Respuesta electro-óptica de sistemas de pocas partículas en puntos cuánticos semiconductores no uniformes autoensamblados
| dc.contributor.advisor | Rincón Fulla, Marlon | |
| dc.contributor.advisor | Miranda Pedraza, Guillermo León | |
| dc.contributor.author | Palacio Bedoya, Juan Luis | |
| dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001459749 | |
| dc.contributor.googlescholar | https://scholar.google.com/citations?user=VhKo_4IAAAAJ&hl=es | |
| dc.contributor.orcid | Palacio Bedoya, Juan Luis [0000-0003-0613-4301] | |
| dc.contributor.researchgate | https://www.researchgate.net/profile/Juan-Luis-Palacio-Bedoya | |
| dc.date.accessioned | 2025-09-22T15:26:52Z | |
| dc.date.available | 2025-09-22T15:26:52Z | |
| dc.date.issued | 2025-09-20 | |
| dc.description | Ilustraciones, gráficos | spa |
| dc.description.abstract | En el ámbito de la tecnología de semiconductores, el desarrollo de dispositivos optoelectrónicos nanoestructurados ha propiciado avances significativos en sectores como las telecomunicaciones, la computación, la medicina y la biotecnología. Estos avances se sustentan en técnicas de crecimiento cristalino que permiten el diseño preciso de nanoestructuras semiconductoras, con especial énfasis en el control de su morfología a escala nanoscópica. En la última década, los puntos cuánticos semiconductores han captado un creciente interés científico y tecnológico debido a su capacidad para manipular de forma precisa el fuerte confinamiento tridimensional de portadores de carga y, por tanto, sus propiedades ópticas. Sin embargo, la relación entre las no uniformidades morfológicas que pueden exhibir los puntos cuánticos y sus propiedades optoelectrónicas sigue siendo un interrogante abierto. Por esta razón, en aplicaciones tecnológicas se suele restringir el uso a nanoestructuras con geometrías regulares y simétricas como discos, domos, conos y pirámides, descartando otras geometrías exóticas que podrían presentar características notables. En este trabajo de tesis se profundiza en la caracterización de sistemas de una partícula móvil, como un electrón, una impureza hidrogenoide o un complejo molecular dihidrogenoide ionizado, confinados en puntos cuánticos autoensamblados de morfologías no uniformes y en configuraciones de puntos cuánticos acoplados verticalmente. El análisis de los portadores de carga en estos sistemas se realiza mediante la implementación del método de elementos finitos en dos dimensiones (FEM2D), cuyos resultados son contrastados con soluciones analíticas previamente establecidas para heteroestructuras semiconductoras, garantizando la validez de la técnica numérica. Para analizar los efectos de las morfologías no uniformes de los puntos cuánticos autoensamblados, y considerando que su altura es significativamente menor en comparación con las dimensiones de su base, se emplea la Aproximación Adiabática. Este procedimiento permite desacoplar el movimiento del portador de carga en la dirección de la altura, manteniendo el análisis en dos dimensiones sobre la base del punto cuántico mediante FEM2D, lo que reduce la complejidad computacional sin comprometer la veracidad de los resultados. Posteriormente, se extiendió el estudio mediante el método de elementos finitos en tres dimensiones (FEM3D), lo que permitió modelar de manera general los portadores de carga confinados en puntos cuánticos no uniformes. Esta aproximación posibilita una caracterización más detallada de los efectos morfológicos en las propiedades optoelectrónicas de estos sistemas nanoestructurados. Los resultados obtenidos no solo contribuyen a una comprensión más profunda de las propiedades de los puntos cuánticos no uniformes, sino que también abren nuevas perspectivas para el desarrollo de dispositivos optoelectrónicos avanzados, impulsando así el progreso en el campo de la nanociencia y la optoelectrónica. En el presente documento de tesis se sintetizan los resultados publicados en revistas científicas indexadas, junto con algunos resultados inéditos que se planean o se encuentran en proceso de revisión al momento de someter este proyecto de tesis doctoral. Estos artículos se listan a continuación: 1. Nonlinear optical absorption and refractive index change in realistic Ga1−xAlxAs/GaAs V groove quantum wires. Photonics and Nanostructures - Fundamentals and Applications, 2021. Q2 Scopus. doi:10.1016/j.mssp.2022.106762 2. Non-linear response under terahertz radiation of an asymmetric Ga1−xAlxAs/GaAs/Ga1−yAlyAs V-groove nanowire confining a singly-ionized double donor. J. Mater. Sci., 2022. Q1 Scopus. doi:10.1007/s10853-021-06738-9 3. Spectral features and optical absorption of vertically stacked V-groove quantum wires. Eur. Phys. J. Plus, 2022. Q2 Scopus. doi:10.1140/epjp/s13360-022-03219-z 4. Effects of temperature, hydrostatic pressure, and aluminum concentration on the electro optical properties of a D+2 molecular complex in elliptical GaAlAs/GaAs nanoflakes Optical and Quantum Electronics, 2023. Q2 Scopus. doi:10.1007/s11082-023-05034-x 5. Asymmetry effects on the electro-optical properties of a hydrogen molecular ion in vertically coupled InAs/GaAs quantum dots: Spatial finite element method calculations. Physica B: Condensed Matter, 2025. Q2 Scopus. doi:10.1016/j.physb.2025.416958 Algunos de los resultados preliminares y relevantes fueron socializados en los siguientes eventos científicos de carácter nacional e internacional: 1. The 5th International Conference on the Physics of Optical Materials and Devices (ICOM 2018), Igalo-Montenegro (2018) 2. XXVIII Congreso Nacional de Física (XXVIII CNF), Armenia-Colombia (2019) 3. 17th International Conference on Advanced Nanomaterials (ANM 2021), Aveiro-Portugal (2021) 4. XXIX Congreso Nacional de Física (XXIX CNF), Armenia-Colombia (2022) 5. IX Encuentro Regional de Ciencias Físicas (IX ERF), Valledupar-Colombia (2023) Este estudio fue posible gracias a la financiación de los proyectos de investigación desarrollados en la Institución Universitaria Pascual Bravo y en la Universidad Nacional de Colombia - Sede Medellín, que se listan a continuación: - Estudio espectral y de la respuesta óptica de sistemas de pocas partículas confinadas en nanoestructuras semiconductoras cuasi bidimensionales. Código: INV-FR-44. Investigador Principal: Ph.D. Marlon Rincón Fulla. Co-investigador: M.Sc. Juan Luis Palacio Bedoya. Institución Universitaria Pascual Bravo. 2019-2020. - Respuesta de la óptica de un sistema D− confinado en nanoanillos de Ga1−xAlxAs concéntri cos. Código: IN202203. Investigador Principal: Ph.D(c). Juan Luis Palacio Bedoya. Institución Universitaria Pascual Bravo. 2022-2024. - Estudio de la respuesta electro-óptica de sistemas de pocas partículas en puntos cuánticos semiconductores no uniformes. Código: 57805. Investigador Principal: Ph.D. Marlon Rin cón Fulla. Co-investigador: Ph.D(c). Juan Luis Palacio Bedoya. Universidad Nacional de Colombia - Sede Medellín. 2023-. (Tomado de la fuente) | spa |
| dc.description.abstract | In the field of semiconductor technology, the development of nanostructured optoelectronic devices has driven significant advances in sectors such as telecommunications, computing, medicine, and biotechnology. These advances rely on crystal growth techniques that enable the precise design of semiconductor nanostructures, with particular emphasis on controlling their morphology at the nanoscopic scale. In the last decade, semiconductor quantum dots have attracted growing scientific and technological interest due to their ability to precisely manipulate the strong three-dimensional confinement of charge carriers and, consequently, their optical properties. However, the relationship between the morphological non-uniformities that quantum dots may exhibit and their optoelectronic properties remains an open question. For this reason, technological applications are often restricted to nanostructures with regular and symmetric geometries such as disks, domes, cones, and pyramids, discarding other exotic geometries that could exhibit remarkable characteristics. This thesis focuses on the characterization of single-particle systems, such as an electron, a hydrogenic impurity, or an ionized dihydrogenoid molecular complex, confined in self-assembled quantum dots with non-uniform morphologies and in vertically coupled quantum dot configurations. The analysis of charge carriers in these systems is carried out through the implementation of the two-dimensional finite element method (FEM2D), with results contrasted against previously established analytical solutions for semiconductor heterostructures, ensuring the validity of the numerical technique. To analyze the effects of the non-uniform morphologies of self-assembled quantum dots, and considering that their height is significantly smaller compared to the dimensions of their base, the Adiabatic Approximation is employed. This procedure allows decoupling the motion of the charge carrier in the height direction, while maintaining the analysis in two dimensions over the quantum dot base using FEM2D, thereby reducing computational complexity without compromising the accuracy of the results. Subsequently, the study was extended using the three-dimensional finite element method (FEM3D), which enabled a more general modeling of charge carriers confined in non-uniform quantum dots. This approach provides a more detailed characterization of the morphological effects on the optoelectronic properties of these nanostructured systems. The results obtained not only contribute to a deeper understanding of the properties of non-uniform quantum dots, but also open new perspectives for the development of advanced optoelectronic devices, thus driving progress in the field of nanoscience and optoelectronics. This doctoral thesis synthesizes results published in indexed scientific journals, together with some unpublished findings that are planned or currently under review at the time of submission. These articles are listed below: 1. Nonlinear optical absorption and refractive index change in realistic Ga₁₋ₓAlₓAs/GaAs V-groove quantum wires. Photonics and Nanostructures - Fundamentals and Applications, 2021. Q2 Scopus. doi:10.1016/j.mssp.2022.106762 2. Non-linear response under terahertz radiation of an asymmetric Ga₁₋ₓAlₓAs/GaAs/Ga₁₋ᵧAlᵧAs V-groove nanowire confining a singly-ionized double donor. J. Mater. Sci., 2022. Q1 Scopus. doi:10.1007/s10853-021-06738-9 3. Spectral features and optical absorption of vertically stacked V-groove quantum wires. Eur. Phys. J. Plus, 2022. Q2 Scopus. doi:10.1140/epjp/s13360-022-03219-z 4. Effects of temperature, hydrostatic pressure, and aluminum concentration on the electro optical properties of a D₂⁺ molecular complex in elliptical GaAlAs/GaAs nanoflakes. Optical and Quantum Electronics, 2023. Q2 Scopus. doi:10.1007/s11082-023-05034-x 5. Asymmetry effects on the electro-optical properties of a hydrogen molecular ion in vertically coupled InAs/GaAs quantum dots: Spatial finite element method calculations. Physica B: Condensed Matter, 2025. Q2 Scopus. doi:10.1016/j.physb.2025.416958 Some of the preliminary and relevant results were presented at the following national and international scientific events: 1. The 5th International Conference on the Physics of Optical Materials and Devices (ICOM 2018), Igalo-Montenegro (2018) 2. XXVIII Congreso Nacional de Física (XXVIII CNF), Armenia-Colombia (2019) 3. 17th International Conference on Advanced Nanomaterials (ANM 2021), Aveiro-Portugal (2021) 4. XXIX Congreso Nacional de Física (XXIX CNF), Armenia-Colombia (2022) 5. IX Encuentro Regional de Ciencias Físicas (IX ERF), Valledupar-Colombia (2023) This study was made possible thanks to the funding of research projects carried out at the Institución Universitaria Pascual Bravo and the Universidad Nacional de Colombia - Medellín Campus, listed below: - Estudio espectral y de la respuesta óptica de sistemas de pocas partículas confinadas en nanoestructuras semiconductoras cuasi bidimensionales. Código: INV-FR-44. Investigador Principal: Ph.D. Marlon Rincón Fulla. Co-investigador: M.Sc. Juan Luis Palacio Bedoya. Institución Universitaria Pascual Bravo. 2019-2020. - Respuesta de la óptica de un sistema D⁻ confinado en nanoanillos de Ga₁₋ₓAlₓAs concéntricos. Código: IN202203. Investigador Principal: Ph.D(c). Juan Luis Palacio Bedoya. Institución Universitaria Pascual Bravo. 2022-2024. - Estudio de la respuesta electro-óptica de sistemas de pocas partículas en puntos cuánticos semiconductores no uniformes. Código: 57805. Investigador Principal: Ph.D. Marlon Rincón Fulla. Co-investigador: Ph.D(c). Juan Luis Palacio Bedoya. Universidad Nacional de Colombia - Sede Medellín. 2023-. | eng |
| dc.description.curriculararea | Física.Sede Medellín | |
| dc.description.degreelevel | Doctorado | |
| dc.description.degreename | Doctor en Ciencias Física | |
| dc.description.notes | N/A | spa |
| dc.description.technicalinfo | N/A | spa |
| dc.format.extent | 143 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88930 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Ciencias | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Ciencias - Doctorado en Ciencias - Física | |
| dc.relation.indexed | LaReferencia | |
| dc.relation.references | T. Müller, J. Skiba-Szymanska, A. Krysa, J. Huwer, M. Felle, M. Anderson, R. Stevenson, J. Heffernan, D. Ritchie, and A. J. Shields, “A quantum light emitting diode for the standard telecom window around 1550 nm,” Nature Communications, vol. 9, 10 2017. | |
| dc.relation.references | I. K. Victor Ryzhii, “Electron and photon effects in imaging devices utilizing quantum dot infrared photodetectors and light-emitting diodes,” in Photodetectors: Materials and Devices V, vol. 3948, 2000. [Online]. Available: https://doi.org/10.1117/12.382121 | |
| dc.relation.references | T. Chakraborty, Quantum Dots. Amsterdam: North-Holland, 1999. [Online]. Available: http://www.sciencedirect.com/science/article/pii/B9780444502582500018 | |
| dc.relation.references | J. Singh, Physics of Semiconductors and Their Heterostructures, ser. Electrical engineering series. McGraw-Hill, 1993. [Online]. Available: https://books.google.com.co/books?id= y2LoJQAACAAJ | |
| dc.relation.references | P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, “Quantum Dot Light- ´ Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum,” Nano Letters, vol. 9, no. 7, pp. 2532–2536, 2009, pMID: 19514711. [Online]. Available: https://doi.org/10.1021/nl9002969 | |
| dc.relation.references | J. Kwak, J. Lim, M. Park, S. Lee, K. Char, and C. Lee, “High-Power Genuine Ultraviolet Light-Emitting Diodes Based On Colloidal Nanocrystal Quantum Dots,” Nano Letters, vol. 15, no. 6, pp. 3793–3799, 2015, pMID: 25961530. [Online]. Available: https://doi.org/10.1021/acs.nanolett.5b00392 | |
| dc.relation.references | S. Coe-Sullivan, J. S. Steckel, L. Kim, M. G. Bawendi, and V. Bulovic, “Method for fabrication of saturated RGB quantum dot light-emitting devices,” in SPIE OPTO, 2005. | |
| dc.relation.references | J. Davies and J. Davies, The Physics of Low-dimensional Semiconductors: An Introduction. Cambridge University Press, 1998. [Online]. Available: https://books.google.com.co/ books?id=_YXoT2Tyq6oC | |
| dc.relation.references | J. Singh, Semiconductor Optoelectronics: Physics and Technology, ser. Electrical engineering series. McGraw-Hill, 1995. [Online]. Available: https://books.google.com. co/books?id=uOquAAAACAAJ | |
| dc.relation.references | P. Petroff, A. Lorke, and A. Imamoglu, “Epitaxially self-assembled quantum dots,” Physics Today, vol. 54, pp. 46–52, 05 2001 | |
| dc.relation.references | K. Lüdge, M. J. P. Bormann, E. Malic, P. Hövel, M. Kuntz, D. Bimberg, A. Knorr, ´ and E. Schöll, “Turn-on dynamics and modulation response in semiconductor quantum dot lasers,” Phys. Rev. B, vol. 78, p. 035316, Jul 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.78.035316 | |
| dc.relation.references | B. Movaghar, S. Tsao, S. Abdollahi Pour, T. Yamanaka, and M. Razeghi, “Gain and recombination dynamics in photodetectors made with quantum nanostructures: The quantum dot in a well and the quantum well,” Phys. Rev. B, vol. 78, p. 115320, Sep 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.78.115320 | |
| dc.relation.references | K. Stewart, M. Buda, J. Wong-Leung, L. Fu, C. Jagadish, A. Stiff-Roberts, and P. Bhattacharya, “Influence of rapid thermal annealing on a 30 stack InAs/GaAs quantum dot infrared photodetector,” Journal of Applied Physics, vol. 94, no. 8, pp. 5283–5289, 2003. [Online]. Available: https://aip.scitation.org/doi/abs/10.1063/1.1609634 | |
| dc.relation.references | I. Kaiander, F. Hopfer, T. Kettler, U. Pohl, and D. Bimberg, “Alternative precursor growth of quantum dot-based VCSELs and edge emitters for near infrared wavelengths,” Journal of Crystal Growth, vol. 272, no. 1, pp. 154 – 160, 2004, the Twelfth International Conference on Metalorganic Vapor Phase Epitaxy. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022024804010784 | |
| dc.relation.references | K. K. Likharev, “Single-electron devices and their applications,” Proceedings of the IEEE, vol. 87, no. 4, pp. 606–632, April 1999 | |
| dc.relation.references | J. K. Vincent, V. Narayan, and M. Willander, “Tuning the room temperature nonlinear I − V characteristics of a single-electron silicon quantum dot transistor by split gates: A simple model,” Phys. Rev. B, vol. 65, p. 125309, Mar 2002. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.65.125309 | |
| dc.relation.references | Z. M. Wang, Self-Assembled Quantum Dots. Springer, 01 2008 | |
| dc.relation.references | J. Chen, W. Fan, Q. Xu, X. Zhang, S. Li, and J. Xia, “Shape effects on the electronic structure and the optical gain of InAsN/GaAs nanostructures: From a quantum lens to a quantum ring,” Superlattices and Microstructures, vol. 52, p. 618–631, 10 2012 | |
| dc.relation.references | W. Xie, “Optical properties of an exciton in a two-dimensional quantum ring with an applied magnetic field,” Optics Communications, vol. 291, p. 386–389, 03 2013 | |
| dc.relation.references | E. Aksahin, V. Ünal, and m. tomak, “Exciton related nonlinear optical properties of a spherical quantum dot,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 74, 10 2015 | |
| dc.relation.references | G. L. Miranda-Pedraza, W. Ospina, and E. Giraldo-Tobón, “Nonlinear terahertz response associated to electronic intersubband transitions in a V-groove quantum wire: Nonlinear THz response in a V-groove quantum wire,” physica status solidi (b), vol. 254, p. 1600463, 02 2017 | |
| dc.relation.references | M. Grundmann, The Physics of Semiconductors, 3rd ed. Berlin, Heidelberg: Springer, 2021. [Online]. Available: https://www.springer.com/gp/book/9783642138836 | |
| dc.relation.references | J. Castrillón, D. Gómez-Ramírez, I. Rivera, Y. Suaza, J. Marín, and M. Fulla, “Artificial Hydrogen molecule in vertically stacked Ga1−xAlxAs nanoscale rings: Structural and external probes effects on their quantum levels,” Physica E: Low-dimensional Systems and Nanostructures, vol. 117, p. 113765, 2020. | |
| dc.relation.references | I. Levine, A. Rodríguez, A. Pascual, and J. Román, Química cuántica. Pearson Educación, 2001. [Online]. Available: https://books.google.com.co/books?id=jAgT7h4-7nsC | |
| dc.relation.references | D. Bromley and W. Greiner, Quantum Mechanics: An Introduction. Springer Berlin Heidelberg, 2012. [Online]. Available: https://books.google.com.co/books?id= sa0xBQAAQBAJ | |
| dc.relation.references | J. Sakurai, Modern Quantum Mechanics. Pearson Education, 2006. [Online]. Available: https://books.google.com.co/books?id=JCS-S1tLx7MC | |
| dc.relation.references | U. Pohl, K. POTSCHKE, A. Schliwa, F. Guffarth, D. Bimberg, N. Zakharov, P. Werner, M. Lifshits, V. Shchukin, and D. Jesson, “Evolution of a multimodal distribution of selforganized InAs/GaAs quantum dots,” Physical Review B, vol. 72, 01 2005 | |
| dc.relation.references | J. Baribeau, N. L. Rowell, and D. J. Lockwood, “Self-assembled SiGe dots,” in SPIE OPTO, 2005 | |
| dc.relation.references | M. Korzec and P. Evans, “From bell shapes to pyramids: A reduced continuum model for self-assembled quantum dot growth,” Physica D: Nonlinear Phenomena, vol. 239, pp. 465– 474, 08 2009 | |
| dc.relation.references | J. H. Lee, Z. M. Wang, N. W. Strom, Y. I. Mazur, and G. Salamo, “InGaAs quantum dot molecules around self-assembled GaAs nanomound templates,” Applied Physics Letters, vol. 89, pp. 202 101–202 101, 11 2006 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.ddc | 530 - Física | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | |
| dc.subject.lemb | Electroóptica | |
| dc.subject.lemb | Semiconductores | |
| dc.subject.lemb | Dispositivos electroópticos | |
| dc.subject.lemb | Dispositivos optoelectrónicos | |
| dc.subject.lemb | Nanoestructuras | |
| dc.subject.proposal | Puntos cuánticos autoensamblados | spa |
| dc.subject.proposal | Heteroestructuras semiconductoras | spa |
| dc.subject.proposal | Propiedades electrónicas | spa |
| dc.subject.proposal | Respuesta óptica | spa |
| dc.subject.proposal | Self-assembled quantum dots | eng |
| dc.subject.proposal | Semiconductor heterostructures | eng |
| dc.subject.proposal | Electronic properties | eng |
| dc.subject.proposal | Optical response | eng |
| dc.title | Respuesta electro-óptica de sistemas de pocas partículas en puntos cuánticos semiconductores no uniformes autoensamblados | spa |
| dc.title.translated | Electro-optical properties of few-particle systems in self-assembled non-uniform semiconductor quantum dots | eng |
| dc.type | Trabajo de grado - Doctorado | |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Maestros | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |

