Modelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de salud

dc.contributor.advisorHurtado Heredia, Rafael German
dc.contributor.authorSaavedra Moreno, Carolina
dc.contributor.supervisorVelasco Rodríguez, Nubia Milena
dc.date.accessioned2023-06-05T15:32:01Z
dc.date.available2023-06-05T15:32:01Z
dc.date.issued2022-08-29
dc.descriptionilustracionesspa
dc.description.abstractEl objetivo general de un sistema de salud es promover, restaurar y mantener la salud de la población, así como influir en los determinantes en salud. Para evaluar el grado de cumplimiento de este objetivo es necesario conocer el estado de salud de las poblaciones y para ello uno de los enfoques es el estudio de la morbilidad poblacional, el cual vincula información de uno o varios diagnósticos de manera independiente y cuyos indicadores en general son fragmentados. Teniendo en cuenta que es posible utilizar enfoques relacionales como el del Análisis de Redes para estudiar los patrones de morbilidad, en esta tesis se proponen representaciones relacionales para caracterizar los patrones de morbilidad y su relación con el componente de prestación de servicios del sistema, considerando los determinantes de salud de edad, sexo y condición socioeconómica. A partir de la aplicación de estas representaciones en esta tesis se propone un conjunto de medidas de red que brindan información sobre la estructura y la dinámica de los sistemas de salud que, en conjunto, configuran el modelo conceptual para evaluar el desempeño de los sistemas estudiados. (texto tomado de la fuente)
dc.description.abstractThe primary objective of a healthcare system is to promote, restore, and maintain the health of the population, as well as to influence the factors that affect health. The extent to which this objective is achieved can be evaluated by examining the health status of the population. One method of measuring health status is to analyze morbidity within a population, typically by gathering information on one or more diagnoses independently. This thesis proposes the use of relational representations through the Network Analysis approach to characterize morbidity patterns and their correlation with healthcare services, considering age, sex, and socioeconomic stratification as determinants of health. By employing relational representations in multiple populations, we propose a set of network measures that offer insights into the structure and dynamics of these patterns. These measures form a conceptual model for evaluating the performance of a healthcare systemeng
dc.description.degreelevelDoctoradospa
dc.description.researchareaEconofísica y Sociofísicaspa
dc.format.extent109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83962
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Administraciónspa
dc.publisher.programAmazonía - Amazonía - Doctorado en Estudios Amazónicosspa
dc.relation.referencesAbebe, F., Schneider, M., Asrat, B., & Ambaw, F. (2020). Multimorbidity of chronic non-communicable diseases in low- and middle-income countries: A scoping review. Journal of Comorbidity, 10, 2235042X2096191. https://doi.org/10.1177/2235042x20961919spa
dc.relation.referencesAlfonso-Sierra, E., Arcila, A., Bonilla, J., Latorre, M., Porras, A., & Urquijo, L. (2016). Situación de multimorbilidad en Colombia 2012-2016.spa
dc.relation.referencesAlmagro, P., Ponce, A., Komal, S., De La Asunción Villaverde, M., Castrillo, C., Grau, G., Simon, L., & De La Sierra, A. (2020). Multimorbidity gender patterns in hospitalized elderly patients. PLoS ONE, 15(1), 1–15. https://doi.org/10.1371/journal.pone.0227252spa
dc.relation.referencesArah, O. A., Westert, G. P., Hurst, J., & Klazinga, N. S. (2006). A conceptual framework for the OECD Health Care Quality Indicators Project. International Journal for Quality in Health Care, 18(SUPPL. 1), 5–13. https://doi.org/10.1093/intqhc/mzl024spa
dc.relation.referencesBarabási, A. (2016). Network Science. Cambridge: Cambridge University Press. http://networksciencebook.com/spa
dc.relation.referencesBarclay, M., Dixon-Woods, M., & Lyratzopoulos, G. (2019). The problem with composite indicators. BMJ Quality and Safety, 28(4), 338–344. https://doi.org/10.1136/bmjqs-2018-007798spa
dc.relation.referencesBarón-Esquivias, G., Gómez-Moreno, S., Sainz-Hidalgo, I., Gómez-Barrado, J. J., Sayago, I., Martín-Santana, A. M., Sánchez-Brotons, J. A., Romero-Rodríguez, R., Fernández-Romero, A., Amo-Fernández, C., & Aguilera-Saborido, A. (2021). Clinical characteristics of patients suffering atrial fibrillation and diabetes mellitus. The attitude of the clinical cardiologist. Medicina Clínica Práctica, 4(2), 100188. https://doi.org/10.1016/j.mcpsp.2020.100188spa
dc.relation.referencesBennett, S., & Peters, D. H. (2015). Assessing National Health Systems: Why and How. Health Systems & Reform, 1(1), 9–17. https://doi.org/10.1080/23288604.2014.997107spa
dc.relation.referencesBoersma, P., Black, L. I., & Ward, B. W. (2020). Prevalence of multiple chronic conditions among US adults, 2018. Preventing Chronic Disease, 17, 2–5. https://doi.org/10.5888/PCD17.200130spa
dc.relation.referencesBonita, R., Beaglehole, R., & Kjellstrom, T. (2006). Basic epidemiology. In Word Health Organization. WHO Library. https://doi.org/10.1017/CBO9781139696951.003spa
dc.relation.referencesBrunson, J. C., & Laubenbacher, R. C. (2017). Applications of network analysis to routinely collected health care data: a systematic review. Journal of the American Medical Informatics Association, 0(0), 1–13. https://doi.org/10.1093/jamia/ocx052spa
dc.relation.referencesCapobianco, E., & Lió, P. (2015). Comorbidity networks: beyond disease correlations. Journal of Complex Networks, 1–14. https://doi.org/10.1093/comnet/cnu048spa
dc.relation.referencesLey 1438 del 2011, Congreso de la Republica - Colombia.spa
dc.relation.referencesConsejo Privado de Competitividad, & Universidad del Rosario. (2022). Índice Departamental de Competitividad 2022.spa
dc.relation.referencesDANE. (2020). Proyecciones de población. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacionspa
dc.relation.referencesDe La Guardia Gutiérrez, M., & Ruvalcaba, J. (2020). Health and its determinants, health promotion and health education. Journal of Negative & Positive Result, 5(1), 81–90. https://doi.org/10.19230/jonnpr.3215spa
dc.relation.referencesDorogovtsev, S., & Mendes, J. F. (2003). Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford Pre).spa
dc.relation.referencesEstrada, E. (2011). The structure of complex networks - Theory and Applications (Oxford Uni).spa
dc.relation.referencesEstrada, E., & Knight, P. (2015). A First Course in Network Theory. In ACM International Conference Proceeding Series (Vols. 13-May-201). Oxford University Press. https://doi.org/10.1145/2757218.2757223spa
dc.relation.referencesFeinstein, A. R. (1970). The pre-therapeutic classification of co-morbidity in chronic disease. Journal of Chronic Diseases, 23(7), 455–468. https://doi.org/10.1016/0021-9681(70)90054-8spa
dc.relation.referencesFernández-Niño, J. A., & Bustos-Vázquez, E. (2016). Multimorbidity: Conceptual basis, epidemiological models and measurement challenges. Biomédica, 36(2), 188–203. https://doi.org/10.7705/biomedica.v36i2.2710spa
dc.relation.referencesFreeman, L. C. (2004). The Development of Social Network Analysis A study in the sociology of science. In ΣP Empirical Press.spa
dc.relation.referencesGBD. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7spa
dc.relation.referencesGerring, J., Thacker, S. C., Enikolopov, R., Arévalo, J., & Maguire, M. (2013). Assessing health system performance: A model-based approach. Social Science and Medicine, 93, 21–28. https://doi.org/10.1016/j.socscimed.2013.06.002spa
dc.relation.referencesGlicksberg, B. S., Li, L., Badgeley, M. A., Shameer, K., Kosoy, R., Beckmann, N. D., Ma, M., Ayers, K. L., Pho, N., Hoffman, G. E., Li, S. D., Schadt, E. E., Patel, C. J., Chen, R., & Dudley, J. T. (2016). Comparative analyses of population-scale phenomic data in electronic medical records reveal race-specific disease networks. Bioinformatics, 32, 101–110. https://doi.org/10.1093/bioinformatics/btw282spa
dc.relation.referencesGómez, A. (2015). Clasificación Internacional de Enfermedades (CIE): Descifrando la CIE-10 y esperando la CIE-11. Monitor Estratégico, 7, 66–73.spa
dc.relation.referencesGuo, M., Yu, Y., Wen, T., Zhang, X., Liu, B., Zhang, J., Zhang, R., Zhang, Y., & Zhou, X. (2019). Analysis of disease comorbidity patterns in a large-scale China population. BMC Medical Genomics, 12(Suppl 12), 1–10. https://doi.org/10.1186/s12920-019-0629-xspa
dc.relation.referencesHanauer, D. A., & Ramakrishnan, N. (2012). Modeling temporal relationships in large scale clinical associations. J Am Med Inform Assoc, 1–10. https://doi.org/10.1136/amiajnl-2012-001117spa
dc.relation.referencesHao, T., Wang, Q., Zhao, L., Wu, D., Wang, E., & Sun, J. (2018). Analyzing of Molecular Networks for Human Diseases and Drug Discovery. Current Topics in Medicinal Chemistry, 18(12), 1007–1014. https://doi.org/10.2174/1568026618666180813143408spa
dc.relation.referencesHee, J., Young, K., Wook, D., Hyuk, S., Won, J., Hyun, J., So, M., Heon, E., Hun, K., & Moon, J. (2016). Network analysis of human diseases using Korean nationwide claims data. Journal of Biomedical Informatics, 61, 276–282. https://doi.org/10.1016/j.jbi.2016.05.002spa
dc.relation.referencesHejduková, P., & Kureková, L. (2017). Healthcare systems and performance evaluation: comparison of performance indicators in v4 countries using models of composite indicators. Ekonomika a Management, 20(3), 133–146. https://doi.org/10.15240/tul/001/2017-3-009spa
dc.relation.referencesHernández, B., Reilly, R. B., & Kenny, R. A. (2019). Investigation of multimorbidity and prevalent disease combinations in older Irish adults using network analysis and association rules. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-51135-7spa
dc.relation.referencesHilarión-Gaitán, L., Díaz-Jiménez, D., Cotes-Cantillo, K., & Castañeda-Orjuela, C. (2019). Desigualdades en salud según régimen de afiliación y eventos notificados al Sistema de Vigilancia (Sivigila) en Colombia, 2015. Biomédica, 39(4), 737–747. https://doi.org/10.7705/biomedica.4453spa
dc.relation.referencesHossain, M. E., Uddin, S., Khan, A., & Moni, M. A. (2020). A framework to understand the progression of cardiovascular disease for type 2 diabetes mellitus patients using a network approach. International Journal of Environmental Research and Public Health, 17(2), 1–17. https://doi.org/10.3390/ijerph17020596spa
dc.relation.referencesHuntley, A. L., Johnson, R., Purdy, S., Valderas, J. M., & Salisbury, C. (2012). Measures of Multimorbidity and Morbidity Burden for Use in Primary Care and Community Settings: A Systematic Review and Guide. Annals of Family Medicine, 10(2), 134–141. https://doi.org/10.1370/afm.1363spa
dc.relation.referencesHussain, M. A., Huxley, R. R., & Al Mamun, A. (2015). Multimorbidity prevalence and pattern in Indonesian adults: An exploratory study using national survey data. BMJ Open, 5(12), 1–10. https://doi.org/10.1136/bmjopen-2015-009810spa
dc.relation.referencesJacobs, R., Smith, P., & Goddard, M. (2004). Measuring performance: An examination of composite performance indicators (Issue July).spa
dc.relation.referencesJani, B. D., Hanlon, P., Nicholl, B. I., McQueenie, R., Gallacher, K. I., Lee, D., & Mair, F. S. (2019). Relationship between multimorbidity, demographic factors and mortality: Findings from the UK Biobank cohort. BMC Medicine, 17(1), 1–13. https://doi.org/10.1186/s12916-019-1305-xspa
dc.relation.referencesJensen, A. B., Moseley, P. L., Oprea, T. I., Ellesøe, S. G., Eriksson, R., Schmock, H., Jensen, P. B., Jensen, L. J., & Brunak, S. (2014). Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nature Communications, 5(4022), 1–10. https://doi.org/10.1038/ncomms5022spa
dc.relation.referencesJones, I., Cocker, F., Jose, M., Charleston, M., & Neil, A. L. (2022). Methods of analysing patterns of multimorbidity using network analysis: a scoping review. Journal of Public Health (Germany), 0123456789. https://doi.org/10.1007/s10389-021-01685-wspa
dc.relation.referencesKalgotra, P., Sharda, R., & Croff, J. M. (2017). Examining health disparities by gender: A multimorbidity network analysis of electronic medical record. International Journal of Medical Informatics, 108(September), 22–28. https://doi.org/10.1016/j.ijmedinf.2017.09.014spa
dc.relation.referencesKalgotra, P., Sharda, R., & Croff, J. M. (2020). Examining multimorbidity differences across racial groups: a network analysis of electronic medical records. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-70470-8spa
dc.relation.referencesKestenbaum, B. (2009). Measures of Disease Frequency. In Springer Science+Business Media (Ed.), Epidemiology and Biostatistics: An Introduction to Clinical Research (pp. 3–12). https://doi.org/10.1007/978-3-319-27347-1_14spa
dc.relation.referencesKhan, A., Uddin, S., & Srinivasan, U. (2018). Comorbidity network for chronic disease: A novel approach to understand type 2 diabetes progression. International Journal of Medical Informatics, 115(April), 1–9. https://doi.org/10.1016/j.ijmedinf.2018.04.001spa
dc.relation.referencesKullback, S., & Leibler, R. A. (1951). On Information and Sufficiency. Ann. Math. Statist., 22(1), 79–86. https://doi.org/10.1214/aoms/1177729694spa
dc.relation.referencesLatora, V., Nicosia, V., & Russo, G. (2017). Complex Networks: principles, methods and applications. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316216002spa
dc.relation.referencesLee, Y., Kim, H., Jeong, H., & Noh, Y. (2020). Patterns of multimorbidity in adults: An association rules analysis using the Korea health panel. International Journal of Environmental Research and Public Health, 17(2618). https://doi.org/10.3390/ijerph17082618spa
dc.relation.referencesLeva, F., & Bitonti, D. (2018). Network analysis of comorbidity patterns in heart failure patients using administrative data. Epidemiology Biostatistics and Public Health, 15(2), 1–6. https://doi.org/10.2427/12779spa
dc.relation.referencesLipsitz, L. (2012). Understanding Health Care as a Complex System: The Foundation for Unintended Consequences. Journal of the American Medical Association, 308(3), 243–244. https://doi.org/10.1001/jama.2012.7551.Understandingspa
dc.relation.referencesLiu, J., Ma, J., Wang, J., Zeng, D. D., Song, H., Wang, L., & Cao, Z. (2016). Comorbidity analysis according to sex and age in hypertension patients in China. International Journal of Medical Sciences, 13(2), 99–107. https://doi.org/10.7150/ijms.13456spa
dc.relation.referencesLuke, D. A., & Stamatakis, K. A. (2012). Systems Science Methods in Public Health: Dynamics, Networks, and Agents. Annual Review of Public Health, 33, 357–376. https://doi.org/10.1146/annurev-publhealth-031210-101222spa
dc.relation.referencesMinisterio de Salud. (2021). Aseguramiento al sistema general de salud. https://www.minsalud.gov.co/proteccionsocial/Regimensubsidiado/Paginas/aseguramiento-al-sistema-general-salud.aspxspa
dc.relation.referencesMinisterio de Salud y Protección Social. (2017). Actualización de la Clasificación Única de Procedimientos en Salud (CUPS).spa
dc.relation.referencesMinisterio de Salud y Protección Social. (2019a). Lineamiento Técnico para el Registro y envío de los datos del Registro Individual de Prestaciones de Salud – RIPS, desde las Instituciones Prestadoras de Servicios de Salud a las EAPB Oficina de Tecnología de la Información y la Comunicación – OTIC.spa
dc.relation.referencesMinisterio de Salud y Protección Social. (2019b). ¿Qué es SISPRO? SISPRO- Sistema Integrado de Información de La Protección Social. https://www.sispro.gov.co/Pages/Home.aspxspa
dc.relation.referencesMinisterio de Salud y Protección Social. (2022). Mortalidad en Colombia periodo 2020-2021.spa
dc.relation.referencesMontgomery, D., & Runger, G. (2003). Applied Statistics and Probability for Engineers. In John Wiley & Sons, Inc.spa
dc.relation.referencesNewman, M. E. J. (2010). Networks an Introduction (Oxford Uni).spa
dc.relation.referencesNg, S. K., Tawiah, R., Sawyer, M., & Scuffham, P. (2018). Patterns of multimorbid health conditions: A systematic review of analytical methods and comparison analysis. International Journal of Epidemiology, 47(5), 1687–1704. https://doi.org/10.1093/ije/dyy134spa
dc.relation.referencesNicholson, K., Almirall, J., & Fortin, M. (2019). The measurement of multimorbidity. Health Psychology, 38(9), 783–790. https://doi.org/10.1037/hea0000739spa
dc.relation.referencesNicholson, K., Makovski, T. T., Griffith, L. E., Raina, P., Stranges, S., & van den Akker, M. (2019). Multimorbidity and comorbidity revisited: refining the concepts for international health research. Journal of Clinical Epidemiology, 105, 142–146. https://doi.org/10.1016/j.jclinepi.2018.09.008spa
dc.relation.referencesNunes, B. P., Thumé, E., & Facchini, L. A. (2015). Multimorbidity in older adults: Magnitude and challenges for the Brazilian health system Chronic Disease epidemiology. BMC Public Health, 15(1), 1–11. https://doi.org/10.1186/s12889-015-2505-8spa
dc.relation.referencesOCDE. (2017). Health at a Glance 2017: OECD Indicators. https://doi.org/Please cite this publication as: OECD (2017), Health at a Glance 2017: OECD Indicators, OECD Publishing, Paris. http://dx.doi.org/10.1787/health_glance-2017-enspa
dc.relation.referencesOMS. (2000). The World Health Report 2000. Health Systems: improving performance. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711spa
dc.relation.referencesOMS. (2007). Everybody’s business: strengthening health systems to improve health outcomes: WHO’s framework for action. https://doi.org/10 July 2012spa
dc.relation.referencesOMS. (2009). Aplicación del pensamiento sistémico al fortalecimiento de los servicios de salud. 115.spa
dc.relation.referencesOMS. (2010). Monitoring the building blocks of health systems: a handbook of indicators and their measurement strategies. Who, 1–92. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711spa
dc.relation.referencesOMS. (2018a). Global Reference List of 100 Core Health Indicators (plus health-related SDGs). https://doi.org/WHO/HIS/HSI/2015.3spa
dc.relation.referencesOMS. (2018b). Sistemas de Salud. Temas de Salud. http://www.who.int/topics/health_systems/es/spa
dc.relation.referencesOMS. (2018c). World health statistics 2018: monitoring health for the SDGs, sustainable development goals.spa
dc.relation.referencesOMS. (2019). Determinantes sociales de la salud. Organización Mundial de La Salud. https://www.who.int/social_determinants/es/spa
dc.relation.referencesOPS. (2012). Salud en las Américas: panorama general y perfiles de país.spa
dc.relation.referencesOPS. (2018). Indicadores de Salud. Aspectos conceptuales y operativos. In Organización Panamericana de la Salud.spa
dc.relation.referencesPapanicolas, I., & Cylus, J. (2017). The challenges of using cross-national comparisons of efficiency to inform health policy. Eurohealth:Quarterly of the European Observatory on Health Systems an Policies, 23(2), 8–11.spa
dc.relation.referencesPapanicolas, I., & Smith, P. C. (2013). Health System Performance Comparison. An agenda for policy, information and research. In Mc Graw Hill (Ed.), European Observatory on Health Systems and Policies Series (The Europe).spa
dc.relation.referencesPeixoto, M. G. M., Musetti, M. A., & Mendonça, M. C. A. (2018). Multivariate analysis techniques applied for the performance measurement of Federal University Hospitals of Brazil. Computers and Industrial Engineering, 126(July), 16–29. https://doi.org/10.1016/j.cie.2018.09.020spa
dc.relation.referencesPengpid, S., & Peltzer, K. (2017). Multimorbidity in chronic conditions: Public primary care patients in four greater mekong countries. International Journal of Environmental Research and Public Health, 14(9). https://doi.org/10.3390/ijerph14091019spa
dc.relation.referencesPerić, N., Hofmarcher-Holzhacker, M. M., & Simon, J. (2017). Health system performance assessment landscape at the EU level: A structured synthesis of actors and actions. Archives of Public Health, 75(1), 1–10. https://doi.org/10.1186/s13690-016-0173-5spa
dc.relation.referencesPerić, N., Hofmarcher-Holzhacker, M. M., & Simon, J. (2018). Headline indicators for monitoring the performance of health systems: Findings from the european Health Systems_Indicator (euHS_I) survey. Archives of Public Health, 76(1), 1–17. https://doi.org/10.1186/s13690-018-0278-0spa
dc.relation.referencesPettey, W. B. P., Toth, D. J. A., Redd, A., Carter, M. E., Samore, M. H., & Gundlapalli, A. V. (2016). Using network projections to explore co-incidence and context in large clinical datasets: Application to homelessness among U.S. Veterans. Journal of Biomedical Informatics, 61, 203–213. https://doi.org/10.1016/j.jbi.2016.03.023spa
dc.relation.referencesPrados-Torres, A., Calderón-Larrañaga, A., Hancco-Saavedra, J., Poblador-Plou, B., & Van Den Akker, M. (2014). Multimorbidity patterns: A systematic review. Journal of Clinical Epidemiology, 67(3), 254–266. https://doi.org/10.1016/j.jclinepi.2013.09.021spa
dc.relation.referencesRentería-Ramos, R., Hurtado-Heredia, R., & Urdinola, P. (2019). Morbi-mortality of the victims of internal conflict and poor population in the Risaralda Province, Colombia. International Journal of Environmental Research and Public Health, 16(1644), 1–8. https://doi.org/10.3390/ijerph16091644spa
dc.relation.referencesReyes, E., González, W., Suárez, B., & Egüez, H. (2011). Caracterización clínico-epidemiológica de los pacientes con artritis reumatoide. Hospitl Universitario Arnaldo Milián Castro. Revista Cubana de Reumatología, 8(1817–5996), 8.spa
dc.relation.referencesRicci-Cabello, I., Violán, C., Foguet-Boreu, Q., Mounce, L. T. A., & Valderas, J. M. (2015). Impact of multi-morbidity on quality of healthcare and its implications for health policy, research and clinical practice. A scoping review. European Journal of General Practice, 21(3), 192–202. https://doi.org/10.3109/13814788.2015.1046046spa
dc.relation.referencesRouse, W. B. (2008). Health Care as a Complex Adaptive System: Implications for Design and Management. Organization Science, 38(1), 17. https://doi.org/10.1177/1538574411407082spa
dc.relation.referencesSchäfer, I., Kaduszkiewicz, H., Wagner, H. O., Schön, G., Scherer, M., & Van Den Bussche, H. (2014). Reducing complexity: A visualisation of multimorbidity by combining disease clusters and triads. BMC Public Health, 14(1), 1–14. https://doi.org/10.1186/1471-2458-14-1285spa
dc.relation.referencesSchwartz, R., & Deber, R. (2016). The performance measurement-management divide in public health. Health Policy, 120(3), 273–280. https://doi.org/10.1016/j.healthpol.2016.02.003spa
dc.relation.referencesSecretaria Distrital de Salud de Bogotá. (2019). Documento de Análisis de Situación de Salud con el Modelo de los Determinantes Sociales de Salud para el Distrito Capital. In Secretaría Distrital de Salud de Bogotá.spa
dc.relation.referencesShannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.xspa
dc.relation.referencesSierra, J., & Quintero, J. (2019). Alteraciones tiroideas en diabetes mellitus tipo 2. Revista Latinoamericana de Hipertensión, 14(5), 579–581.spa
dc.relation.referencesSturmberg, J., & Lanham, H. J. (2014). Understanding health care delivery as a complex system: Achieving best possible health outcomes for individuals and communities by focusing on interdependencies. Journal of Evaluation in Clinical Practice, 20(6), 1005–1009. https://doi.org/10.1111/jep.12142spa
dc.relation.referencesSun, D., Ahn, H., Lievens, T., & Zeng, W. (2017). Evaluation of the performance of national health systems in 2004-2011: An analysis of 173 countries. PLoS ONE, 12(3), 1–13. https://doi.org/10.1371/journal.pone.0173346spa
dc.relation.referencesTrninic, V., Jelaska, I., & Stalec, J. (2012). Appropriateness and limitations of factor analysis methods utilized in psychology and kinesiology: Part I. Fizicka Kultura, 66(2), 77–87. https://doi.org/10.5937/fizkul1202077tspa
dc.relation.referencesValderas, J. M., Starfi, B., Sibbald, B., Salisbury, S., & Roland, M. (2009). Defining comorbidity: implications for understanding health and health services. Annals of Family Medicine, 7(4), 357–363. https://doi.org/10.1370/afm.983.Martinspa
dc.relation.referencesValdés, E., & Bencosme, N. (2009). Frecuencia de la hipertensión arterial y su relación con algunas variables clínicas en pacientes con diabetes mellitus tipo 2. Revista Cubana de Endocrinología, 20(3), 77–88.spa
dc.relation.referencesValente, T. W., & Pitts, S. R. (2017). An Appraisal of Social Network Theory and Analysis as Applied to Public Health: Challenges and Opportunities. Annual Review of Public Health, 38, 1–16. https://doi.org/10.1146/annurev-publhealth-031816-044528spa
dc.relation.referencesVinjerui, K. H., Bjerkeset, O., Bjorngaard, J. H., Krokstad, S., Douglas, K. A., & Sund, E. R. (2020). Socioeconomic inequalities in the prevalence of complex multimorbidity in a Norwegian population: Findings from the cross-sectional HUNT Study. BMJ Open, 10(6), 1–9. https://doi.org/10.1136/bmjopen-2020-036851spa
dc.relation.referencesWasserman, S., & Faust, K. (1994). Social Network Analysis Methods and applications. Cambridge University Press.spa
dc.relation.referencesWei, M. Y., Ratz, D., & Mukamal, K. J. (2020). Multimorbidity in Medicare Beneficiaries: Performance of an ICD-Coded Multimorbidity-Weighted Index. Journal of the American Geriatrics Society, 68(5), 999–1006. https://doi.org/10.1111/jgs.16310spa
dc.relation.referencesZavala, C., & Florenzano, F. (2015). Diabetes y Corazón. Revista Clínica Las Condes, 26(2), 175–185. https://doi.org/10.1016/j.rmclc.2015.04.006spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.decsEnfermedades individualesspa
dc.subject.decsIndividual Diseaseseng
dc.subject.decsEncuestas de morbilidadspa
dc.subject.decsMorbidity Surveyseng
dc.subject.decsIndicadoresd emorbimortalidadspa
dc.subject.decsIndicators of Morbidity and Mortalityeng
dc.subject.proposalSistema de Saludspa
dc.subject.proposalMorbilidadspa
dc.subject.proposalMultimorbilidadspa
dc.subject.proposalAnálisis de Redesspa
dc.subject.proposalEvaluación del Desempeñospa
dc.titleModelo para evaluar el desempeño de un sistema de salud desde el análisis de redes: un enfoque basado en los patrones de morbilidad y su relación con los servicios de salud
dc.title.translatedA model to assess the performance of a health system from the network analysis perspective: an approach based in morbidity patterns and their relation with health services
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
38211249.2023.pdf
Tamaño:
3.02 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Industria y Organizaciones

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: