relation.referencesChen, X., Lun, Y., Yan, J., Hao, T., & Weng, H. (2019). Discovering thematic change and evolution of utilizing social media for healthcare research. BMC Medical Informatics and Decision Making, 19(S2), 50. https://doi.org/10.1186/s12911-019-0757-4spa
dc.relation.referencesChen, Y., Qu, F., Li, W., & Chen, M. (2019). Volatility spillover and dynamic correlation between the carbon market and energy markets. Journal of Business Economics and Management, 20(5), 979–999. https://doi.org/10.3846/jbem.2019.10762spa
dc.relation.referencesChen, Y.-C., & Rogoff, K. (2003). Commodity currencies. Journal of International Economics, 60(1), 133–160. https://doi.org/10.1016/S0022-1996(02)00072-7spa
dc.relation.referencesCheng, H., Damerow, L., Sun, Y., & Blanke, M. (2017). Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks. Journal of Imaging, 3(1), 6. https://doi.org/10.3390/jimaging3010006spa
dc.relation.referencesCherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015spa
dc.relation.referencesChevallier, J. (2012). Time-varying correlations in oil, gas and CO2 prices: an application using BEKK, CCC and DCC-MGARCH models. Applied Economics, 44(32), 4257–4274.spa
dc.relation.referencesChiang, T. C., Jeon, B. N., & Li, H. (2007). Dynamic correlation analysis of financial contagion: Evidence from Asian markets. Journal of International Money and Finance, 26(7), 1206–1228.spa
dc.relation.referencesChoi, D., Gao, Z., & Jiang, W. (2020). Attention to global warming. Review of Financial Studies, 33(3), 1112–1145. https://doi.org/10.1093/rfs/hhz086spa
dc.relation.referencesCiner, C. (2001). Energy Shocks and Financial Markets: Nonlinear Linkages. Studies in Nonlinear Dynamics & Econometrics, 5(3). https://doi.org/10.2202/1558-3708.1079spa
dc.relation.referencesCivcir, İ., & Akkoç, U. (2021). Dynamic volatility linkages and hedging between commodities and sectoral stock returns in Turkey: Evidence from SVAR-cDCC-GARCH model. International Journal of Finance and Economics, 26(2), 1978–1992. https://doi.org/10.1002/ijfe.1889spa
dc.relation.referencesColacito, R., Engle, R. F., & Ghysels, E. (2011). A component model for dynamic correlations. Journal of Econometrics, 164(1), 45–59. https://doi.org/10.1016/j.jeconom.2011.02.013spa
dc.relation.referencesCong, R.-G., Wei, Y.-M., Jiao, J.-L., & Fan, Y. (2008). Relationships between oil price shocks and stock market: An empirical analysis from China. Energy Policy, 36(9), 3544–3553. https://doi.org/10.1016/j.enpol.2008.06.006spa
dc.relation.referencesCramer, E., Gorjao, L. R., Mitsos, A., Schafer, B., Witthaut, D., & Dahmen, M. (2022). Validation Methods for Energy Time Series Scenarios From Deep Generative Models. IEEE Access, 10, 8194–8207. https://doi.org/10.1109/ACCESS.2022.3141875spa
dc.relation.referencesCreti, A., Joëts, M., & Mignon, V. (2013). On the links between stock and commodity markets’ volatility. Energy Economics, 37, 16–28. https://doi.org/10.1016/j.eneco.2013.01.005spa
dc.relation.referencesDarby, M. R. (1982). The price of oil and world inflation and recession. American Economic Review, 72(4), 738–751.spa
dc.relation.referencesde Nard, G., Engle, R. F., Ledoit, O., & Wolf, M. (2022). Large dynamic covariance matrices: Enhancements based on intraday data. Journal of Banking and Finance, 138. https://doi.org/10.1016/j.jbankfin.2022.106426spa
dc.relation.referencesde Souza, E. S., Freire, F. de S., & Pires, J. (2018). Determinants of CO2 emissions in the MERCOSUR: the role of economic growth, and renewable and non-renewable energy. Environmental Science and Pollution Research, 25(21, SI), 20769–20781. https://doi.org/10.1007/s11356-018-2231-8spa
dc.relation.referencesDemir, S., Mincev, K., Kok, K., & Paterakis, N. G. (2021). Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting. Applied Energy, 304, 117695. https://doi.org/10.1016/j.apenergy.2021.117695spa
dc.relation.referencesDewandaru, G., Rizvi, S. A. R., Masih, R., Masih, M., & Alhabshi, S. O. (2014). Stock market co-movements: Islamic versus conventional equity indices with multi-timescales analysis. Economic Systems, 38(4), 553–571. https://doi.org/10.1016/j.ecosys.2014.05.003spa
dc.relation.referencesDibal, P. Y., Onwuka, E. N., Agajo, J., & Alenoghena, C. O. (2018). Application of wavelet transform in spectrum sensing for cognitive radio: A survey. Physical Communication, 28, 45–57. https://doi.org/10.1016/j.phycom.2018.03.004spa
dc.relation.referencesDickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431. https://doi.org/doi.org/10.1080/01621459.1979.10482531spa
dc.relation.referencesDiebold, F. X., & Yilmaz, K. (2009). Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets. The Economic Journal, 119(534), 158–171. https://doi.org/10.1111/j.1468-0297.2008.02208.xspa
dc.relation.referencesDiebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57–66. https://doi.org/10.1016/j.ijforecast.2011.02.006spa
dc.relation.referencesDisli, M., Nagayev, R., Salim, K., Rizkiah, S. K., & Aysan, A. F. (2021). In search of safe haven assets during COVID-19 pandemic: An empirical analysis of different investor types. Research in International Business and Finance, 58, 101461. https://doi.org/10.1016/j.ribaf.2021.101461spa
dc.relation.referencesDong, F., Gao, Y., Li, Y., Zhu, J., Hu, M., & Zhang, X. (2022). Exploring volatility of carbon price in European Union due to COVID-19 pandemic. Environmental Science and Pollution Research, 29(6), 8269–8280. https://doi.org/10.1007/s11356-021-16052-1spa
dc.relation.referencesDutta, A. (2018). Implied volatility linkages between the U.S. and emerging equity markets: A note. Global Finance Journal, 35, 138–146. https://doi.org/10.1016/j.gfj.2017.09.002spa
dc.relation.referencesDutta, A., Bouri, E., & Noor, M. H. (2018). Return and volatility linkages between CO2 emission and clean energy stock prices. Energy, 164, 803–810. https://doi.org/10.1016/j.energy.2018.09.055spa
dc.relation.referencesDutta, A., Bouri, E., & Noor, M. H. (2021). Climate bond, stock, gold, and oil markets: Dynamic correlations and hedging analyses during the COVID-19 outbreak. Resources Policy, 74, 102265. https://doi.org/10.1016/j.resourpol.2021.102265spa
dc.relation.referencesElder, J., & Serletis, A. (2010). Oil Price Uncertainty. Journal of Money, Credit and Banking, 42(6), 1137–1159. https://doi.org/10.1111/j.1538-4616.2010.00323.xspa
dc.relation.referencesElie, B., Naji, J., Dutta, A., & Uddin, G. S. (2019). Gold and crude oil as safe-haven assets for clean energy stock indices: Blended copulas approach. Energy, 178, 544–553. https://doi.org/10.1016/j.energy.2019.04.155spa
dc.relation.referencesEngle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339–350.spa
dc.relation.referencesEngle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251. https://doi.org/10.2307/1913236spa
dc.relation.referencesEngle, R. F., Ledoit, O., & Wolf, M. (2019). Large Dynamic Covariance Matrices. Journal of Business and Economic Statistics, 37(2), 363–375. https://doi.org/10.1080/07350015.2017.1345683spa
dc.relation.referencesEngle, R., & Kroner, K. (1995). Multivariate Simultaneous Generalized ARCH. Econometric Theory, 11, 122–150.spa
dc.relation.referencesErdogan, S., Okumus, I., & Guzel, A. E. (2020). Revisiting the Environmental Kuznets Curve hypothesis in OECD countries: the role of renewable, non-renewable energy, and oil prices. Environmental Science and Pollution Research, 27(19), 23655–23663. https://doi.org/10.1007/s11356-020-08520-xspa
dc.relation.referencesFatica, S., & Panzica, R. (2021). Green bonds as a tool against climate change? Business Strategy and the Environment, 30(5), 2688–2701. https://doi.org/10.1002/bse.2771spa
dc.relation.referencesFawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. (2019). Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 33(4), 917–963. https://doi.org/10.1007/s10618-019-00619-1spa
dc.relation.referencesFeng, Y., & Cui, Y. (2022). Dual and single hedging strategy: a novel comparison from the direct and cross hedging perspective. China Finance Review International, 12(1), 161–179. https://doi.org/10.1108/CFRI-05-2020-0053spa
dc.relation.referencesFilis, G., Degiannakis, S., & Floros, C. (2011). Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries. International Review of Financial Analysis, 20(3), 152–164. https://doi.org/10.1016/j.irfa.2011.02.014spa
dc.relation.referencesForbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: Measuring stock market comovements. Journal of Finance, 57(5), 2223–2261. https://doi.org/10.1111/0022-1082.00494spa
dc.relation.referencesForbes, K., & Rigobon, R. (2001). Measuring contagion: conceptual and empirical issues. In International financial contagion (pp. 43–66). Springer.spa
dc.relation.referencesFtiti, Z., Guesmi, K., & Abid, I. (2016). Oil price and stock market co-movement: What can we learn from time-scale approaches? International Review of Financial Analysis, 46, 266–280. https://doi.org/10.1016/j.irfa.2015.08.011spa
dc.relation.referencesFtiti, Z., Guesmi, K., Teulon, F., & Chouachi, S. (2016). Relationship between crude oil prices and economic growth in selected OPEC countries. Journal of Applied Business Research, 32(1), 11–22. https://doi.org/10.19030/jabr.v32i1.9483spa
dc.relation.referencesGajurel, D., & Chawla, A. (2022). The oil price crisis and contagion effects on the Canadian economy. Applied Economics, 54(13), 1527–1543. https://doi.org/10.1080/00036846.2021.1980196spa
dc.relation.referencesGarfield, E. (1970). Citation Indexing for Studying Science. Nature, 227(5259), 669–671. https://doi.org/10.1038/227669a0spa
dc.relation.referencesGhorbali, B., Naoui, K., & Derbali, A. (2022). Co-movement Among COVID-19 Pandemic, Crude Oil, Stock Market of US, and Bitcoin: Empirical Evidence from WCA. In Accounting, Finance, Sustainability, Governance and Fraud. https://doi.org/10.1007/978-981-19-1036-4_3spa
dc.relation.referencesGiuliodori, A., Berrone, P., & Ricart, J. E. (2022). Where smart meets sustainability: The role of Smart Governance in achieving the Sustainable Development Goals in cities. BRQ Business Research Quarterly, 234094442210912. https://doi.org/10.1177/23409444221091281spa
dc.relation.referencesGolub, S. S. (1983). Oil Prices and Exchange Rates. The Economic Journal, 93(371), 576. https://doi.org/10.2307/2232396spa
dc.relation.referencesGonzález-Ruiz, J. D., Mejía-Escobar, J. C., Rojo-Suárez, J., & Alonso-Conde, A.-B. (2023). Green Bonds for Renewable Energy in Latin America and the Caribbean. The Energy Journal, 44(01). https://doi.org/10.5547/01956574.44.4.jgonspa
dc.relation.referencesGonzalez-Ruiz, J. D., Peña, A., Duque, E. A., Patiño, A., Chiclana, F., & Góngora, M. (2019). Stochastic logistic fuzzy maps for the construction of integrated multirates scenarios in the financing of infrastructure projects. Applied Soft Computing, 85, 105818. https://doi.org/10.1016/j.asoc.2019.105818spa
dc.relation.referencesGonzález-Ruiz, J., Mejía-Escobar, J., Rojo-Suárez, J., & Alonso-Conde, A. (2023). Green Bonds for Renewable Energy in Latin America and the Caribbean. The Energy Journal, 44(5), 25–45. https://doi.org/10.5547/01956574.44.4.jgonspa
dc.relation.referencesGranger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. In E. Ghysels, N. R. Swanson, & M. W. Watson (Eds.), Essays in Econometrics (Vol. 2, pp. 31–47). Cambridge University Press. https://doi.org/10.1017/CBO9780511753978.002spa
dc.relation.referencesGrinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561–566. https://doi.org/10.5194/npg-11-561-2004spa
dc.relation.referencesGustafsson, R., Dutta, A., & Bouri, E. (2022). Are energy metals hedges or safe havens for clean energy stock returns? Energy, 244, 122708. https://doi.org/10.1016/j.energy.2021.122708spa
dc.relation.referencesHabib, Y., Xia, E., Fareed, Z., & Hashmi, S. H. (2021). Time–frequency co-movement between COVID-19, crude oil prices, and atmospheric CO2 emissions: Fresh global insights from partial and multiple coherence approach. Environment, Development and Sustainability, 23(6), 9397–9417. https://doi.org/10.1007/s10668-020-01031-2spa
dc.relation.referencesHamilton, J. D. (1983). Oil and the macroeconomy since world war II. Journal of Political Economy, 91(2), 228–248. https://doi.org/10.1086/261140spa
dc.relation.referencesHamilton, J. D. (2003). What is an oil shock? Journal of Econometrics, 113(2), 363–398. https://doi.org/10.1016/S0304-4076(02)00207-5spa
dc.relation.referencesHammoudeh, S., Ajmi, A. N., & Mokni, K. (2020). Relationship between green bonds and financial and environmental variables: A novel time-varying causality. Energy Economics, 92, 104941. https://doi.org/https://doi.org/10.1016/j.eneco.2020.104941spa
dc.relation.referencesHammoudeh, S., Dibooglu, S., & Aleisa, E. (2004). Relationships among U.S. oil prices and oil industry equity indices. International Review of Economics & Finance, 13(4), 427–453. https://doi.org/10.1016/S1059-0560(03)00011-Xspa
dc.relation.referencesHansun, S., Putri, F. P., M. Khaliq, A. Q., & Hugeng, H. (2022). On searching the best mode for forex forecasting: bidirectional long short-term memory default mode is not enough. IAES International Journal of Artificial Intelligence (IJ-AI), 11(4), 1596. https://doi.org/10.11591/ijai.v11.i4.pp1596-1606spa
dc.relation.referencesHenriques, I., & Sadorsky, P. (2008). Oil prices and the stock prices of alternative energy companies. Energy Economics, 30(3), 998–1010. https://doi.org/10.1016/j.eneco.2007.11.001spa
dc.relation.referencesHernán, M. A., Hsu, J., & Healy, B. (2019). A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks. Chance, 32(1), 42–49. https://doi.org/10.1080/09332480.2019.1579578spa
dc.relation.referencesHuang, R. D., Masulis, R. W., & Stoll, H. R. (1996). Energy shocks and financial markets. Journal of Futures Markets, 16(1), 1–27. https://doi.org/10.1002/(sici)1096-9934(199602)16:1<1::aid-fut1>3.3.co;2-gspa
dc.relation.referencesHudgins, L., Friehe, C. A., & Mayer, M. E. (1993). Wavelet transforms and atmopsheric turbulence. Physical Review Letters, 71(20), 3279–3282. https://doi.org/10.1103/PhysRevLett.71.3279spa
dc.relation.referencesHung, N. T. (2021). Nexus between green bonds, financial, and environmental indicators. Economics and Business Letters, 10(3), 191–199. https://doi.org/10.17811/ebl.10.3.2021.191-199spa
dc.relation.referencesHusaini, D. H., Lean, H. H., & Ab-Rahim, R. (2021). The relationship between energy subsidies, oil prices, and CO2 emissions in selected Asian countries: a panel threshold analysis. Australasian Journal of Environmental Management, 28(4), 339–354. https://doi.org/10.1080/14486563.2021.1961620spa
dc.relation.referencesJammazi, R. (2012). Cross dynamics of oil-stock interactions: A redundant wavelet analysis. Energy, 44(1), 750–777. https://doi.org/10.1016/j.energy.2012.05.017spa
dc.relation.referencesJammazi, R., & Reboredo, J. C. (2016). Dependence and risk management in oil and stock markets. A wavelet-copula analysis. Energy, 107, 866–888. https://doi.org/10.1016/j.energy.2016.02.093spa
dc.relation.referencesJiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised Machine Learning: A Brief Primer. Behavior Therapy, 51(5), 675–687. https://doi.org/10.1016/j.beth.2020.05.002spa
dc.relation.referencesJin, J., Han, L., Wu, L., & Zeng, H. (2020). The hedging effect of green bonds on carbon market risk. International Review of Financial Analysis, 71. https://doi.org/10.1016/j.irfa.2020.101509spa
dc.relation.referencesJones, C. M., & Kaul, G. (1996). Oil and the stock markets. Journal of Finance, 51(2), 463–491. https://doi.org/10.1111/j.1540-6261.1996.tb02691.xspa
dc.relation.referencesKang, W., & Ratti, R. A. (2013). Structural oil price shocks and policy uncertainty. Economic Modelling, 35, 314–319. https://doi.org/10.1016/j.econmod.2013.07.025spa
dc.relation.referencesKassouri, Y., Bilgili, F., & Kuşkaya, S. (2022). A wavelet-based model of world oil shocks interaction with CO2 emissions in the US. Environmental Science & Policy, 127, 280–292. https://doi.org/10.1016/j.envsci.2021.10.020spa
dc.relation.referencesKassouri, Y., Kacou, K. Y. T., & Alola, A. A. (2021). Are oil-clean energy and high technology stock prices in the same straits? Bubbles speculation and time-varying perspectives. Energy, 232, 121021. https://doi.org/10.1016/j.energy.2021.121021spa
dc.relation.referencesKhan, I., Rehman, F. U., Pyplacz, P., Khan, M. A., Wisniewska, A., & Liczmanska-Kopcewicz, K. (2021). A Dynamic Linkage between Financial Development, Energy Consumption and Economic Growth: Evidence from an Asymmetric and Nonlinear ARDL Model. Energies, 14(16). https://doi.org/10.3390/en14165006spa
dc.relation.referencesKhosravi, V., Doulati Ardejani, F., Yousefi, S., & Aryafar, A. (2018). Monitoring soil lead and zinc contents via combination of spectroscopy with extreme learning machine and other data mining methods. Geoderma, 318, 29–41. https://doi.org/10.1016/j.geoderma.2017.12.025spa
dc.relation.referencesKilian, L. (2009). Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market. American Economic Review, 99(3), 1053–1069. https://doi.org/10.1257/aer.99.3.1053spa
dc.relation.referencesKilian, L., & Park, C. (2009). The impact of oil price shocks on the U.S. stock market. International Economic Review, 50(4), 1267–1287. https://doi.org/10.1111/j.1468-2354.2009.00568.xspa
dc.relation.referencesKirikkaleli, D., & Güngör, H. (2021). Co-movement of commodity price indexes and energy price index: a wavelet coherence approach. Financial Innovation, 7(1), 15. https://doi.org/10.1186/s40854-021-00230-8spa
dc.relation.referencesKoch, N. (2014). Dynamic linkages among carbon, energy and financial markets: A smooth transition approach. Applied Economics, 46(7), 715–729. https://doi.org/10.1080/00036846.2013.854301spa
dc.relation.referencesKumar, S., Managi, S., & Matsuda, A. (2012). Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis. Energy Economics, 34(1), 215–226. https://doi.org/10.1016/j.eneco.2011.03.002spa
dc.relation.referencesKuzmanovic, M., Hatt, T., & Feuerriegel, S. (2021). Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies. In S. Roy, S. Pfohl, E. Rocheteau, G. A. Tadesse, L. Oala, F. Falck, Y. Zhou, L. Shen, G. Zamzmi, P. Mugambi, A. Zirikly, M. B. A. McDermott, & E. Alsentzer (Eds.), Proceedings of Machine Learning for Health (Vol. 158, pp. 143–155). PMLR. https://proceedings.mlr.press/v158/kuzmanovic21a.htmlspa
dc.relation.referencesLamouchi, R. A., & Alawi, S. M. (2020). Dynamic linkages between the oil spot, oil futures, and stock markets: Evidence from Dubai. International Journal of Energy Economics and Policy, 10(1), 377–383. https://doi.org/10.32479/ijeep.8705spa
dc.relation.referencesLe, T.-H., & Nguyen, C. P. (2019). Is energy security a driver for economic growth? Evidence from a global sample. Energy Policy, 129, 436–451. https://doi.org/10.1016/j.enpol.2019.02.038spa
dc.relation.referencesLe, T.-L., Abakah, E. J. A., & Tiwari, A. K. (2021). Time and frequency domain connectedness and spill-over among fintech, green bonds and cryptocurrencies in the age of the fourth industrial revolution. Technological Forecasting and Social Change, 162, 120382. https://doi.org/10.1016/j.techfore.2020.120382spa
dc.relation.referencesLee, C.-C., Lee, C.-C., & Li, Y.-Y. (2021). Oil price shocks, geopolitical risks, and green bond market dynamics. The North American Journal of Economics and Finance, 55, 101309. https://doi.org/https://doi.org/10.1016/j.najef.2020.101309spa
dc.relation.referencesLee, K., Ni, S., & Ratti, R. A. (1995). Oil Shocks and the Macroeconomy: The Role of Price Variability. The Energy Journal, 16(4). https://doi.org/10.5547/ISSN0195-6574-EJ-Vol16-No4-2spa
dc.relation.referencesLee, Y., & Yoon, S.-M. (2020). Dynamic spillover and hedging among carbon, biofuel and oil. Energies, 13(17). https://doi.org/10.3390/en13174382spa
dc.relation.referencesLi, H., Zhou, D., Hu, J., & Guo, L. (2022). Dynamic linkages among oil price, green bond, carbon market and low-carbon footprint company stock price: Evidence from the TVP-VAR model. Energy Reports, 8, 11249–11258. https://doi.org/10.1016/j.egyr.2022.08.230spa
dc.relation.referencesLi, Z., Ma, X., & Xin, H. (2017). Feature engineering of machine-learning chemisorption models for catalyst design. Catalysis Today, 280, 232–238. https://doi.org/10.1016/j.cattod.2016.04.013spa
dc.relation.referencesLichtenberger, A., Braga, J. P., & Semmler, W. (2022). Green Bonds for the Transition to a Low-Carbon Economy. Econometrics, 10(1). https://doi.org/10.3390/econometrics10010011spa
dc.relation.referencesLin, B., & Chen, Y. (2019). Dynamic linkages and spillover effects between CET market, coal market and stock market of new energy companies: A case of Beijing CET market in China. Energy, 172, 1198–1210. https://doi.org/10.1016/j.energy.2019.02.029spa
dc.relation.referencesLin, B., & Su, T. (2020). Mapping the oil price-stock market nexus researches: A scientometric review. International Review of Economics and Finance, 67, 133–147. https://doi.org/10.1016/j.iref.2020.01.007spa
dc.relation.referencesLin, J.-B., & Tsai, W. (2019). The relations of oil price change with fear gauges in global political and economic environment. Energies, 14(15). https://doi.org/10.3390/en12152982spa
dc.relation.referencesLiu, M. (2022). The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic. Economic Analysis and Policy, 75, 288–309. https://doi.org/10.1016/j.eap.2022.05.012spa
dc.relation.referencesLiu, X., Bouri, E., & Jalkh, N. (2021). Dynamics and Determinants of Market Integration of Green, Clean, Dirty Energy Investments and Conventional Stock Indices. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.786528spa
dc.relation.referencesLiu, Z., Zhang, J., & Li, Y. (2022). Towards better time series prediction with model-independent, low-dispersion clusters of contextual subsequence embeddings. Knowledge-Based Systems, 235, 107641. https://doi.org/10.1016/j.knosys.2021.107641spa
dc.relation.referencesLotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–323. http://www.jstor.org/stable/24529203spa
dc.relation.referencesLuo, R., Li, Y., Wang, Z., & Sun, M. (2022). Co-Movement between Carbon Prices and Energy Prices in Time and Frequency Domains: A Wavelet-Based Analysis for Beijing Carbon Emission Trading System. International Journal of Environmental Research and Public Health, 19(9). https://doi.org/10.3390/ijerph19095217spa
dc.relation.referencesMa, F., Wei, Y., Huang, D., & Zhao, L. (2013). Cross-correlations between West Texas Intermediate crude oil and the stock markets of the BRIC. Physica A: Statistical Mechanics and Its Applications, 392(21), 5356–5368. https://doi.org/10.1016/j.physa.2013.06.061spa
dc.relation.referencesMa, Z., Yan, Y., Wu, R., & Li, F. (2021). Research on the Correlation Between WTI Crude Oil Futures Price and European Carbon Futures Price. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.735665spa
dc.relation.referencesMaghyereh, A., & Abdoh, H. (2022). Extreme dependence between structural oil shocks and stock markets in GCC countries. Resources Policy, 76. https://doi.org/10.1016/j.resourpol.2022.102626spa
dc.relation.referencesMaghyereh, A. I., Awartani, B., & Abdoh, H. (2019). The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations. Energy, 169, 895–913. https://doi.org/10.1016/j.energy.2018.12.039spa
dc.relation.referencesMahmood, H., Asadov, A., Tanveer, M., Furqan, M., & Yu, Z. (2022). Impact of Oil Price, Economic Growth and Urbanization on CO2 Emissions in GCC Countries: Asymmetry Analysis. Sustainability, 14(8), 4562.spa
dc.relation.referencesMahmood, H., & Furqan, M. (2021). Oil rents and greenhouse gas emissions: spatial analysis of Gulf Cooperation Council countries. Environment, Development and Sustainability, 23(4), 6215–6233. https://doi.org/10.1007/s10668-020-00869-wspa
dc.relation.referencesMaji, I. K., Habibullah, M. S., & Saari, M. Y. (2020). Does oil price shocks mitigate sectoral co2 emissions in malaysia? Evidence from ardl estimations. Kasetsart Journal of Social Sciences, 41(3), 633–640. https://doi.org/10.34044/j.kjss.2020.41.3.28spa
dc.relation.referencesMalik, M. I., & Rashid, A. (2017). Return and volatility spillover between sectoral stock and oil price: Evidence from pakistan stock exchange. Annals of Financial Economics, 12(2). https://doi.org/10.1142/S2010495217500075spa
dc.relation.referencesManjunath, S., & Halasuru Manjunath, P. (2023). A Novel Approach for Financial Markets Forecasting Using Deep Learning with Long Short Term Networks (pp. 456–462). https://doi.org/10.1007/978-3-031-17091-1_46spa
dc.relation.referencesMarimoutou, V., & Soury, M. (2015). Energy markets and CO2 emissions: Analysis by stochastic copula autoregressive model. Energy, 88, 417–429. https://doi.org/10.1016/j.energy.2015.05.060spa
dc.relation.referencesMarín-Rodríguez, N. J., González-Ruiz, J. D., & Botero Botero, S. (2022). Dynamic Co-Movements among Oil Prices and Financial Assets: A Scientometric Analysis. Sustainability, 14(19). https://doi.org/10.3390/su141912796spa
dc.relation.referencesMarín-Rodríguez, N. J., González-Ruiz, J. D., & Botero, S. (2022). Dynamic relationships among green bonds, CO2 emissions, and oil prices. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.992726spa
dc.relation.referencesMarín-Rodríguez, N. J., González-Ruiz, J. D., & Botero, S. (2023). A Wavelet Analysis of the Dynamic Connectedness among Oil Prices, Green Bonds, and CO2 Emissions. Risks, 11(1), 15. https://doi.org/10.3390/risks11010015spa
dc.relation.referencesMarquez-Cardenas, V., Gonzalez-Ruiz, J. D., & Duque-Grisales, E. (2021). Board gender diversity and firm performance: evidence from Latin America. Journal of Sustainable Finance and Investment. https://doi.org/10.1080/20430795.2021.2017256spa
dc.relation.referencesMarshall, A. (1890). Principles of Economics, 8th edn (1920). London, Mcmillan.spa
dc.relation.referencesMejia-Escobar, J. C., González-Ruiz, J. D., & Duque-Grisales, E. (2020). Sustainable financial products in the Latin America banking industry: Current status and insights. Sustainability (Switzerland), 12(14). https://doi.org/10.3390/su12145648spa
dc.relation.referencesMejía-Escobar, J. C., González-Ruiz, J. D., & Franco-Sepúlveda, G. (2021). Current state and development of green bonds market in the Latin America and the caribbean. Sustainability (Switzerland), 13(19). https://doi.org/10.3390/su131910872spa
dc.relation.referencesMelek, N. C. (2018). The response of US investment to oil price shocks: does the shale boom matter? Economic Review, Federal Reserve Bank of Kansas City Forthcoming.spa
dc.relation.referencesMensah, I. A., Sun, M., Gao, C., Omari-Sasu, A. Y., Zhu, D., Ampimah, B. C., & Quarcoo, A. (2019). Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. Journal of Cleaner Production, 228, 161–174. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.04.281spa
dc.relation.referencesMensi, W. (2019). Global financial crisis and co-movements between oil prices and sector stock markets in Saudi Arabia: A VaR based wavelet. Borsa Istanbul Review, 19(1), 24–38. https://doi.org/10.1016/j.bir.2017.11.005spa
dc.relation.referencesMensi, W., Beljid, M., Boubaker, A., & Managi, S. (2013). Correlations and volatility spillovers across commodity and stock markets: Linking energies, food, and gold. Economic Modelling, 32, 15–22. https://doi.org/10.1016/j.econmod.2013.01.023spa
dc.relation.referencesMensi, W., Hammoudeh, S., Reboredo, J. C., & Nguyen, D. K. (2014). Do global factors impact BRICS stock markets? A quantile regression approach. Emerging Markets Review, 19, 1–17. https://doi.org/10.1016/j.ememar.2014.04.002spa
dc.relation.referencesMensi, W., Hammoudeh, S., & Yoon, S.-M. (2015). Structural breaks, dynamic correlations, asymmetric volatility transmission, and hedging strategies for petroleum prices and USD exchange rate. Energy Economics, 48, 46–60. https://doi.org/10.1016/j.eneco.2014.12.004spa
dc.relation.referencesMensi, W., Rehman, M. U., Maitra, D., Al-Yahyaee, K. H., & Vo, X. V. (2021). Oil, natural gas and BRICS stock markets: Evidence of systemic risks and co-movements in the time-frequency domain. Resources Policy, 72. https://doi.org/10.1016/j.resourpol.2021.102062spa
dc.relation.referencesMesbah, M., Shahsavari, S., Soroush, E., Rahaei, N., & Rezakazemi, M. (2018). Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. Journal of CO2 Utilization, 25, 99–107. https://doi.org/10.1016/j.jcou.2018.03.004spa
dc.relation.referencesMitra, A., & Bhattacharjee, K. (2015). Financial interdependence of international stock markets: A literature review. Indian Journal of Finance, 9(5), 20–33. https://doi.org/10.17010/ijf/2015/v9i5/71447spa
dc.relation.referencesMohan, S., Mullapudi, S., Sammeta, S., Vijayvergia, P., & Anastasiu, D. C. (2019). Stock Price Prediction Using News Sentiment Analysis. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), 205–208. https://doi.org/10.1109/BigDataService.2019.00035spa
dc.relation.referencesMoomaw, W. R., & Unruh, G. C. (1997). Are environmental Kuznets curves misleading us? The case of CO2 emissions. Environment and Development Economics, 2(4), 451–463. https://doi.org/10.1017/S1355770X97000247spa
dc.relation.referencesMoral-Munoz, J. A., Arroyo-Morales, M., Herrera-Viedma, E., & Cobo, M. J. (2018). An Overview of Thematic Evolution of Physical Therapy Research Area From 1951 to 2013. Frontiers in Research Metrics and Analytics, 3. https://doi.org/10.3389/frma.2018.00013spa
dc.relation.referencesMorlet, J., Arens, G., Fourgeau, E., & Glard, D. (1982). Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media. Geophysics, 47(2), 203–221. https://doi.org/10.1190/1.1441328spa
dc.relation.referencesMoutinho, V., Madaleno, M., & Elheddad, M. (2020). Determinants of the Environmental Kuznets Curve considering economic activity sector diversification in the OPEC countries. Journal of Cleaner Production, 271, 122642. https://doi.org/10.1016/j.jclepro.2020.122642spa
dc.relation.referencesMujtaba, A., & Jena, P. K. (2021). Analyzing asymmetric impact of economic growth, energy use, FDI inflows, and oil prices on CO2 emissions through NARDL approach. Environmental Science and Pollution Research, 28(24), 30873–30886. https://doi.org/10.1007/s11356-021-12660-zspa
dc.relation.referencesMumu, J. R., Saona, P., Russell, H. I., & Azad, Md. A. K. (2021). Corporate governance and remuneration: a bibliometric analysis. Journal of Asian Business and Economic Studies, 28(4), 242–262. https://doi.org/10.1108/JABES-03-2021-0025spa
dc.relation.referencesNaeem, M. A., Bouri, E., Costa, M. D., Naifar, N., & Shahzad, S. J. H. (2021). Energy markets and green bonds: A tail dependence analysis with time-varying optimal copulas and portfolio implications. Resources Policy, 74, 102418. https://doi.org/10.1016/j.resourpol.2021.102418spa
dc.relation.referencesNaeem, M. A., Mbarki, I., Alharthi, M., Omri, A., & Shahzad, S. J. H. (2021). Did COVID-19 Impact the Connectedness Between Green Bonds and Other Financial Markets? Evidence From Time-Frequency Domain With Portfolio Implications. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.657533spa
dc.relation.referencesNagayev, R., Disli, M., Inghelbrecht, K., & Ng, A. (2016). On the dynamic links between commodities and Islamic equity. Energy Economics, 58, 125–140. https://doi.org/10.1016/j.eneco.2016.06.011spa
dc.relation.referencesNandy, A., Zhu, J., Janet, J. P., Duan, C., Getman, R. B., & Kulik, H. J. (2019). Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation. ACS Catalysis, 9(9), 8243–8255. https://doi.org/10.1021/acscatal.9b02165spa
dc.relation.referencesNarayan, P. K., & Narayan, S. (2010). Modelling the impact of oil prices on Vietnam’s stock prices. Applied Energy, 87(1), 356–361. https://doi.org/10.1016/j.apenergy.2009.05.037spa
dc.relation.referencesNaser, H. (2015). Analysing the long-run relationship among oil market, nuclear energy consumption, and economic growth: An evidence from emerging economies. ENERGY, 89, 421–434. https://doi.org/10.1016/j.energy.2015.05.115spa
dc.relation.referencesNenonen, S., Koski, A., Lassila, A. P., & Lehikoinen, S. (2019). Towards low carbon economy - Green bond and asset development. IOP Conference Series: Earth and Environmental Science, 352(1). https://doi.org/10.1088/1755-1315/352/1/012028spa
dc.relation.referencesNguyen, T. T. H., Naeem, M. A., Balli, F., Balli, H. O., & Vo, X. V. (2021). Time-frequency comovement among green bonds, stocks, commodities, clean energy, and conventional bonds. Finance Research Letters, 40. https://doi.org/10.1016/j.frl.2020.101739spa
dc.relation.referencesNi, J., & Xu, Y. (2023). Forecasting the Dynamic Correlation of Stock Indices Based on Deep Learning Method. Computational Economics, 61(1), 35–55. https://doi.org/10.1007/s10614-021-10198-3spa
dc.relation.referencesOmane-Adjepong, M., Alagidede, P., & Akosah, N. K. (2019). Wavelet time-scale persistence analysis of cryptocurrency market returns and volatility. Physica A: Statistical Mechanics and Its Applications, 514, 105–120. https://doi.org/10.1016/j.physa.2018.09.013spa
dc.relation.referencesOmri, A., ben Mabrouk, N., & Sassi-Tmar, A. (2015). Modeling the causal linkages between nuclear energy, renewable energy and economic growth in developed and developing countries. Renewable & Sustainable Energy Reviews, 42, 1012–1022. https://doi.org/10.1016/j.rser.2014.10.046spa
dc.relation.referencesOmri, A., Daly, S., & Nguyen, D. K. (2015). A robust analysis of the relationship between renewable energy consumption and its main drivers. Applied Economics, 47(28), 2913–2923. https://doi.org/10.1080/00036846.2015.1011312spa
dc.relation.referencesOrlov, A. G. (2009). A cospectral analysis of exchange rate comovements during Asian financial crisis. Journal of International Financial Markets, Institutions and Money, 19(5), 742–758. https://doi.org/https://doi.org/10.1016/j.intfin.2008.12.004spa
dc.relation.referencesOsorio, S., Tietjen, O., Pahle, M., Pietzcker, R. C., & Edenhofer, O. (2021). Reviewing the Market Stability Reserve in light of more ambitious EU ETS emission targets. Energy Policy, 158. https://doi.org/10.1016/j.enpol.2021.112530spa
dc.relation.referencesOzturk, M. B. E., & Cavdar, S. C. (2021). The Contagion of Covid-19 Pandemic on The Volatilities of International Crude Oil Prices, Gold, Exchange Rates and Bitcoin. Journal of Asian Finance, Economics and Business, 8(3), 171–179. https://doi.org/10.13106/jafeb.2021.vol8.no3.0171spa
dc.relation.referencesPakel, C., Shephard, N., Sheppard, K., & Engle, R. F. (2021). Fitting Vast Dimensional Time-Varying Covariance Models. Journal of Business and Economic Statistics, 39(3), 652–668. https://doi.org/10.1080/07350015.2020.1713795spa
dc.relation.referencesPal, D., & Mitra, S. K. (2019). Oil price and automobile stock return co-movement: A wavelet coherence analysis. Economic Modelling, 76, 172–181. https://doi.org/10.1016/j.econmod.2018.07.028spa
dc.relation.referencesPanaretos, V. M., & Zemel, Y. (2019). Statistical Aspects of Wasserstein Distances. Annual Review of Statistics and Its Application, 6(1), 405–431. https://doi.org/10.1146/annurev-statistics-030718-104938spa
dc.relation.referencesPark, J., & Ratti, R. A. (2008). Oil price shocks and stock markets in the U.S. and 13 European countries. Energy Economics, 30(5), 2587–2608. https://doi.org/10.1016/j.eneco.2008.04.003spa
dc.relation.referencesPark, O., & Seok, M. (2007). Selection of an appropriate model to predict plume dispersion in coastal areas. Atmospheric Environment, 41(29), 6095–6101. https://doi.org/10.1016/j.atmosenv.2007.04.010spa
dc.relation.referencesPata, U. K. (2021). Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective. RENEWABLE ENERGY, 173, 197–208. https://doi.org/10.1016/j.renene.2021.03.125spa
dc.relation.referencesPatel, R., Goodell, J. W., Oriani, M. E., Paltrinieri, A., & Yarovaya, L. (2022). A bibliometric review of financial market integration literature. International Review of Financial Analysis, 80, 102035. https://doi.org/https://doi.org/10.1016/j.irfa.2022.102035spa
dc.relation.referencesPeña, A., Bonet, I., Lochmuller, C., Alejandro Patiño, H., Chiclana, F., & Góngora, M. (2018). A fuzzy credibility model to estimate the Operational Value at Risk using internal and external data of risk events. Knowledge-Based Systems, 159, 98–109. https://doi.org/10.1016/j.knosys.2018.06.007spa
dc.relation.referencesPeña, A., Bonet, I., Lochmuller, C., Chiclana, F., & Góngora, M. (2018). An integrated inverse adaptive neural fuzzy system with Monte-Carlo sampling method for operational risk management. Expert Systems with Applications, 98, 11–26. https://doi.org/10.1016/j.eswa.2018.01.001spa
dc.relation.referencesPeña, A., Puerta, A., Bonet, I., Góngora, M., & Carafinni, F. (2020). Criterios para la configuración de plataformas de inteligencia aumentada para el mejoramiento de la sostenibilidad de cultivos agrícolas. In III Congreso Internacional de Ingeniería de Sistemas. Universidad de Lima.spa
dc.relation.referencesPeña, A., Tejada, J. C., Gonzalez-Ruiz, J. D., & Gongora, M. (2022). Deep Learning to Improve the Sustainability of Agricultural Crops Affected by Phytosanitary Events: A Financial-Risk Approach. Sustainability, 14(11), 6668. https://doi.org/10.3390/su14116668spa
dc.relation.referencesPericoli, M., & Sbracia, M. (2003). A primer on financial contagion. Journal of Economic Surveys, 17(4), 571–608.spa
dc.relation.referencesPham, H. N. A., Ramiah, V., Moosa, N., Huynh, T., & Pham, N. (2018). The financial effects of Trumpism. Economic Modelling, 74, 264–274. https://doi.org/https://doi.org/10.1016/j.econmod.2018.05.020spa
dc.relation.referencesPiñeiro-Chousa, J., López-Cabarcos, M. Á., & Šević, A. (2022). Green bond market and Sentiment: Is there a switching Behaviour? Journal of Business Research, 141, 520–527. https://doi.org/10.1016/j.jbusres.2021.11.048spa
dc.relation.referencesPirgaip, B., & Dincergok, B. (2020). Economic policy uncertainty, energy consumption and carbon emissions in G7 countries: evidence from a panel Granger causality analysis. Environmental Science and Pollution Research, 27(24), 30050–30066. https://doi.org/10.1007/s11356-020-08642-2spa
dc.relation.referencesPrabheesh, K. P., Padhan, R., & Garg, B. (2020). COVID-19 and the Oil Price – Stock Market Nexus: Evidence From Net Oil-Importing Countries. Energy RESEARCH LETTERS, 1(2). https://doi.org/10.46557/001c.13745spa
dc.relation.referencesQuadrelli, R., & Peterson, S. (2007). The energy–climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy, 35(11), 5938–5952. https://doi.org/https://doi.org/10.1016/j.enpol.2007.07.001spa
dc.relation.referencesQureshi, S., Aftab, M., Bouri, E., & Saeed, T. (2020). Dynamic interdependence of cryptocurrency markets: An analysis across time and frequency. Physica A: Statistical Mechanics and Its Applications, 559, 125077. https://doi.org/10.1016/j.physa.2020.125077spa
dc.relation.referencesRai, K., & Garg, B. (2022). Dynamic correlations and volatility spillovers between stock price and exchange rate in BRIICS economies: evidence from the COVID-19 outbreak period. Applied Economics Letters, 29(8), 738–745. https://doi.org/10.1080/13504851.2021.1884835spa
dc.relation.referencesRangel, J. G., & Engle, R. F. (2012). The Factor-Spline-GARCH model for high and low frequency correlations. Journal of Business and Economic Statistics, 30(1), 109–124. https://doi.org/10.1080/07350015.2012.643132spa
dc.relation.referencesRannou, Y., Boutabba, M. A., & Barneto, P. (2021). Are Green Bond and Carbon Markets in Europe complements or substitutes? Insights from the activity of power firms. Energy Economics, 104. https://doi.org/10.1016/j.eneco.2021.105651spa
dc.relation.referencesRao, A., Gupta, M., Sharma, G. D., Mahendru, M., & Agrawal, A. (2022). Revisiting the financial market interdependence during COVID-19 times: a study of green bonds, cryptocurrency, commodities and other financial markets. International Journal of Managerial Finance, 18(4), 725–755. https://doi.org/10.1108/IJMF-04-2022-0165spa
dc.relation.referencesRasheed, M. Q., Haseeb, A., Adebayo, T. S., Ahmed, Z., & Ahmad, M. (2022). The long-run relationship between energy consumption, oil prices, and carbon dioxide emissions in European countries. Environmental Science and Pollution Research, 29(16), 24234–24247. https://doi.org/10.1007/s11356-021-17601-4spa
dc.relation.referencesReboredo, J. C. (2012). Modelling oil price and exchange rate co-movements. Journal of Policy Modeling, 34(3), 419–440. https://doi.org/10.1016/j.jpolmod.2011.10.005spa
dc.relation.referencesReboredo, J. C. (2013). Modeling EU allowances and oil market interdependence. Implications for portfolio management. Energy Economics, 36, 471–480. https://doi.org/10.1016/j.eneco.2012.10.004spa
dc.relation.referencesReboredo, J. C. (2015). Is there dependence and systemic risk between oil and renewable energy stock prices? Energy Economics, 48, 32–45. https://doi.org/10.1016/j.eneco.2014.12.009spa
dc.relation.referencesReboredo, J. C. (2018). Green bond and financial markets: Co-movement, diversification and price spillover effects. Energy Economics, 74, 38–50. https://doi.org/10.1016/j.eneco.2018.05.030spa
dc.relation.referencesReboredo, J. C., & Rivera-Castro, M. A. (2014). Wavelet-based evidence of the impact of oil prices on stock returns. International Review of Economics and Finance, 29, 145–176. https://doi.org/10.1016/j.iref.2013.05.014spa
dc.relation.referencesReboredo, J. C., Rivera-Castro, M. A., & Ugolini, A. (2017). Wavelet-based test of co-movement and causality between oil and renewable energy stock prices. Energy Economics, 61, 241–252. https://doi.org/10.1016/j.eneco.2016.10.015spa
dc.relation.referencesReboredo, J. C., & Ugolini, A. (2020). Price connectedness between green bond and financial markets. Economic Modelling, 88, 25–38. https://doi.org/10.1016/j.econmod.2019.09.004spa
dc.relation.referencesReboredo, J. C., Ugolini, A., & Aiube, F. A. L. (2020). Network connectedness of green bonds and asset classes. Energy Economics, 86, 104629. https://doi.org/10.1016/j.eneco.2019.104629spa
dc.relation.referencesRen, C. (2022). Volatility Spillovers and Nexus across Oil, Gold, and Stock European Markets. American Business Review, 25(1), 52–185. https://doi.org/10.37625/abr.25.1.152-185spa
dc.relation.referencesRen, X., Dou, Y., Dong, K., & Li, Y. (2022). Information spillover and market connectedness: multi-scale quantile-on-quantile analysis of the crude oil and carbon markets. Applied Economics, 54(38), 4465–4485. https://doi.org/10.1080/00036846.2022.2030855spa
dc.relation.referencesRen, X., Li, Y., Qi, Y., & Duan, K. (2022). Asymmetric effects of decomposed oil-price shocks on the EU carbon market dynamics. Energy, 254. https://doi.org/10.1016/j.energy.2022.124172spa
dc.relation.referencesRen, X., Li, Y., yan, C., Wen, F., & Lu, Z. (2022). The interrelationship between the carbon market and the green bonds market: Evidence from wavelet quantile-on-quantile method. Technological Forecasting and Social Change, 179. https://doi.org/10.1016/j.techfore.2022.121611spa
dc.relation.referencesRen, X., Lu, Z., Cheng, C., Shi, Y., & Shen, J. (2019). On dynamic linkages of the state natural gas markets in the USA: Evidence from an empirical spatio-temporal network quantile analysis. Energy Economics, 80, 234–252. https://doi.org/10.1016/j.eneco.2019.01.001spa
dc.relation.referencesRen, X., Shao, Q., & Zhong, R. (2020). Nexus between green finance, non-fossil energy use, and carbon intensity: Empirical evidence from China based on a vector error correction model. Journal of Cleaner Production, 277, 122844. https://doi.org/10.1016/j.jclepro.2020.122844spa
dc.relation.referencesRen, Y.-S., Narayan, S., & Ma, C. (2021). Air quality, COVID-19, and the oil market: Evidence from China’s provinces. Economic Analysis And Policy, 72, 58–72. https://doi.org/10.1016/j.eap.2021.07.012spa
dc.relation.referencesReza, S., Ferreira, M. C., Machado, J. J. M., & Tavares, J. M. R. S. (2022). A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Systems with Applications, 202, 117275. https://doi.org/10.1016/j.eswa.2022.117275spa
dc.relation.referencesRittler, D. (2012). Price discovery and volatility spillovers in the European Union emissions trading scheme: A high-frequency analysis. Journal of Banking & Finance, 36(3), 774–785. https://doi.org/10.1016/j.jbankfin.2011.09.009spa
dc.relation.referencesRobledo, S., Osorio, G., & Lopez, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Revista Vínculos, 11(2), 6–16. https://doi.org/10.14483/2322939X.9664spa
dc.relation.referencesRodriguez-Fernandez, M. (2016). Social responsibility and financial performance: The role of good corporate governance. BRQ Business Research Quarterly, 19(2), 137–151. https://doi.org/10.1016/j.brq.2015.08.001spa
dc.relation.referencesRoy, R. P., & Roy, S. S. (2017). Financial contagion and volatility spillover: An exploration into Indian commodity derivative market. Economic Modelling, 67, 368–380.spa
dc.relation.referencesRoyal, S., Singh, K., & Chander, R. (2022). A nexus between renewable energy, FDI, oil prices, oil rent and CO<inf>2</inf> emission: panel data evidence from G7 economies. OPEC Energy Review, 46(2), 208–227. https://doi.org/10.1111/opec.12228spa
dc.relation.referencesSaboori, B., Al-mulali, U., bin Baba, M., & Mohammed, A. H. (2016). Oil-Induced environmental Kuznets curve in organization of petroleum exporting countries (OPEC). International Journal of Green Energy, 13(4), 408–416. https://doi.org/10.1080/15435075.2014.961468spa
dc.relation.referencesSadorsky, P. (1999). Oil price shocks and stock market activity. Energy Economics, 21(5), 449–469. https://doi.org/https://doi.org/10.1016/S0140-9883(99)00020-1spa
dc.relation.referencesSadorsky, P. (2001). Risk factors in stock returns of Canadian oil and gas companies. Energy Economics, 23(1), 17–28. https://doi.org/10.1016/S0140-9883(00)00072-4spa
dc.relation.referencesSadorsky, P. (2009). Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. Energy Economics, 31(3), 456–462. https://doi.org/10.1016/j.eneco.2008.12.010spa
dc.relation.referencesSadorsky, P. (2012). Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies. Energy Economics, 34(1), 248–255. https://doi.org/10.1016/j.eneco.2011.03.006spa
dc.relation.referencesSadorsky, P. (2014). Modeling volatility and correlations between emerging market stock prices and the prices of copper, oil and wheat. Energy Economics, 43, 72–81. https://doi.org/10.1016/j.eneco.2014.02.014spa
dc.relation.referencesSaeed, T., Bouri, E., & Alsulami, H. (2021). Extreme return connectedness and its determinants between clean/green and dirty energy investments. Energy Economics, 96, 105017. https://doi.org/10.1016/j.eneco.2020.105017spa
dc.relation.referencesSaeed, T., Bouri, E., & Tran, D. K. (2020). Hedging Strategies of Green Assets against Dirty Energy Assets. Energies, 13(12), 3141. https://doi.org/10.3390/en13123141spa
dc.relation.referencesSahu, P. K., Solarin, S. A., Al-mulali, U., & Ozturk, I. (2022). Investigating the asymmetry effects of crude oil price on renewable energy consumption in the United States. Environmental Science and Pollution Research, 29(1), 817–827. https://doi.org/10.1007/s11356-021-15577-9spa
dc.relation.referencesSalem, S. (2017). Key Commodity Markets: Dynamic Correlations & Volatilities in Time-Frequency Domain. University of Surrey (United Kingdom).spa
dc.relation.referencesSari, R., Hammoudeh, S., & Soytas, U. (2010). Dynamics of oil price, precious metal prices, and exchange rate. Energy Economics, 32(2), 351–362. https://doi.org/10.1016/j.eneco.2009.08.010spa
dc.relation.referencesSchmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003spa
dc.relation.referencesSener, S. E. C., Sharp, J. L., & Anctil, A. (2018). Factors impacting diverging paths of renewable energy: A review. Renewable & Sustainable Energy Reviews, 81(2), 2335–2342. https://doi.org/10.1016/j.rser.2017.06.042spa
dc.relation.referencesShah, M. I., Foglia, M., Shahzad, U., & Fareed, Z. (2022). Green innovation, resource price and carbon emissions during the COVID-19 times: New findings from wavelet local multiple correlation analysis. Technological Forecasting and Social Change, 184. https://doi.org/10.1016/j.techfore.2022.121957spa
dc.relation.referencesShahzad, S. J. H., Mensi, W., Hammoudeh, S., Rehman, M. U., & Al-Yahyaee, K. H. (2018). Extreme dependence and risk spillovers between oil and Islamic stock markets. Emerging Markets Review, 34, 42–63. https://doi.org/10.1016/j.ememar.2017.10.003spa
dc.relation.referencesShankaranarayana, S. M., & Runje, D. (2019). ALIME: Autoencoder Based Approach for Local Interpretability (pp. 454–463). https://doi.org/10.1007/978-3-030-33607-3_49spa
dc.relation.referencesSharif, A., Aloui, C., & Yarovaya, L. (2020). COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. International Review of Financial Analysis, 70, 101496. https://doi.org/10.1016/j.irfa.2020.101496spa
dc.relation.referencesSingh, R., & Srivastava, S. (2017). Stock prediction using deep learning. Multimedia Tools and Applications, 76(18), 18569–18584. https://doi.org/10.1007/s11042-016-4159-7spa
dc.relation.referencesSingh, S., Bansal, P., & Bhardwaj, N. (2022). Correlation between geopolitical risk, economic policy uncertainty, and Bitcoin using partial and multiple wavelet coherence in P5 + 1 nations. Research in International Business and Finance, 63, 101756. https://doi.org/10.1016/j.ribaf.2022.101756spa
dc.relation.referencesSinghal, S., & Ghosh, S. (2016). Returns and volatility linkages between international crude oil price, metal and other stock indices in India: Evidence from VAR-DCC-GARCH models. Resources Policy, 50, 276–288. https://doi.org/10.1016/j.resourpol.2016.10.001spa
dc.relation.referencesSu, C. W., Chen, Y., Hu, J., Chang, T., & Umar, M. (2022). Can the green bond market enter a new era under the fluctuation of oil price? Economic Research-Ekonomska Istrazivanja. https://doi.org/10.1080/1331677X.2022.2077794spa
dc.relation.referencesSurya, E., & Wibowo, S. S. (2018). Empirical analysis of oil price volatility and stock returns in ASEAN-5 countries using DCC-GARCH. Pertanika Journal of Social Sciences and Humanities, 26(August), 251–263.spa
dc.relation.referencesSyed, A. A., Ahmed, F., Kamal, M. A., Ullah, A., & Ramos-Requena, J. P. (2022). Is There an Asymmetric Relationship between Economic Policy Uncertainty, Cryptocurrencies, and Global Green Bonds? Evidence from the United States of America. Mathematics, 10(5). https://doi.org/10.3390/math10050720spa
dc.relation.referencesTang, W., Wu, L., & Zhang, Z. (2010). Oil price shocks and their short- and long-term effects on the Chinese economy. Energy Economics, 32, S3–S14. https://doi.org/10.1016/j.eneco.2010.01.002spa
dc.relation.referencesTatar, A., Shokrollahi, A., Mesbah, M., Rashid, S., Arabloo, M., & Bahadori, A. (2013). Implementing Radial Basis Function Networks for modeling CO2-reservoir oil minimum miscibility pressure. Journal of Natural Gas Science and Engineering, 15, 82–92. https://doi.org/10.1016/j.jngse.2013.09.008spa
dc.relation.referencesTiwari, A. K., Aikins Abakah, E. J., Gabauer, D., & Dwumfour, R. A. (2021). Green Bond, Renewable Energy Stocks and Carbon Price: Dynamic Connectedness, Hedging and Investment Strategies during COVID-19 pandemic. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3897284spa
dc.relation.referencesTiwari, A. K., Aikins Abakah, E. J., Gabauer, D., & Dwumfour, R. A. (2022). Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies. Global Finance Journal, 51. https://doi.org/10.1016/j.gfj.2021.100692spa
dc.relation.referencesTorrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2spa
dc.relation.referencesTorrence, C., & Webster, P. J. (1999). Interdecadal Changes in the ENSO–Monsoon System. Journal of Climate, 12(8), 2679–2690. https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2spa
dc.relation.referencesTroster, V., Shahbaz, M., & Uddin, G. S. (2018). Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis. Energy Economics, 70, 440–452. https://doi.org/10.1016/j.eneco.2018.01.029spa
dc.relation.referencesTsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017). Using deep learning to detect price change indications in financial markets. 2017 25th European Signal Processing Conference (EUSIPCO), 2511–2515. https://doi.org/10.23919/EUSIPCO.2017.8081663spa
dc.relation.referencesTse, Y. K., & Tsui, A. K. C. (2002). A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations. Journal of Business and Economic Statistics, 20(3), 351–362. https://doi.org/10.1198/073500102288618496spa
dc.relation.referencesTurhan, M. I., Sensoy, A., & Hacihasanoglu, E. (2014). A comparative analysis of the dynamic relationship between oil prices and exchange rates. Journal of International Financial Markets, Institutions and Money, 32(1), 397–414. https://doi.org/10.1016/j.intfin.2014.07.003spa
dc.relation.referencesUzar, U. (2020). Political economy of renewable energy: Does institutional quality make a difference in renewable energy consumption? Renewable Energy, 155, 591–603. https://doi.org/10.1016/j.renene.2020.03.172spa
dc.relation.referencesvan Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7spa
dc.relation.referencesVayá-Valcarce, E., & Frexedas, O. V. (2005). Financial contagion between economies: an exploratory spatial analysis. Estudios De Economia Aplicada, 23(1), 151–166.spa
dc.relation.referencesVieira, A. (2015). Predicting online user behaviour using deep learning algorithms. ArXiv Preprint.spa
dc.relation.referencesWang, C., Chen, Y., Zhang, S., & Zhang, Q. (2022). Stock market index prediction using deep Transformer model. Expert Systems with Applications, 208, 118128. https://doi.org/10.1016/j.eswa.2022.118128spa
dc.relation.referencesWang, S., & Wang, D. (2022). Exploring the Relationship Between ESG Performance and Green Bond Issuance. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.897577spa
dc.relation.referencesWang, W., Huang, Y., Wang, Y., & Wang, L. (2014). Generalized autoencoder: A neural network framework for dimensionality reduction. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 490–497.spa
dc.relation.referencesWang, X., Li, J., & Ren, X. (2022). Asymmetric causality of economic policy uncertainty and oil volatility index on time-varying nexus of the clean energy, carbon and green bond. International Review of Financial Analysis, 83. https://doi.org/10.1016/j.irfa.2022.102306spa
dc.relation.referencesWang, Y., Wu, C., & Yang, L. (2013). Oil price shocks and stock market activities: Evidence from oil-importing and oil-exporting countries. Journal of Comparative Economics, 41(4), 1220–1239. https://doi.org/10.1016/j.jce.2012.12.004spa
dc.relation.referencesWei, P., Li, Y., Ren, X., & Duan, K. (2022). Crude oil price uncertainty and corporate carbon emissions. Environmental Science and Pollution Research, 29(2), 2385–2400. https://doi.org/10.1007/s11356-021-15837-8spa
dc.relation.referencesWen, X., Bouri, E., & Roubaud, D. (2017). Can energy commodity futures add to the value of carbon assets? Economic Modelling, 62, 194–206. https://doi.org/10.1016/j.econmod.2016.12.022spa
dc.relation.referencesWu, D., Wang, X., & Wu, S. (2022). A hybrid framework based on extreme learning machine, discrete wavelet transform, and autoencoder with feature penalty for stock prediction. Expert Systems with Applications, 207, 118006. https://doi.org/10.1016/j.eswa.2022.118006spa
dc.relation.referencesXuefeng, Z., Razzaq, A., Gokmenoglu, K. K., & Rehman, F. U. (2022). Time varying interdependency between COVID-19, tourism market, oil prices, and sustainable climate in United States: evidence from advance wavelet coherence approach. Economic Research-Ekonomska Istrazivanja, 35(1), 3337–3359. https://doi.org/10.1080/1331677X.2021.1992642spa
dc.relation.referencesYan, L., Wang, H., Athari, S. A., & Atif, F. (2022). Driving green bond market through energy prices, gold prices and green energy stocks: evidence from a non-linear approach. Economic Research-Ekonomska Istrazivanja. https://doi.org/10.1080/1331677X.2022.2049977spa
dc.relation.referencesYun, K. K., Yoon, S. W., & Won, D. (2023). Interpretable stock price forecasting model using genetic algorithm-machine learning regressions and best feature subset selection. Expert Systems with Applications, 213, 118803. https://doi.org/10.1016/j.eswa.2022.118803spa
dc.relation.referencesZaghdoudi, T. (2017). Oil prices, renewable energy, CO2 emissions and economic growth in OECD countries. Economics Bulletin, 37(3), 1844–1850. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028668466&partnerID=40&md5=d2530fbe0feb8e695f473eebbe41a2f3spa
dc.relation.referencesZhang, B., & Zhou, Y. (2022). Oil prices, emission permits trade of carbon, and the dependence between their quantiles. International Journal of Circuits, Systems and Signal Processing, 16, 38–45.spa
dc.relation.referencesZhang, Z., Zohren, S., & Roberts, S. (2019). DeepLOB: Deep Convolutional Neural Networks for Limit Order Books. IEEE Transactions on Signal Processing, 67(11), 3001–3012. https://doi.org/10.1109/TSP.2019.2907260spa
dc.relation.referencesZheng, Y., Zhou, M., & Wen, F. (2021). Asymmetric effects of oil shocks on carbon allowance price: Evidence from China. Energy Economics, 97. https://doi.org/10.1016/j.eneco.2021.105183spa
dc.relation.referencesZou, X. (2018). An analysis of the effect of carbon emission, GDP and international crude oil prices based on synthesis integration model. International Journal of Energy Sector Management, 12(4), 641–655. https://doi.org/10.1108/IJESM-10-2017-0013spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembPetróleo - Aspectos económicosspa
dc.subject.lembPetroleumeng
dc.subject.proposalCO2 emissionseng
dc.subject.proposalEmisiones de CO2spa
dc.subject.proposalCo-movementseng
dc.subject.proposalDependenceeng
dc.subject.proposalOil priceseng
dc.subject.proposalGreen bondseng
dc.subject.proposalScientometric analysiseng
dc.subject.proposalEnergy marketseng
dc.subject.proposalMachine learningeng
dc.subject.proposalCo-movimientosspa
dc.subject.proposalDependenciaspa
dc.subject.proposalPrecios del petróleospa
dc.subject.proposalBonos verdesspa
dc.subject.proposalAnálisis cienciométricospa
dc.titleDynamic co-movement analysis among oil prices, green bonds, and CO2 emissions, 2014-2022eng
dc.title.translatedAnálisis del co-movimiento dinámico de los precios del petróleo, los bonos verdes y las emisiones de CO2, 2014-2022spa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
43209431.2023.pdf
Tamaño:
6.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Industria y Organizaciones

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: